Increased Light Olefin Production by Sequential Dehydrogenation and Cracking Reactions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Catalysts
2.2. Dehydrogenation Performance of Mo/Al2O3 and Ni-Mo/Al2O3
2.3. Proposed Reaction Pathway and DFT Computations
2.4. The Feasibility of Sequential Dehydrogenation and Cracking Reactions
2.5. Evaluation of Double-Bed Reaction Performance and Stability
3. Materials and Methods
3.1. Materials
3.2. Catalytic Activity Test
3.3. Characterization
3.4. Computational Studies
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Z.; Huang, Y.; Ma, H.; Qian, W.; Zhang, H.; Ying, W. Syngas-to-olefins over MOF-derived ZnZrOx and SAPO-34 bifunctional catalysts. Catal. Commun. 2021, 152, 106292. [Google Scholar] [CrossRef]
- Lu, J.; Zhao, Z.; Xu, C.; Zhang, P.; Duan, A. FeHZSM-5 molecular sieves—Highly active catalysts for catalytic cracking of isobutane to produce ethylene and propylene. Catal. Commun. 2006, 7, 199–203. [Google Scholar] [CrossRef]
- Balogun, M.L.; Adamu, S.; Bakare, I.A.; Ba-Shammakh, M.S.; Hossain, M.M. CO2Assisted Oxidative Dehydrogenation of Propane to Propylene over Fluidizable MoO3/La2O3-γAl2O3Catalysts. J. CO2 Util. 2020, 42, 101329. [Google Scholar] [CrossRef]
- Dixit, M.; Kostetskyy, P.; Mpourmpakis, G. Structure-Activity Relationships in Alkane Dehydrogenation on γ-Al2O3: Site-Dependent Reactions. ACS Catal. 2018, 8, 11570–11578. [Google Scholar] [CrossRef]
- Kubo, K.; Iida, H.; Namba, S.; Igarashi, A. Selective formation of light olefins by catalytic cracking of naphtha components over ZSM-5 zeolite catalysts. J. Jpn. Pet. Inst. 2018, 61, 10–19. [Google Scholar] [CrossRef] [Green Version]
- Ajumobi, O.O.; Muraza, O.; Bakare, I.A.; al Amer, A.M. Iron- and Cobalt-Doped Ceria-Zirconia Nanocomposites for Catalytic Cracking of Naphtha with Regenerative Capability. Energy Fuels 2017, 31, 12612–12623. [Google Scholar] [CrossRef]
- Wattanapaphawong, P.; Reubroycharoen, P.; Mimura, N.; Sato, O.; Yamaguchi, A. Effect of carbon number on the production of propylene and ethylene by catalytic cracking of straight-chain alkanes over phosphorus-modified ZSM-5. Fuel Process. Technol. 2020, 202, 106367. [Google Scholar] [CrossRef]
- Al-Khattaf, S.S.; Ali, S.A. Catalytic Cracking of Arab Super Light Crude Oil to Light Olefins: An Experimental and Kinetic Study. Energy Fuels 2018, 32, 2234–2244. [Google Scholar] [CrossRef]
- Jung, J.S.; Kim, T.J.; Seo, G. Catalytic cracking of n-octane over zeolites with different pore structures and acidities. Korean J. Chem. Eng. 2004, 21, 777–781. [Google Scholar] [CrossRef]
- Wang, G.; Zhu, X.; Li, C. Recent Progress in Commercial and Novel Catalysts for Catalytic Dehydrogenation of Light Alkanes. Chem. Rec. 2020, 20, 604–616. [Google Scholar] [CrossRef]
- Phadke, N.M.; Mansoor, E.; Head-Gordon, M.; Bell, A.T. Mechanism and kinetics of light alkane dehydrogenation and cracking over isolated Ga species in Ga/H-MFI. ACS Catal. 2021, 11, 2062–2075. [Google Scholar] [CrossRef]
- Wu, C.; Wang, L.; Xiao, Z.; Li, G.; Wang, L. Understanding deep dehydrogenation and cracking of: N -butane on Ni(111) by a DFT study. Phys. Chem. Chem. Phys. 2020, 22, 724–733. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, N.; Karimzadeh, R. Catalytic cracking of hydrocarbons over modified ZSM-5 zeolites to produce light olefins: A review. Appl. Catal. A Gen. 2011, 398, 1–17. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, Q.; Long, H.; Sun, L.; Murayama, T.; Qi, C. Insights into Au Nanoparticle Size and Chemical State of Au/ZSM-5 Catalyst for Catalytic Cracking of n-Octane to Increase Propylene Production. J. Phys. Chem. C 2021, 125, 16013–16023. [Google Scholar] [CrossRef]
- Tsiatouras, V.A.; Katranas, T.K.; Triantafillidis, C.S.; Vlessidis, A.G.; Paulidou, E.G.; Evmiridis, N.P. Dehydrogenation of propane over various chromium-modified MFI-type zeolite catalysts. Stud. Surf. Sci. Catal. 2002, 142, 839–846. [Google Scholar] [CrossRef]
- Kotrel, S.; Knözinger, H.; Gates, B.C. The Haag-Dessau mechanism of protolytic cracking of alkanes. Microporous Mesoporous Mater. 2000, 35–36, 11–20. [Google Scholar] [CrossRef]
- Cnudde, P.; de Wispelaere, K.; Vanduyfhuys, L.; Demuynck, R.; van der Mynsbrugge, J.; Waroquier, M.; van Speybroeck, V. How Chain Length and Branching Influence the Alkene Cracking Reactivity on H-ZSM-5. ACS Catal. 2018, 8, 9579–9595. [Google Scholar] [CrossRef]
- Wang, T.; Cui, X.; Winther, K.T.; Abild-Pedersen, F.; Bligaard, T.; Nørskov, J.K. Theory-Aided Discovery of Metallic Catalysts for Selective Propane Dehydrogenation to Propylene. ACS Catal. 2021, 11, 6290–6297. [Google Scholar] [CrossRef]
- Zahara, Z.; Krisnandi, Y.K.; Wibowo, W.; Nurani, D.A.; Rahayu, D.U.C.; Haerudin, H. Synthesis and characterization of hierarchical ZSM-5 zeolite using various templates as cracking catalysts. AIP Conf. Proc. 2018, 2023, 020088. [Google Scholar] [CrossRef]
- Feng, R.; Yan, X.; Hu, X.; Yan, Z.; Lin, J.; Li, Z.; Hou, K.; Rood, M.J. Surface dealumination of micro-sized ZSM-5 for improving propylene selectivity and catalyst lifetime in methanol to propylene (MTP) reaction. Catal. Commun. 2018, 109, 1–5. [Google Scholar] [CrossRef]
- Wang, M.; He, M.; Fang, Y.; Baeyens, J.; Tan, T. The Ni-Mo/Γ-Al2O3 catalyzed hydrodeoxygenation of FAME to aviation fuel. Catal. Commun. 2017, 100, 237–241. [Google Scholar] [CrossRef]
- Qian, Y.; Liang, S.; Wang, T.; Wang, Z.; Xie, W.; Xu, X. Enhancement of pyrolysis gasoline hydrogenation over Zn- and Mo-promoted Ni/γ-Al2O3 catalysts. Catal. Commun. 2011, 12, 851–853. [Google Scholar] [CrossRef]
- Abdelgaid, M.; Dean, J.; Mpourmpakis, G. Improving alkane dehydrogenation activity on γ-Al2O3through Ga doping. Catal. Sci. Technol. 2020, 10, 7194–7202. [Google Scholar] [CrossRef]
- Kissin, Y.V. Chemical Mechanisms of Catalytic Cracking over Solid Acidic Catalysts: Alkanes and Alkenes. Catal. Rev. Sci. Eng. 2001, 43, 85–146. [Google Scholar] [CrossRef]
- Sommer, J.; Jost, R.; Hachoumy, M. Activation of small alkanes on strong solid acids: Mechanistic approaches. Catal. Today 1997, 38, 309–319. [Google Scholar] [CrossRef]
- Boronat, M.; Corma, A. Are carbenium and carbonium ions reaction intermediates in zeolite-catalyzed reactions? Appl. Catal. A Gen. 2008, 336, 2–10. [Google Scholar] [CrossRef]
- Babitz, S.M.; Williams, B.A.; Miller, J.T.; Snurr, R.Q.; Haag, W.O.; Kung, H.H. Monomolecular cracking of n-hexane on Y, MOR, and ZSM-5 zeolites. Appl. Catal. A Gen. 1999, 179, 71–86. [Google Scholar] [CrossRef]
- Tsilomelekis, G.; Christodoulakis, A.; Boghosian, S. Support effects on structure and activity of molybdenum oxide catalysts for the oxidative dehydrogenation of ethane. Catal. Today 2007, 127, 139–147. [Google Scholar] [CrossRef]
- Liao, C.C.; Chang, C.C.; Choi, Y.M.; Tsai, M.K. Ethane oxidative dehydrogenation mechanism on MoO3(010) surface: A first-principle study using on-site Coulomb correction. Surf. Sci. 2018, 674, 45–50. [Google Scholar] [CrossRef]
- Martin, R.; Kim, M.; Asthagiri, A.; Weaver, J.F. Alkane Activation and Oxidation on Late-Transition-Metal Oxides: Challenges and Opportunities. ACS Catal. 2021, 11, 4682–4703. [Google Scholar] [CrossRef]
- Lü, Q.; Lin, X.; Wang, L.; Gao, J.; Bao, X. On-stream stability enhancement of HZSM-5 based fluid catalytic cracking naphtha hydro-upgrading catalyst via magnesium modification. Catal. Commun. 2016, 83, 31–34. [Google Scholar] [CrossRef]
- Altwasser, S.; Welker, C.; Traa, Y.; Weitkamp, J. Catalytic cracking of n-octane on small-pore zeolites. Microporous Mesoporous Mater. 2005, 83, 345–356. [Google Scholar] [CrossRef]
- Hu, X.; Xu, T.; Li, C.; Yang, C. Catalytic cracking of n-heptane under activation of lattice oxygen in a circulating fluidized bed unit. Chem. Eng. J. 2011, 172, 410–417. [Google Scholar] [CrossRef]
- Costa, C.; Lopes, J.M.; Lemos, F.; Ramoa, F. Activity–acidity relationship in zeolite Y Part 2. Determination of the acid strength distribution by temperature programmed desorption of ammonia. J. Mol. Catal. A Chem. 1999, 144, 221–231. [Google Scholar] [CrossRef]
Catalyst | SBET (m2/g) | Vp (cm3/g) | Vmicro (cm3/g) | dv (nm) | Weak Acid (μmol/g) | Medium and Strong Acid (μmol/g) | Total Acid (μmol/g) |
---|---|---|---|---|---|---|---|
Mo/Al2O3 | 168.22 | 0.47 | - | 11.14 | 33.9 | 22.3 | 56.2 |
Ni-Mo/Al2O3 | 163.20 | 0.44 | - | 10.88 | 35.3 | 51.2 | 86.5 |
ZSM-5-based Catalyst | 203.00 | 0.13 | 0.08 | 2.62 | 90.5 | 45.2 | 135.7 |
Catalyst | Mo/Al2O3 | Ni-Mo/Al2O3 | ||||||
---|---|---|---|---|---|---|---|---|
Reaction Temperature (℃) | 500 | 550 | 600 | 650 | 500 | 550 | 600 | 650 |
Conversion (%) | 1.71 | 3.07 | 5.82 | 24.39 | 4.32 | 5.16 | 12.98 | 27.73 |
Yield (wt%) | ||||||||
Dry Gas | 0.54 | 1.75 | 5.08 | 20.75 | 3.45 | 4.67 | 11.39 | 22.44 |
Hydrogen | 0.09 | 0.29 | 1.17 | 8.83 | 1.42 | 1.75 | 6.28 | 10.05 |
Methane | 0.07 | 0.29 | 1.53 | 5.66 | 0.86 | 1.45 | 2.75 | 5.94 |
Ethane | 0.13 | 0.42 | 1.63 | 4.33 | 0.77 | 0.91 | 1.37 | 3.77 |
Ethylene | 0.26 | 0.75 | 0.75 | 1.93 | 0.40 | 0.56 | 0.99 | 2.68 |
LPG | 3.17 | 6.28 | 14.36 | 7.37 | 4.94 | 5.81 | 5.35 | 6.64 |
Propane | 0.39 | 0.64 | 1.40 | 1.90 | 0.83 | 0.75 | 0.70 | 1.00 |
Propylene | 1.05 | 2.63 | 6.61 | 2.52 | 1.65 | 2.08 | 1.94 | 2.69 |
n-Butane | 0.29 | 0.47 | 0.89 | 0.87 | 0.38 | 0.38 | 0.38 | 0.73 |
Isobutane | 0.25 | 0.15 | 0.21 | 0.25 | 0.30 | 0.30 | 0.19 | 0.29 |
Butylene | 1.19 | 2.40 | 5.27 | 1.83 | 1.79 | 2.31 | 2.13 | 1.92 |
Gasoline Product | 95.50 | 90.21 | 73.92 | 52.49 | 85.96 | 82.60 | 68.17 | 45.82 |
Coke | 0.80 | 1.43 | 4.71 | 21.38 | 6.17 | 7.96 | 14.58 | 24.12 |
Olefins (wt%) | 8.02 | 8.30 | 8.96 | 11.99 | 1.27 | 2.78 | 6.36 | 4.54 |
Mass balance (%) | 100.01 | 99.67 | 98.07 | 101.99 | 100.52 | 101.04 | 99.49 | 99.02 |
Reaction rate (mmoln-octaneh−1gCat−1) | 0.59 | 1.06 | 2.01 | - | 1.49 | 1.77 | - | - |
Conversion | Ethylene Selectivity | Propylene Selectivity | |
---|---|---|---|
Blank test | 4.18 | 12.44 | 6.46 |
MOx | 5.82 | 11.00 | 8.08 |
Z | 72.81 | 15.03 | 26.51 |
M + Z | 79.02 | 15.77 | 25.37 |
2M + Z | 85.10 | 15.02 | 24.76 |
3M + Z | 95.13 | 13.68 | 22.21 |
5M + Z | 96.72 | 13.67 | 34.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Gong, J.; Wei, X.; Liu, L. Increased Light Olefin Production by Sequential Dehydrogenation and Cracking Reactions. Catalysts 2022, 12, 1457. https://doi.org/10.3390/catal12111457
Zhang X, Gong J, Wei X, Liu L. Increased Light Olefin Production by Sequential Dehydrogenation and Cracking Reactions. Catalysts. 2022; 12(11):1457. https://doi.org/10.3390/catal12111457
Chicago/Turabian StyleZhang, Xiaoqiao, Jianhong Gong, Xiaoli Wei, and Lingtao Liu. 2022. "Increased Light Olefin Production by Sequential Dehydrogenation and Cracking Reactions" Catalysts 12, no. 11: 1457. https://doi.org/10.3390/catal12111457
APA StyleZhang, X., Gong, J., Wei, X., & Liu, L. (2022). Increased Light Olefin Production by Sequential Dehydrogenation and Cracking Reactions. Catalysts, 12(11), 1457. https://doi.org/10.3390/catal12111457