Enhanced Electrolysis of CO2 with Metal–Oxide Interfaces in Perovskite Cathode in Solid Oxide Electrolysis Cell
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shindell, D.; Smith, C.J. Climate and Air-Quality Benefits of a Realistic Phase-out of Fossil Fuels. Nature 2019, 573, 408–411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, C.; Xiong, B.; Xue, H.; Zheng, D.; Ge, Z.; Wang, Y.; Jiang, L.; Pan, S.; Wu, S. The Role of New Energy in Carbon Neutral. Pet. Explor. Dev. 2021, 48, 480–491. [Google Scholar] [CrossRef]
- Meinshausen, M.; Meinshausen, N.; Hare, W.; Raper, S.C.B.; Frieler, K.; Knutti, R.; Frame, D.J.; Allen, M.R. Greenhouse-Gas Emission Targets for Limiting Global Warming to 2 °C. Nature 2009, 458, 1158–1162. [Google Scholar] [CrossRef]
- Manzone, M.; Calvo, A. Woodchip Transportation: Climatic and Congestion Influence on Productivity, Energy and CO2 Emission of Agricultural and Industrial Convoys. Renew. Energy 2017, 108, 250–259. [Google Scholar] [CrossRef]
- Wuebbles, D.J.; Sanyal, S. Air Quality in a Cleaner Energy World. Curr. Pollut. Rep. 2015, 1, 117–129. [Google Scholar] [CrossRef] [Green Version]
- Najjar, Y.S.H. Gaseous Pollutants Formation and Their Harmful Effects on Health and Environment. Innov. Energy Policies 2011, 1, 1–9. [Google Scholar] [CrossRef]
- Su, X.; Xu, J.; Liang, B.; Duan, H.; Hou, B.; Huang, Y. Catalytic Carbon Dioxide Hydrogenation to Methane: A Review of Recent Studies. J. Energy Chem. 2016, 25, 553–565. [Google Scholar] [CrossRef]
- Olah, G.A.; Goeppert, A.; Prakash, G.K.S. Chemical Recycling of Carbon Dioxide to Methanol and Dimethyl Ether: From Greenhouse Gas to Renewable, Environmentally Carbon Neutral Fuels and Synthetic Hydrocarbons. J. Org. Chem. 2009, 74, 487–498. [Google Scholar] [CrossRef]
- Genovese, C.; Ampelli, C.; Perathoner, S.; Centi, G. Electrocatalytic Conversion of CO2 to Liquid Fuels Using Nanocarbon-Based Electrodes. J. Energy Chem. 2013, 22, 202–213. [Google Scholar] [CrossRef]
- Liang, S.; Altaf, N.; Huang, L.; Gao, Y.; Wang, Q. Electrolytic Cell Design for Electrochemical CO2 Reduction. J. CO2 Util. 2020, 35, 90–105. [Google Scholar] [CrossRef]
- Wu, D.; Jiao, F.; Lu, Q. Progress and Understanding of CO2/CO Electroreduction in Flow Electrolyzers. ACS Catal. 2022, 12, 12993–13020. [Google Scholar] [CrossRef]
- Weekes, D.M.; Salvatore, D.A.; Reyes, A.; Huang, A.; Berlinguette, C.P. Electrolytic CO2 Reduction in a Flow Cell. Acc. Chem. Res. 2018, 51, 910–918. [Google Scholar] [CrossRef]
- Tufa, R.A.; Chanda, D.; Ma, M.; Aili, D.; Demissie, T.B.; Vaes, J.; Li, Q.; Liu, S.; Pant, D. Towards Highly Efficient Electrochemical CO2 Reduction: Cell Designs, Membranes and Electrocatalysts. Appl. Energy 2020, 277, 115557. [Google Scholar] [CrossRef]
- Fu, X.Z.; Melnik, J.; Low, Q.X.; Luo, J.L.; Chuang, K.T.; Sanger, A.R.; Yang, Q.M. Surface Modified Ni Foam as Current Collector for Syngas Solid Oxide Fuel Cells with Perovskite Anode Catalyst. Int. J. Hydrog. Energy 2010, 35, 11180–11187. [Google Scholar] [CrossRef]
- Dong, C.; Jiang, F.; Yang, L.; Wang, C.; Xie, K. Enhancing Electrocatalytic Reforming of CO2/CH4 with in Situ Exsolved Metal-Oxide Interfaces in a Solid Oxide Electrolysis Cell. Sep. Purif. Technol. 2022, 299, 121714. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, X.; Xie, K.; Wang, G.; Bao, X. High-Temperature CO2 Electrolysis in Solid Oxide Electrolysis Cells: Developments, Challenges, and Prospects. Adv. Mater. 2019, 31, 1902033. [Google Scholar] [CrossRef]
- Zhang, D.; Yang, W.; Wang, Z.; Ren, C.; Wang, Y.; Ding, M.; Liu, T. Efficient Electrochemical CO2 Reduction Reaction on a Robust Perovskite Type Cathode with In-Situ Exsolved Fe-Ru Alloy Nanocatalysts. Sep. Purif. Technol. 2023, 304, 122287. [Google Scholar] [CrossRef]
- Song, Y.; Zhou, S.; Dong, Q.; Li, Y.; Zhang, X.; Ta, N.; Liu, Z.; Zhao, J.; Yang, F.; Wang, G.; et al. Oxygen Evolution Reaction over the Au/YSZ Interface at High Temperature. Angew. Chem.-Int. Ed. 2019, 58, 4617–4621. [Google Scholar] [CrossRef]
- Li, W.; Luo, J.L. High-Temperature Electrochemical Devices Based on Dense Ceramic Membranes for CO2 Conversion and Utilization. Electrochem. Energy Rev. 2021, 4, 518–544. [Google Scholar] [CrossRef]
- Ye, L.; Xie, K. High-Temperature Electrocatalysis and Key Materials in Solid Oxide Electrolysis Cells. J. Energy Chem. 2021, 54, 736–745. [Google Scholar] [CrossRef]
- Xu, S.; Li, S.; Yao, W.; Dong, D.; Xie, K. Direct Electrolysis of CO2 Using an Oxygen-Ion Conducting Solid Oxide Electrolyzer Based on La0.75Sr0.25Cr 0.5Mn0.5O3−δ Electrode. J. Power Sources 2013, 230, 115–121. [Google Scholar] [CrossRef]
- Zhang, X.; Ye, L.; Hu, J.; Li, J.; Jiang, W.; Tseng, C.J.; Xie, K. Perovskite LSCM Impregnated with Vanadium Pentoxide for High Temperature Carbon Dioxide Electrolysis. Electrochim. Acta 2016, 212, 32–40. [Google Scholar] [CrossRef]
- Zhang, X.; Song, Y.; Guan, F.; Zhou, Y.; Lv, H.; Wang, G.; Bao, X. Enhancing Electrocatalytic CO2 Reduction in Solid Oxide Electrolysis Cell with Ce0.9Mn0.1O2−δ Nanoparticles-Modified LSCM-GDC Cathode. J. Catal. 2018, 359, 8–16. [Google Scholar] [CrossRef]
- Gunduz, S.; Deka, D.J.; Ozkan, U.S. Advances in High-Temperature Electrocatalytic Reduction of CO2 and H2O, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2018; Volume 62, ISBN 9780128150887. [Google Scholar]
- Yang, X.; Sun, W.; Ma, M.; Xu, C.; Ren, R.; Qiao, J.; Wang, Z.; Li, Z.; Zhen, S.; Sun, K. Achieving Highly Efficient Carbon Dioxide Electrolysis by in Situ Construction of the Heterostructure. ACS Appl. Mater. Interfaces 2021, 13, 20060–20069. [Google Scholar] [CrossRef]
- Tsekouras, G.; Neagu, D.; Irvine, J.T.S. Step-Change in High Temperature Steam Electrolysis Performance of Perovskite Oxide Cathodes with Exsolution of B-Site Dopants. Energy Environ. Sci. 2013, 6, 256–266. [Google Scholar] [CrossRef]
- Kwon, O.; Joo, S.; Choi, S.; Sengodan, S.; Kim, G. Review on Exsolution and Its Driving Forces in Perovskites. J. Phys. Energy 2020, 2, 032001. [Google Scholar] [CrossRef]
- Liu, H.; Yu, J. Catalytic Performance of Cu-Ni/La0.75Sr0.25Cr0.5Mn0.5O3−δ for Dry Methane Reforming. Int. J. Energy Res. 2022, 46, 10522–10534. [Google Scholar] [CrossRef]
- Wei, H.; Xie, K.; Zhang, J.; Zhang, Y.; Wang, Y.; Qin, Y.; Cui, J.; Yan, J.; Wu, Y. In Situ Growth of NixCu1−x Alloy Nanocatalysts on Redox-Reversible Rutile (Nb,Ti)O4 towards High-Temperature Carbon Dioxide Electrolysis. Sci. Rep. 2014, 4, 5156. [Google Scholar] [CrossRef] [Green Version]
- Naghash, A.R.; Etsell, T.H.; Xu, S. XRD and XPS Study of Cu-Ni Interactions on Reduced Copper-Nickel-Aluminum Oxide Solid Solution Catalysts. Chem. Mater. 2006, 18, 2480–2488. [Google Scholar] [CrossRef]
- Wang, Y.; Li, W.; Ma, L.; Li, W.; Liu, X. Degradation of Solid Oxide Electrolysis Cells: Phenomena, Mechanisms, and Emerging Mitigation Strategies—A Review. J. Mater. Sci. Technol. 2020, 55, 35–55. [Google Scholar] [CrossRef]
- Wan, J.; Zhu, J.H.; Goodenough, J.B. La0.75Sr0.25Cr0.5Mn0.5O3−δ + Cu Composite Anode Running on H2 and CH4 Fuels. Solid State Ionics 2006, 177, 1211–1217. [Google Scholar] [CrossRef]
- Cao, T.; Kwon, O.; Gorte, R.J.; Vohs, J.M. Metal Exsolution to Enhance the Catalytic Activity of Electrodes in Solid Oxide Fuel Cells. Nanomaterials 2020, 10, 2445. [Google Scholar] [CrossRef]
- Qian, B.; Liu, C.; Wang, S.; Yin, B.; Zheng, Y.; Ge, L.; Chen, H.; Zhang, C. Ca-Doped La0.75Sr0.25Cr0.5Mn0.5O3 Cathode with Enhanced CO2 Electrocatalytic Performance for High-Temperature Solid Oxide Electrolysis Cells. Int. J. Hydrog. Energy 2021, 46, 33349–33359. [Google Scholar] [CrossRef]
- Xing, R.; Wang, Y.; Zhu, Y.; Liu, S.; Jin, C. Co-Electrolysis of Steam and CO2 in a Solid Oxide Electrolysis Cell with La0.75Sr0.25Cr0.5Mn0.5O3−δ -Cu Ceramic Composite Electrode. J. Power Sources 2015, 274, 260–264. [Google Scholar] [CrossRef]
- Ruan, C.; Xie, K. A Redox-Stable Chromate Cathode Decorated with in Situ Grown Nickel Nanocatalyst for Efficient Carbon Dioxide Electrolysis. Catal. Sci. Technol. 2015, 5, 1929–1940. [Google Scholar] [CrossRef]
- Qian, B.; Wang, S.; Zheng, Y.; Ni, Q.; Chen, H.; Ge, L.; Yang, J. Ca-Fe Co-Doped La0.75Sr0.25Cr0.5Mn0.5O3 Cathodes with High Electrocatalytic Activity for Direct CO2 Electrolysis in Solid Oxide Electrolysis Cells. J. CO2 Util. 2023, 67, 102305. [Google Scholar] [CrossRef]
- Nechache, A.; Cassir, M.; Ringuedé, A. Solid Oxide Electrolysis Cell Analysis by Means of Electrochemical Impedance Spectroscopy: A Review. J. Power Sources 2014, 258, 164–181. [Google Scholar] [CrossRef]
- Wang, W.; Zhu, C.; Xie, K.; Gan, L. High Performance, Coking-Resistant and Sulfur-Tolerant Anode for Solid Oxide Fuel Cell. J. Power Sources 2018, 406, 1–6. [Google Scholar] [CrossRef]
- Liu, M.; Wang, S.; Chen, T.; Yuan, C.; Zhou, Y.; Wang, S.; Huang, J. Performance of the Nano-Structured Cu-Ni (Alloy)-CeO2 Anode for Solid Oxide Fuel Cells. J. Power Sources 2015, 274, 730–735. [Google Scholar] [CrossRef]
Dopant | Electrolyte | Working Conditions | Current Density | Reference |
---|---|---|---|---|
NiCu | LSGM | 850 °C, 1.6 V | 0.68 A cm−2 | This work |
Ce0.9Mn0.1O2−δ | YSZ | 800 °C, 1.8 V | 0.52 A cm−2 | [23] |
Ca | SSZ | 800 °C, 1.2 V | 0.27 A cm−2 | [34] |
Cu | LSGM | 750 °C, 1.65 V | 1.82 A cm−2 | [35] |
Ni | YSZ | 800 °C, 2 V | 0.33 A cm−2 | [36] |
CaFe | SSZ | 800 °C, 1.6 V | 0.6 A cm−2 | [37] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, G.; Xu, Y.; Xie, K. Enhanced Electrolysis of CO2 with Metal–Oxide Interfaces in Perovskite Cathode in Solid Oxide Electrolysis Cell. Catalysts 2022, 12, 1607. https://doi.org/10.3390/catal12121607
Ma G, Xu Y, Xie K. Enhanced Electrolysis of CO2 with Metal–Oxide Interfaces in Perovskite Cathode in Solid Oxide Electrolysis Cell. Catalysts. 2022; 12(12):1607. https://doi.org/10.3390/catal12121607
Chicago/Turabian StyleMa, Guoliang, Yihong Xu, and Kui Xie. 2022. "Enhanced Electrolysis of CO2 with Metal–Oxide Interfaces in Perovskite Cathode in Solid Oxide Electrolysis Cell" Catalysts 12, no. 12: 1607. https://doi.org/10.3390/catal12121607
APA StyleMa, G., Xu, Y., & Xie, K. (2022). Enhanced Electrolysis of CO2 with Metal–Oxide Interfaces in Perovskite Cathode in Solid Oxide Electrolysis Cell. Catalysts, 12(12), 1607. https://doi.org/10.3390/catal12121607