Ni5P4-NiP2-Ni2P Nanocomposites Tangled with N-Doped Carbon for Enhanced Electrochemical Hydrogen Evolution in Acidic and Alkaline Solutions
Abstract
1. Introduction
2. Results and Discussion
2.1. Characterizations of Morphology and Structure
2.2. Electrochemical Performance in Acidic Solution
2.3. Electrochemical Performance in Alkaline Solution
2.4. Structure–Performance Analysis of Ni5P4-NiP2-Ni2P/NC
3. Materials and Methods
3.1. Materials
3.2. Synthesis of Ni(bpy)(NO3)2/g-C3N4/Ni(dmgH)2 Composites
3.3. Synthesis of Nitrogen-Doped Carbon-Twined Ni Nanoparticles
3.4. Synthesis of Nitrogen-Doped Carbon/Carbon Nanotube Network Entangled with Nickel Phosphides Nanoparticles
3.5. Characterization Techniques
3.6. Electrochemical Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, J.; Hu, L.; Zhao, P.; Lee, L.Y.S.; Wong, K.-Y. Recent Advances in Electrocatalytic Hydrogen Evolution Using Nanoparticles. Chem. Rev. 2020, 120, 851–918. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-F.; Chen, L.; Pang, H.; Kaskel, S.; Xu, Q. MOF-Derived Electrocatalysts for Oxygen Reduction, Oxygen Evolution and Hydrogen Evolution Reactions. Chem. Soc. Rev. 2020, 49, 1414–1448. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, W.; Feng, X.; Zhu, L.; Fang, Q.; Li, S.; Wang, L.; Li, Z.; Kou, Z. A Chainmail Effect of Ultrathin N-Doped Carbon Shell on Ni2P Nanorod Arrays for Efficient Hydrogen Evolution Reaction Catalysis. J. Colloid Interface Sci. 2022, 607, 281–289. [Google Scholar] [CrossRef] [PubMed]
- El-Refaei, S.M.; Russo, P.A.; Pinna, N. Recent Advances in Multimetal and Doped Transition-Metal Phosphides for the Hydrogen Evolution Reaction at Different pH values. ACS Appl. Mater. Interfaces 2021, 13, 22077–22097. [Google Scholar] [CrossRef] [PubMed]
- Qin, Z.; Chen, Y.; Huang, Z.; Su, J.; Diao, Z.; Guo, L. Composition-Dependent Catalytic Activities of Noble-Metal-Free NiS/Ni3S4 for Hydrogen Evolution Reaction. J. Phys. Chem. C 2016, 120, 14581–14589. [Google Scholar] [CrossRef]
- Li, Y.; Dai, T.; Wu, Q.; Lang, X.; Zhao, L.; Jiang, Q. Design Heterostructure of NiS-NiS2 on NiFe Layered Double Hydroxide with Mo Doping for Efficient Overall Water Splitting. Mater. Today Energy 2022, 23, 100906. [Google Scholar] [CrossRef]
- Wu, X.; Yang, B.; Li, Z.; Lei, L.; Zhang, X. Synthesis of Supported Vertical NiS2 Nanosheets for Hydrogen Evolution Reaction in Acidic and Alkaline Solution. RSC Adv. 2015, 5, 32976–32982. [Google Scholar] [CrossRef]
- Xing, Z.; Li, Q.; Wang, D.; Yang, X.; Sun, X. Self-Supported Nickel Nitride as an Efficient High-Performance Three-Dimensional Cathode for the Alkaline Hydrogen Evolution Reaction. Electrochim. Acta 2016, 191, 841–845. [Google Scholar] [CrossRef]
- Yu, L.; Song, S.; McElhenny, B.; Ding, F.; Luo, D.; Yu, Y.; Chen, S.; Ren, Z. A Universal Synthesis Strategy to Make Metal Nitride Electrocatalysts for Hydrogen Evolution Reaction. J. Mater. Chem. A 2019, 7, 19728–19732. [Google Scholar] [CrossRef]
- Zhai, L.; Benedict Lo, T.W.; Xu, Z.-L.; Potter, J.; Mo, J.; Guo, X.; Tang, C.C.; Edman Tsang, S.C.; Lau, S.P. In Situ Phase Transformation on Nickel-Based Selenides for Enhanced Hydrogen Evolution Reaction in Alkaline Medium. ACS Energy Lett. 2020, 5, 2483–2491. [Google Scholar] [CrossRef]
- Liu, P.; Rodriguez, J.A. Catalysts for Hydrogen Evolution from the [NiFe] Hydrogenase to the Ni2P(001) Surface: The Importance of Ensemble Effect. J. Am. Chem. Soc. 2005, 127, 14871–14878. [Google Scholar] [CrossRef]
- Brazzolotto, D.; Gennari, M.; Queyriaux, N.; Simmons, T.R.; Pécaut, J.; Demeshko, S.; Meyer, F.; Orio, M.; Artero, V.; Duboc, C. Nickel-Centred Proton Reduction Catalysis in a Model of [NiFe] Hydrogenase. Nat. Chem. 2016, 8, 1054–1060. [Google Scholar] [CrossRef]
- Moon, J.-S.; Jang, J.-H.; Kim, E.-G.; Chung, Y.-H.; Yoo, S.J.; Lee, Y.-K. The Nature of Active Sites of Ni2P Electrocatalyst for Hydrogen Evolution Reaction. J. Catal. 2015, 326, 92–99. [Google Scholar] [CrossRef]
- Feng, L.; Vrubel, H.; Bensimon, M.; Hu, X. Easily-Prepared Dinickel Phosphide (Ni2P) Nanoparticles as an Efficient and Robust Electrocatalyst for Hydrogen Evolution. Phys. Chem. Chem. Phys. 2014, 16, 5917–5921. [Google Scholar] [CrossRef]
- He, S.; He, S.; Bo, X.; Wang, Q.; Zhan, F.; Wang, Q.; Zhao, C. Porous Ni2P/C Microrods Derived from Microwave-Prepared MOF-74-Ni and Its Electrocatalysis for Hydrogen Evolution Reaction. Mater. Lett. 2018, 231, 94–97. [Google Scholar] [CrossRef]
- Yan, L.; Dai, P.; Wang, Y.; Gu, X.; Li, L.; Cao, L.; Zhao, X. In Situ Synthesis Strategy for Hierarchically Porous Ni2P Polyhedrons from MOFs Templates with Enhanced Electrochemical Properties for Hydrogen Evolution. ACS Appl. Mater. Interfaces 2017, 9, 11642–11650. [Google Scholar] [CrossRef]
- Bai, Y.; Zhang, H.; Li, X.; Liu, L.; Xu, H.; Qiu, H.; Wang, Y. Novel Peapod-like Ni2P Nanoparticles with Improved Electrochemical Properties for Hydrogen Evolution and Lithium Storage. Nanoscale 2015, 7, 1446–1453. [Google Scholar] [CrossRef]
- Sun, H.; Xu, X.; Yan, Z.; Chen, X.; Cheng, F.; Weiss, P.S.; Chen, J. Porous Multishelled Ni2P Hollow Microspheres as an Active Electrocatalyst for Hydrogen and Oxygen Evolution. Chem. Mater. 2017, 29, 8539–8547. [Google Scholar] [CrossRef]
- Liu, C.; Gong, T.; Zhang, J.; Zheng, X.; Mao, J.; Liu, H.; Li, Y.; Hao, Q. Engineering Ni2P-NiSe2 Heterostructure Interface for Highly Efficient Alkaline Hydrogen Evolution. Appl. Catal. B Environ. 2020, 262, 118245. [Google Scholar] [CrossRef]
- Nguyen, C.D.; Nguyen, V.-H.; Pham, L.M.T.; Vu, T.Y. Three-Dimensional Ni2P-MoP2 Mesoporous Nanorods Array as Self-Standing Electrocatalyst for Highly Efficient Hydrogen Evolution. Int. J. Hydrogen Energy 2020, 45, 15063–15075. [Google Scholar] [CrossRef]
- Jin, M.; Zhang, X.; Shi, R.; Lian, Q.; Niu, S.; Peng, O.; Wang, Q.; Cheng, C. Hierarchical CoP@Ni2P Catalysts for pH-Universal Hydrogen Evolution at High Current Density. Appl. Catal. B Environ. 2021, 296, 120350. [Google Scholar] [CrossRef]
- Xiao, X.; Huang, D.; Fu, Y.; Wen, M.; Jiang, X.; Lv, X.; Li, M.; Gao, L.; Liu, S.; Wang, M.; et al. Engineering NiS/Ni2P Heterostructures for Efficient Electrocatalytic Water Splitting. ACS Appl. Mater. Interfaces 2018, 10, 4689–4696. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.; Sun, K.; Wang, X.; Liu, Y.; Pan, Y.; Liu, Z.; Cao, D.; Song, Y.; Liu, S.; Liu, C. Three-Dimensional-Networked Ni2P/Ni3S2 Heteronanoflake Arrays for Highly Enhanced Electrochemical Overall-Water-Splitting Activity. Nano Energy 2018, 51, 26–36. [Google Scholar] [CrossRef]
- Wu, L.; Yu, L.; Zhang, F.; McElhenny, B.; Luo, D.; Karim, A.; Chen, S.; Ren, Z. Heterogeneous Bimetallic Phosphide Ni2P-Fe2P as an Efficient Bifunctional Catalyst for Water/Seawater Splitting. Adv. Funct. Mater. 2021, 31, 2006484. [Google Scholar] [CrossRef]
- Liu, T.; Li, A.; Wang, C.; Zhou, W.; Liu, S.; Guo, L. Interfacial Electron Transfer of Ni2P-NiP2 Polymorphs Inducing Enhanced Electrochemical Properties. Adv. Mater. 2018, 30, 1803590. [Google Scholar] [CrossRef]
- Hong, W.; Lv, C.; Sun, S.; Chen, G. Fabrication and Study of the Synergistic Effect of Janus Ni2P/Ni5P4 Embedded in N-Doped Carbon as Efficient Electrocatalysts for Hydrogen Evolution Reaction. Catal. Sci. Technol. 2020, 10, 1023–1029. [Google Scholar] [CrossRef]
- Ding, G.; Zhang, Y.; Dong, J.; Xu, L. Fabrication of Ni2P/Ni5P4 Nanoparticles Embedded in Three-Dimensional N-Doped Graphene for Acidic Hydrogen Evolution Reaction. Mater. Lett. 2021, 299, 130071. [Google Scholar] [CrossRef]
- Wang, X.; Kolen’ko, Y.V.; Bao, X.-Q.; Kovnir, K.; Liu, L. One-Step Synthesis of Self-Supported Nickel Phosphide Nanosheet Array Cathodes for Efficient Electrocatalytic Hydrogen Generation. Angew. Chem. Int. Ed. 2015, 54, 8188–8192. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, S.; Ma, L.; Guo, Y.; Sun, J.; Zhang, N.; Jiang, R. Water-Induced Formation of Ni2P-Ni12P5 Interfaces with Superior Electrocatalytic Activity toward Hydrogen Evolution Reaction. Small 2021, 17, 2006770. [Google Scholar] [CrossRef]
- Shi, H.; Yu, Q.; Liu, G.; Hu, X. Promoted Electrocatalytic Hydrogen Evolution Performance by Constructing Ni12P5-Ni2P Heterointerfaces. Int. J. Hydrogen Energy 2021, 46, 17097–17105. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, D.; Zheng, Y.; Vasileff, A.; Qiao, S.-Z. Self-Supported Earth-Abundant Nanoarrays as Efficient and Robust Electrocatalysts for Energy-Related Reactions. ACS Catal. 2018, 8, 6707–6732. [Google Scholar] [CrossRef]
- Cai, W.; Liu, W.; Sun, H.; Li, J.; Yang, L.; Liu, M.; Zhao, S.; Wang, A. Ni5P4-NiP2 Nanosheet Matrix Enhances Electron-Transfer Kinetics for Hydrogen Recovery in Microbial Electrolysis Cells. Appl. Energy 2018, 209, 56–64. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Z.; Ji, Y.; Yang, J.; Fan, K.; Ma, X.; Wang, C.; Shu, R.; Chen, Y. Surface Engineering Induced Hierarchical Porous Ni12P5-Ni2P Polymorphs Catalyst for Efficient Wide pH Hydrogen Production. Appl. Catal. B Environ. 2021, 282, 119609. [Google Scholar] [CrossRef]
- Yan, Y.; Lin, J.; Bao, K.; Xu, T.; Qi, J.; Cao, J.; Zhong, Z.; Fei, W.; Feng, J. Free-Standing Porous Ni2P-Ni5P4 Heterostructured Arrays for Efficient Electrocatalytic Water Splitting. J. Colloid Interface Sci. 2019, 552, 332–336. [Google Scholar] [CrossRef]
- Pan, Y.; Hu, W.; Liu, D.; Liu, Y.; Liu, C. Carbon Nanotubes Decorated with Nickel Phosphide Nanoparticles as Efficient Nanohybrid Electrocatalysts for the Hydrogen Evolution Reaction. J. Mater. Chem. A 2015, 3, 13087–13094. [Google Scholar] [CrossRef]
- Cong, Y.; Huang, S.; Mei, Y.; Li, T.-T. Metal-Organic Frameworks-Derived Self-Supported Carbon-Based Composites for Electrocatalytic Water Splitting. Chem. Eur. J. 2021, 27, 15866–15888. [Google Scholar] [CrossRef]
- Miao, M.; Hou, R.; Liang, Z.; Qi, R.; He, T.; Yan, Y.; Qi, K.; Liu, H.; Feng, G.; Xia, B.Y. Chainmail Catalyst of Ultrathin P-Doped Carbon Shell-Encapsulated Nickel Phosphides on Graphene towards Robust and Efficient Hydrogen Generation. J. Mater. Chem. A 2018, 6, 24107–24113. [Google Scholar] [CrossRef]
- Chen, L.; Wu, P.; Yang, S.; Qian, K.; Sun, W.; Wei, W.; Xu, Y.; Xie, J. Fabrication of CNTs Encapsulated Nickel-Nickel Phosphide Nanoparticles on Graphene for Remarkable Hydrogen Evolution Reaction Performance. J. Electroanal. Chem. 2019, 846, 113142. [Google Scholar] [CrossRef]
- Lan, W.; Li, D.; Wang, W.; Liu, Z.; Chen, H.; Xu, Y. Multi-Walled Carbon Nanotubes Reinforced Nickel Phosphide Composite: As an Efficient Electrocatalyst for Hydrogen Evolution Reaction by One-Step Powder Sintering. Int. J. Hydrogen Energy 2020, 45, 412–423. [Google Scholar] [CrossRef]
- Ren, J.-T.; Chen, L.; Wang, Y.-S.; Tian, W.-W.; Gao, L.-J.; Yuan, Z.-Y. FeNi Nanoalloys Encapsulated in N-Doped CNTs Tangled with N-Doped Carbon Nanosheets as Efficient Multifunctional Catalysts for Overall Water Splitting and Rechargeable Zn-Air Batteries. ACS Sustain. Chem. Eng. 2020, 8, 223–237. [Google Scholar] [CrossRef]
- Mehtab, A.; Alshehri, S.M.; Ahmad, T. Photocatalytic and Photoelectrocatalytic Water Splitting by Porous g-C3N4 Nanosheets for Hydrogen Generation. ACS Appl. Nano Mater. 2022, 5, 12656–12665. [Google Scholar] [CrossRef]
- Cao, S.-W.; Yuan, Y.-P.; Barber, J.; Loo, S.C.J.; Xue, C. Noble-Metal-Free g-C3N4/Ni(dmgH)2 Composite for Efficient Photocatalytic Hydrogen Evolution under Visible Light Irradiation. Appl. Surf. Sci. 2014, 319, 344–349. [Google Scholar] [CrossRef]
- Yan, X.; Gu, M.; Wang, Y.; Xu, L.; Tang, Y.; Wu, R. In-Situ Growth of Ni Nanoparticle-Encapsulated N-Doped Carbon Nanotubes on Carbon Nanorods for Efficient Hydrogen Evolution Electrocatalysis. Nano Res. 2020, 13, 975–982. [Google Scholar] [CrossRef]
- Zhong, H.; Estudillo-Wong, L.A.; Gao, Y.; Feng, Y.; Alonso-Vante, N. Cobalt-Based Multicomponent Oxygen Reduction Reaction Electrocatalysts Generated by Melamine Thermal Pyrolysis with High Performance in an Alkaline Hydrogen/Oxygen Microfuel Cell. ACS Appl. Mater. Interfaces 2020, 12, 21605–21615. [Google Scholar] [CrossRef]
- Chang, J.; Zang, S.; Li, J.; Wu, D.; Lian, Z.; Xu, F.; Jiang, K.; Gao, Z. Nitrogen-Doped Porous Carbon Encapsulated Nickel Iron Alloy Nanoparticles, One-Step Conversion Synthesis for Application as Bifunctional Catalyst for Water Electrolysis. Electrochim. Acta 2021, 389, 138785. [Google Scholar] [CrossRef]
- Farooq, U.; Ahmed, J.; Alshehri, S.M.; Ahmad, T. High-Surface-Area Sodium Tantalate Nanoparticles with Enhanced Photocatalytic and Electrical Properties Prepared through Polymeric Citrate Precursor Route. ACS Omega 2019, 4, 19408–19419. [Google Scholar] [CrossRef]
- Farooq, U.; Phul, R.; Alshehri, S.M.; Ahmed, J.; Ahmad, T. Electrocatalytic and Enhanced Photocatalytic Applications of Sodium Niobate Nanoparticles Developed by Citrate Precursor Route. Sci. Rep. 2019, 9, 4488. [Google Scholar] [CrossRef]
- Farooq, U.; Ahmed, J.; Alshehri, S.M.; Mao, Y.; Ahmad, T. Self-Assembled Interwoven Nanohierarchitectures of NaNbO3 and NaNb1-xTaxO3 (0.05 ≤ x ≤ 0.20): Synthesis, Structural Characterization, Photocatalytic Applications, and Dielectric Properties. ACS Omega 2022, 7, 16952–16967. [Google Scholar] [CrossRef]
- Kondo, T.; Casolo, S.; Suzuki, T.; Shikano, T.; Sakurai, M.; Harada, Y.; Saito, M.; Oshima, M.; Trioni, M.I.; Tantardini, G.F.; et al. Atomic-Scale Characterization of Nitrogen-Doped Graphite: Effects of Dopant Nitrogen on the Local Electronic Structure of the Surrounding Carbon Atoms. Phys. Rev. B 2012, 86, 035436. [Google Scholar] [CrossRef]
- Xu, H.; Jia, H.; Fei, B.; Ha, Y.; Li, H.; Guo, Y.; Liu, M.; Wu, R. Charge Transfer Engineering via Multiple Heteroatom Doping in Dual Carbon-Coupled Cobalt Phosphides for Highly Efficient Overall Water Splitting. Appl. Catal. B Environ. 2020, 268, 118404. [Google Scholar] [CrossRef]
- Zhou, G.; Ma, Y.; Wu, X.; Lin, Y.; Pang, H.; Zhang, M.; Xu, L.; Tian, Z.; Tang, Y. Electronic Modulation by N Incorporation Boosts the Electrocatalytic Performance of Urchin-Like Ni5P4 Hollow Microspheres for Hydrogen Evolution. Chem. Eng. J. 2020, 402, 126302. [Google Scholar] [CrossRef]
- Li, Y.; Cai, P.; Ci, S.; Wen, Z. Strongly Coupled 3D Nanohybrids with Ni2P/Carbon Nanosheets as pH-Universal Hydrogen Evolution Reaction Electrocatalysts. ChemElectroChem 2017, 4, 340–344. [Google Scholar] [CrossRef]
- He, S.; He, S.; Gao, F.; Bo, X.; Wang, Q.; Chen, X.; Duan, J.; Zhao, C. Ni2P@Carbon Core-Shell Nanorod Array Derived from ZIF-67-Ni: Effect of Phosphorization Temperature on Morphology, Structure and Hydrogen Evolution Reaction Performance. Appl. Surf. Sci. 2018, 457, 933–941. [Google Scholar] [CrossRef]
- Tian, T.; Ai, L.; Jiang, J. Metal-Organic Framework-Derived Nickel Phosphides as Efficient Electrocatalysts toward Sustainable Hydrogen Generation from Water Splitting. RSC Adv. 2015, 5, 10290–10295. [Google Scholar] [CrossRef]
- Dai, J.; Zhu, Y.; Tahini, H.A.; Lin, Q.; Chen, Y.; Guan, D.; Zhou, C.; Hu, Z.; Lin, H.-J.; Chan, T.-S.; et al. Single-Phase Perovskite Oxide with Super-Exchange Induced Atomic-Scale Synergistic Active Centers Enables Ultrafast Hydrogen Evolution. Nat. Commun. 2020, 11, 5657. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, J.; Wu, G.; Chen, W. Porous Graphitic Carbon Nitride Synthesized via Direct Polymerization of Urea for Efficient Sunlight-Driven Photocatalytic Hydrogen Production. Nanoscale 2012, 4, 5300–5303. [Google Scholar] [CrossRef]
- Ji, X.; Wang, K.; Zhang, Y.; Sun, H.; Zhang, Y.; Ma, T.; Ma, Z.; Hu, P.; Qiu, Y. MoC Based Mott-Schottky Electrocatalyst for Boosting the Hydrogen Evolution Reaction Performance. Sustain. Energy Fuels 2020, 4, 407–416. [Google Scholar] [CrossRef]
- Wang, X.; Kolen’ko, Y.V.; Liu, L. Direct Solvothermal Phosphorization of Nickel Foam to Fabricate Integrated Ni2P-Nanorods/Ni Electrodes for Efficient Electrocatalytic Hydrogen Evolution. Chem. Commun. 2015, 51, 6738–6741. [Google Scholar] [CrossRef]
- Huo, S.; Yang, S.; Niu, Q.; Yang, F.; Song, L. Synthesis of Functional Ni2P/CC Catalyst and the Robust Performances in Hydrogen Evolution Reaction and Nitrate Reduction. Int. J. Hydrogen Energy 2020, 45, 4015–4025. [Google Scholar] [CrossRef]
- Fu, Q.; Wang, X.; Han, J.; Zhong, J.; Zhang, T.; Yao, T.; Xu, C.; Gao, T.; Xi, S.; Liang, C.; et al. Phase-Junction Electrocatalysts towards Enhanced Hydrogen Evolution Reaction in Alkaline Media. Angew. Chem. Int. Ed. 2021, 60, 259–267. [Google Scholar] [CrossRef]
- Chen, A.; Fu, L.; Xiang, W.; Wei, W.; Liu, D.; Liu, C. Facile Synthesis of Ni5P4 Nanosheets/Nanoparticles for Highly Active and Durable Hydrogen Evolution. Int. J. Hydrogen Energy 2021, 46, 11701–11710. [Google Scholar] [CrossRef]







Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pei, M.; Song, X.; Zhong, H.; Estudillo-Wong, L.A.; Gao, Y.; Jin, T.; Huang, J.; Wang, Y.; Yang, J.; Feng, Y. Ni5P4-NiP2-Ni2P Nanocomposites Tangled with N-Doped Carbon for Enhanced Electrochemical Hydrogen Evolution in Acidic and Alkaline Solutions. Catalysts 2022, 12, 1650. https://doi.org/10.3390/catal12121650
Pei M, Song X, Zhong H, Estudillo-Wong LA, Gao Y, Jin T, Huang J, Wang Y, Yang J, Feng Y. Ni5P4-NiP2-Ni2P Nanocomposites Tangled with N-Doped Carbon for Enhanced Electrochemical Hydrogen Evolution in Acidic and Alkaline Solutions. Catalysts. 2022; 12(12):1650. https://doi.org/10.3390/catal12121650
Chicago/Turabian StylePei, Miaomiao, Xiaowei Song, Haihong Zhong, Luis Alberto Estudillo-Wong, Yingchun Gao, Tongmengyao Jin, Ju Huang, Yali Wang, Jun Yang, and Yongjun Feng. 2022. "Ni5P4-NiP2-Ni2P Nanocomposites Tangled with N-Doped Carbon for Enhanced Electrochemical Hydrogen Evolution in Acidic and Alkaline Solutions" Catalysts 12, no. 12: 1650. https://doi.org/10.3390/catal12121650
APA StylePei, M., Song, X., Zhong, H., Estudillo-Wong, L. A., Gao, Y., Jin, T., Huang, J., Wang, Y., Yang, J., & Feng, Y. (2022). Ni5P4-NiP2-Ni2P Nanocomposites Tangled with N-Doped Carbon for Enhanced Electrochemical Hydrogen Evolution in Acidic and Alkaline Solutions. Catalysts, 12(12), 1650. https://doi.org/10.3390/catal12121650

