Solvent Coordination Effect on Copper-Based Molecular Catalysts for Controlled Radical Polymerization
Abstract
1. Introduction
2. Results and Discussion
2.1. Oxidation of CuI Complexes by the X• Radical
2.2. Solvent Coordination to Copper Complexes
2.2.1. Analysis of Solvent Coordination to Copper(I/II) Centers
2.2.2. CuI/IIL(S)]+/2+ Complexes
2.2.3. Analysis of the Isomers [CuII(PMDETA)X(S)]+
2.3. Reactions including the Explicit Solvent Coordination
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Matyjaszewski, K.; Xia, J. Atom Transfer Radical Polymerization. Chem. Rev. 2001, 101, 2921–2990. [Google Scholar] [CrossRef] [PubMed]
- Matyjaszewski, K. Atom Transfer Radical Polymerization (ATRP): Current Status and Future Perspectives. Macromolecules 2012, 45, 4015–4039. [Google Scholar] [CrossRef]
- Matyjaszewski, K. Advanced Materials by Atom Transfer Radical Polymerization. Adv. Mater. 2018, 30, 1706441. [Google Scholar] [CrossRef] [PubMed]
- Ribelli, T.G.; Lorandi, F.; Fantin, M.; Matyjaszewski, K. Atom Transfer Radical Polymerization: Billion Times More Active Catalysts and New Initiation Systems. Macromol. Rapid Commun. 2019, 40, 1800616. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.Y.; Coote, M.L.; Gennaro, A. Ab Initio Evaluation of the Thermodynamic and Electrochemical Properties of Alkyl Halides and Radicals and Polymerization. J. Am. Chem. Soc. 2008, 130, 12762–12774. [Google Scholar] [CrossRef] [PubMed]
- De Paoli, P.; Isse, A.A.; Bortolamei, N.; Gennaro, A. New Insights into the Mechanism of Activation of Atom Transfer Radical Polymerization by Cu(I) Complexes. Chem. Commun. 2011, 47, 3580–3582. [Google Scholar] [CrossRef] [PubMed]
- Isse, A.A.; Bortolamei, N.; De Paoli, P.; Gennaro, A. On the Mechanism of Activation of Copper-Catalyzed Atom Transfer Radical Polymerization. Electrochim. Acta 2013, 110, 655–662. [Google Scholar] [CrossRef]
- Tang, W.; Tsarevsky, N.V.; Matyjaszewski, K. Determination of Equilibrium Constants for Atom Transfer Radical Polymerization. J. Am. Chem. Soc. 2006, 128, 1598–1604. [Google Scholar] [CrossRef]
- Tang, W.; Kwak, Y.; Braunecker, W.; Tsarevsky, N.V.; Coote, M.L.; Matyjaszewski, K. Understanding Atom Transfer Radical Polymerization: Effect of Ligand and Initiator Structures on the Equilibrium Constants. J. Am. Chem. Soc. 2008, 130, 10702–10713. [Google Scholar] [CrossRef]
- Pan, X.; Fantin, M.; Yuan, F.; Matyjaszewski, K. Externally Controlled Atom Transfer Radical Polymerization. Chem. Soc. Rev. 2018, 47, 5457–5490. [Google Scholar] [CrossRef]
- Min, K.; Gao, H.; Matyjaszewski, K. Use of Ascorbic Acid as Reducing Agent for Synthesis of Well-Defined Polymers by ARGET ATRP. Macromolecules 2007, 40, 1789–1791. [Google Scholar] [CrossRef]
- Simakova, A.; Averick, S.E.; Konkolewicz, D.; Matyjaszewski, K. Aqueous ARGET ATRP. Macromolecules 2012, 45, 6371–6379. [Google Scholar] [CrossRef]
- Mendonça, P.V.; Ribeiro, J.P.M.; Abreu, C.M.R.; Guliashvili, T.; Serra, A.C.; Coelho, J.F.J. Thiourea Dioxide as a Green and Affordable Reducing Agent for the ARGET ATRP of Acrylates, Methacrylates, Styrene, Acrylonitrile, and Vinyl Chloride. ACS Macro Lett. 2019, 8, 315–319. [Google Scholar] [CrossRef] [PubMed]
- Abreu, C.M.R.; Serra, A.C.; Popov, A.V.; Matyjaszewski, K.; Guliashvili, T.; Coelho, J.F.J. Ambient Temperature Rapid SARA ATRP of Acrylates and Methacrylates in Alcohol–Water Solutions Mediated by a Mixed Sulfite/Cu(II)Br2 Catalytic System. Polym. Chem. 2013, 4, 5629–5636. [Google Scholar] [CrossRef]
- Mendes, J.P.; Branco, F.; Abreu, C.M.R.; Mendonça, P.V.; Serra, A.C.; Popov, A.V.; Guliashvili, T.; Coelho, J.F.J. Sulfolane: An Efficient and Universal Solvent for Copper-Mediated Atom Transfer Radical (Co)Polymerization of Acrylates, Methacrylates, Styrene, and Vinyl Chloride. ACS Macro Lett. 2014, 3, 858–861. [Google Scholar] [CrossRef]
- Lorandi, F.; Fantin, M.; Isse, A.A.; Gennaro, A. RDRP in the Presence of Cu0: The Fate of Cu(I) Proves the Inconsistency of SET-LRP Mechanism. Polymer 2015, 72, 238–245. [Google Scholar] [CrossRef]
- Matyjaszewski, K.; Jakubowski, W.; Min, K.; Tang, W.; Huang, J.; Braunecker, W.A.; Tsarevsky, N.V. Diminishing Catalyst Concentration in Atom Transfer Radical Polymerization with Reducing Agents. Proc. Natl. Acad. Sci. USA 2006, 103, 15309–15314. [Google Scholar] [CrossRef]
- Konkolewicz, D.; Magenau, A.J.D.; Averick, S.E.; Simakova, A.; He, H.; Matyjaszewski, K. ICAR ATRP with Ppm Cu Catalyst in Water. Macromolecules 2012, 45, 4461–4468. [Google Scholar] [CrossRef]
- Tasdelen, M.A.; Uygun, M.; Yagci, Y. Photoinduced Controlled Radical Polymerization. Macromol. Rapid Commun. 2011, 32, 58–62. [Google Scholar] [CrossRef]
- Konkolewicz, D.; Schröder, K.; Buback, J.; Bernhard, S.; Matyjaszewski, K. Visible Light and Sunlight Photoinduced ATRP with Ppm of Cu Catalyst. ACS Macro Lett. 2012, 1, 1219–1223. [Google Scholar] [CrossRef]
- Anastasaki, A.; Nikolaou, V.; Zhang, Q.; Burns, J.; Samanta, S.R.; Waldron, C.; Haddleton, A.J.; McHale, R.; Fox, D.; Percec, V.; et al. Copper(II)/Tertiary Amine Synergy in Photoinduced Living Radical Polymerization: Accelerated Synthesis of ω-Functional and α,ω-Heterofunctional Poly(Acrylates). J. Am. Chem. Soc. 2014, 136, 1141–1149. [Google Scholar] [CrossRef] [PubMed]
- Magenau, A.J.D.; Strandwitz, N.C.; Gennaro, A.; Matyjaszewski, K. Electrochemically Mediated Atom Transfer Radical Polymerization. Science 2011, 332, 81–84. [Google Scholar] [CrossRef] [PubMed]
- Fantin, M.; Isse, A.A.; Gennaro, A.; Matyjaszewski, K. Understanding the Fundamentals of Aqueous ATRP and Defining Conditions for Better Control. Macromolecules 2015, 48, 6862–6875. [Google Scholar] [CrossRef]
- Lorandi, F.; Fantin, M.; Isse, A.A.; Gennaro, A. Electrochemically Mediated Atom Transfer Radical Polymerization of N-Butyl Acrylate on Non-Platinum Cathodes. Polym. Chem. 2016, 7, 5357–5365. [Google Scholar] [CrossRef]
- Chmielarz, P.; Fantin, M.; Park, S.; Isse, A.A.; Gennaro, A.; Magenau, A.J.D.; Sobkowiak, A.; Matyjaszewski, K. Electrochemically Mediated Atom Transfer Radical Polymerization (eATRP). Prog. Polym. Sci. 2017, 69, 47–78. [Google Scholar] [CrossRef]
- Isse, A.A.; Gennaro, A. Electrochemistry for Atom Transfer Radical Polymerization. Chem. Rec. 2021, 21, 2203–2222. [Google Scholar] [CrossRef]
- Zaborniak, I.; Chmielarz, P. Ultrasound-Mediated Atom Transfer Radical Polymerization (ATRP). Materials 2019, 12, 3600. [Google Scholar] [CrossRef]
- Kaur, A.; Ribelli, T.G.; Schröder, K.; Matyjaszewski, K.; Pintauer, T. Properties and ATRP Activity of Copper Complexes with Substituted Tris(2-Pyridylmethyl)Amine-Based Ligands. Inorg. Chem. 2015, 54, 1474–1486. [Google Scholar] [CrossRef]
- Melville, J.N.; Bernhardt, P.V. Electrochemical Exploration of Active Cu-Based Atom Transfer Radical Polymerization Catalysis through Ligand Modification. Inorg. Chem. 2021, 60, 9709–9719. [Google Scholar] [CrossRef]
- Wang, Y.; Kwak, Y.; Buback, J.; Buback, M.; Matyjaszewski, K. Determination of ATRP Equilibrium Constants under Polymerization Conditions. ACS Macro Lett. 2012, 1, 1367–1370. [Google Scholar] [CrossRef]
- Morick, J.; Buback, M.; Matyjaszewski, K. Effect of Pressure on Activation–Deactivation Equilibrium Constants for ATRP of Methyl Methacrylate. Macromol. Chem. Phys. 2012, 213, 2287–2292. [Google Scholar] [CrossRef]
- Horn, M.; Matyjaszewski, K. Solvent Effects on the Activation Rate Constant in Atom Transfer Radical Polymerization. Macromolecules 2013, 46, 3350–3357. [Google Scholar] [CrossRef]
- Smolne, S.; Buback, M. Kinetic Investigations of Cu-Mediated ATRP in Aqueous Solution. Macromol. Chem. Phys. 2015, 216, 894–902. [Google Scholar] [CrossRef]
- Pavan, P.; Lorandi, F.; De Bon, F.; Gennaro, A.; Isse, A.A. Enhancement of the Rate of Atom Transfer Radical Polymerization in Organic Solvents by Addition of Water: An Electrochemical Study. ChemElectroChem 2021, 8, 2450–2458. [Google Scholar] [CrossRef]
- Coullerez, G.; Malmström, E.; Jonsson, M. Solvent Effects on the Redox Properties of Cu Complexes Used as Mediators in Atom Transfer Radical Polymerization. J. Phys. Chem. A 2006, 110, 10355–10360. [Google Scholar] [CrossRef]
- Gillies, M.B.; Matyjaszewski, K.; Norrby, P.-O.; Pintauer, T.; Poli, R.; Richard, P. A DFT Study of R−X Bond Dissociation Enthalpies of Relevance to the Initiation Process of Atom Transfer Radical Polymerization. Macromolecules 2003, 36, 8551–8559. [Google Scholar] [CrossRef]
- Braunecker, W.A.; Brown, W.C.; Morelli, B.C.; Tang, W.; Poli, R.; Matyjaszewski, K. Origin of Activity in Cu-, Ru-, and Os-Mediated Radical Polymerization. Macromolecules 2007, 40, 8576–8585. [Google Scholar] [CrossRef]
- Isse, A.A.; Gennaro, A.; Lin, C.Y.; Hodgson, J.L.; Coote, M.L.; Guliashvili, T. Mechanism of Carbon−Halogen Bond Reductive Cleavage in Activated Alkyl Halide Initiators Relevant to Living Radical Polymerization: Theoretical and Experimental Study. J. Am. Chem. Soc. 2011, 133, 6254–6264. [Google Scholar] [CrossRef]
- Ribelli, T.G.; Wahidur Rahaman, S.M.; Daran, J.C.; Krys, P.; Matyjaszewski, K.; Poli, R. Effect of Ligand Structure on the CuII–R OMRP Dormant Species and Its Consequences for Catalytic Radical Termination in ATRP. Macromolecules 2016, 49, 7749–7757. [Google Scholar] [CrossRef]
- Braunecker, W.A.; Tsarevsky, N.V.; Gennaro, A.; Matyjaszewski, K. Thermodynamic Components of the Atom Transfer Radical Polymerization Equilibrium: Quantifying Solvent Effects. Macromolecules 2009, 42, 6348–6360. [Google Scholar] [CrossRef]
- Lanzalaco, S.; Fantin, M.; Scialdone, O.; Galia, A.; Isse, A.A.; Gennaro, A.; Matyjaszewski, K. Atom Transfer Radical Polymerization with Different Halides (F, Cl, Br, and I): Is the Process “Living” in the Presence of Fluorinated Initiators? Macromolecules 2017, 50, 192–202. [Google Scholar] [CrossRef]
- Hildenbrand, D.L.; Lau, K.H. Dissociation Energies of the Cu and Ag Monohalides and of Ni Monofluoride. J. Phys. Chem. A 2006, 110, 11886–11889. [Google Scholar] [CrossRef] [PubMed]
- Isse, A.A.; Lin, C.Y.; Coote, M.L.; Gennaro, A. Estimation of Standard Reduction Potentials of Halogen Atoms and Alkyl Halides. J. Phys. Chem. B 2011, 115, 678–684. [Google Scholar] [CrossRef] [PubMed]
- Zerk, T.J.; Bernhardt, P.V. Solvent Dependent Anion Dissociation Limits Copper(I) Catalysed Atom Transfer Reactions. Dalton Trans. 2013, 42, 11683–11694. [Google Scholar] [CrossRef]
- Zerk, T.J.; Martinez, M.; Bernhardt, P.V. A Kinetico-Mechanistic Study on CuII Deactivators Employed in Atom Transfer Radical Polymerization. Inorg. Chem. 2016, 55, 9848–9857. [Google Scholar] [CrossRef]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2016, 72, 171–179. [Google Scholar] [CrossRef]
- Odarich, I.A.; Pavlishchuk, A.V.; Kalibabchuk, V.A.; Haukka, M. Crystal Structure of μ-Oxalodi hydroxamato-Bis [(2,2′-Bipyrid yl)(Di methyl Sulfoxide-ΚO)Copper(II)] Bis (Perchlorate). Acta Crystallogr. Sect. Crystallogr. Commun. 2016, 72, 147–150. [Google Scholar] [CrossRef]
- Giziroglu, E.; Aygün, M.; Sarikurkcu, C.; Kazar, D.; Orhan, N.; Firinci, E.; Soyleyici, H.C.; Gokcen, C. Synthesis, Characterization and Antioxidant Activity of New Dibasic Tridentate Ligands: X-ray Crystal Structures of DMSO Adducts of 1,3-Dimethyl-5-Acetyl-Barbituric Acid o-Hydroxybenzoyl Hydrazone Copper(II) Complex. Inorg. Chem. Commun. 2013, 36, 199–205. [Google Scholar] [CrossRef]
- Pintauer, T.; Matyjaszewski, K. Structural Aspects of Copper Catalyzed Atom Transfer Radical Polymerization. Coord. Chem. Rev. 2005, 249, 1155–1184. [Google Scholar] [CrossRef]
- Scott, M.J.; Holm, R.H. Molecular Assemblies Containing Linear and Bent [FeIII-CN-CuII] Bridge Units: Synthesis, Structures, and Relevance to Cyanide-Inhibited Heme-Copper Oxidases. J. Am. Chem. Soc. 1994, 116, 11357–11367. [Google Scholar] [CrossRef]
- Olguín, J.; Bernès, S.; Gasque, L. Fluoride Ion as Ligand and Hydrogen Bond Acceptor: Crystal Structures of Two Dinuclear Cuii Complexes Built on a Diazecine Template. Crystals 2012, 2, 1357–1365. [Google Scholar] [CrossRef]
- Margraf, G.; Bats, J.W.; Wagner, M.; Lerner, H.-W. Copper(II) PMDTA and Copper(II) TMEDA Complexes: Precursors for the Synthesis of Dinuclear Dicationic Copper(II) Complexes. Inorg. Chim. Acta 2005, 358, 1193–1203. [Google Scholar] [CrossRef]
- Marenich, A.V.; Olson, R.M.; Kelly, C.P.; Cramer, C.J.; Truhlar, D.G. Self-Consistent Reaction Field Model for Aqueous and Nonaqueous Solutions Based on Accurate Polarized Partial Charges. J. Chem. Theory Comput. 2007, 3, 2011–2033. [Google Scholar] [CrossRef] [PubMed]
- Harvey, J.N.; Himo, F.; Maseras, F.; Perrin, L. Scope and Challenge of Computational Methods for Studying Mechanism and Reactivity in Homogeneous Catalysis. ACS Catal. 2019, 9, 6803–6813. [Google Scholar] [CrossRef]
- Gaussian 09 Citation|Gaussian.Com. Available online: https://gaussian.com/g09citation/ (accessed on 25 May 2022).
- Zhao, Y.; Truhlar, D.G. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals. Theor. Chem. Acc. 2008, 120, 215–241. [Google Scholar] [CrossRef]
- Skyner, R.E.; McDonagh, J.L.; Groom, C.R.; van Mourik, T.; Mitchell, J.B.O. A Review of Methods for the Calculation of Solution Free Energies and the Modelling of Systems in Solution. Phys. Chem. Chem. Phys. 2015, 17, 6174–6191. [Google Scholar] [CrossRef]
- O’boyle, N.M.; Tenderholt, A.L.; Langner, K.M. Cclib: A Library for Package-Independent Computational Chemistry Algorithms. J. Comput. Chem. 2008, 29, 839–845. [Google Scholar] [CrossRef]
Reaction | ΔEr | ΔGr | ||
---|---|---|---|---|
Gas phase | Gas phase | In MeCN 1 | In DMSO 1 | |
[CuI(Me6TREN)]+ + Cl• → [CuII(Me6TREN)Cl]+ | −62.2 | −51.8 | −59.2 | −59.3 |
[CuI(Me6TREN)]+ + Br• → [CuII(Me6TREN)Br]+ | −47.1 | −37.2 | −43.8 | −43.9 |
[CuI(PMDETA)]+ + Cl• → [CuII(PMDETA)Cl]+ | −59.8 | −49.6 | −58.5 | −58.6 |
[CuI(PMDETA)]+ + Br• → [CuII(PMDETA)Br]+ | −44.9 | −35.5 | −43.3 | −43.4 |
[CuI(TPMA)]+ + Cl• → [CuII(TPMA)Cl]+ | −59.1 | −48.9 | −57.1 | −57.1 |
[CuI(TPMA)]+ + Br• → [CuII(TPMA)Br]+ | −44.5 | −34.6 | −42.0 | −42.0 |
Reaction | ΔEr | ΔGr | ||
---|---|---|---|---|
Gas Phase | Gas Phase | In MeCN | In DMSO | |
[CuI(Me6TREN)]+ + AlCl [CuII(Me6TREN)Cl]+ + Al• | 7.3 | 6.1 | 1.0 | 0.9 |
[CuI(Me6TREN)]+ + AlBr [CuII(Me6TREN)Br]+ + Al• | 8.2 | 7.0 | 2.5 | 2.4 |
[CuI(Me6TREN)]+ + EtCliBu [CuII(Me6TREN)Cl]+ + EtiBu• | 10.7 | 7.4 | 1.4 | 1.3 |
[CuI(Me6TREN)]+ + EtBriBu [CuII(Me6TREN)Br]+ + EtiBu• | 11.1 | 7.5 | 2.0 | 2.0 |
[CuI(Me6TREN)]+ + MeClPr [CuII(Me6TREN)Cl]+ + MePr• | 12.1 | 10.3 | 4.4 | 4.3 |
[CuI(Me6TREN)]+ + MeBrPr [CuII(Me6TREN)Br]+ + MePr• | 13.3 | 11.4 | 6.1 | 6.0 |
[CuI(PMDETA)]+ + AlCl [CuII(PMDETA)Cl]+ + Al• | 9.7 | 8.3 | 1.8 | 1.7 |
[CuI(PMDETA)]+ + AlBr [CuII(PMDETA)Br]+ + Al• | 10.4 | 8.7 | 3.0 | 2.9 |
[CuI(PMDETA)]+ + EtCliBu [CuII(PMDETA)Cl]+ + EtiBu• | 13.2 | 9.5 | 2.1 | 2.0 |
[CuI(PMDETA)]+ + EtBriBu [CuII(PMDETA)Br]+ + EtiBu• | 13.3 | 9.2 | 2.6 | 2.5 |
[CuI(PMDETA)]+ + MeClPr [CuII(PMDETA)Cl]+ + MePr• | 14.5 | 12.5 | 5.2 | 5.1 |
[CuI(PMDETA)]+ + MeBrPr [CuII(PMDETA)Br]+ + MePr• | 15.5 | 13.0 | 6.6 | 6.5 |
[CuI(TPMA)]+ + AlCl [CuII(TPMA)Cl]+ + Al• | 10.3 | 9.0 | 3.2 | 3.1 |
[CuI(TPMA)]+ + AlBr [CuII(TPMA)Br]+ + Al• | 10.8 | 9.6 | 4.4 | 4.3 |
[CuI(TPMA)]+ + EtCliBu [CuII(TPMA)Cl]+ + EtiBu• | 13.8 | 10.3 | 3.5 | 3.4 |
[CuI(TPMA)]+ + EtBriBu [CuII(TPMA)Br]+ + EtiBu• | 13.7 | 10.0 | 4.0 | 3.9 |
[CuI(TPMA)]+ + MeClPr [CuII(TPMA)Cl]+ + MePr• | 15.1 | 13.2 | 6.6 | 6.5 |
[CuI(TPMA)]+ + MeBrPr [CuII(TPMA)Br]+ + MePr• | 15.9 | 13.9 | 8.0 | 7.9 |
S | CuI | CuII | ||
---|---|---|---|---|
Gas Phase | In Solvent 1 | Gas Phase | In Solvent 1 | |
MeCN (end-on) | −51.7 | −24.8 | −161.6 | −38.7 |
DMSO-κOα | −57.5 | −23.7 | −208.2 | −86.0 |
DMSO-κOβ | −56.0 | −24.2 | - 2 | - 2 |
DMSO-κS | −35.8 | −15.2 | −183.6 | −71.2 |
Reaction | ΔEr Gas Phase | ΔGr Gas Phase | ΔGr In Solution 1 | ||||||
---|---|---|---|---|---|---|---|---|---|
MeCN | DMSO-κO2 | DMSO-κS | MeCN | DMSO-κO2 | DMSO-κS | MeCN | DMSO-κO2 | DMSO-κS | |
[CuI(Me6TREN)]+ + S [CuI(Me6TREN)(S)]+ | −17.9 | −20.8 | −15.2 | −7.5 | −9.4 | −2.6 | −4.4 | −2.2 | 0.4 |
[CuI(PMDETA]+ + S [CuI(PMDETA)(S)]+ | −23.0 | −24.2 | −19.6 | −12.6 | −11.6 | −5.5 | −6.3 | −3.3 | −2.6 |
[CuI(PMDETA)(S)]+ + S [CuI(PMDETA)(S)2]+ | −11.4 | −18.2 | - | −1.8 | −6.4 | - | 1.7 | 0.2 | - |
[CuI(TPMA)]+ + S [CuI(TPMA)(S)]+ | −16.8 | −18.9 | −13.6 | −6.7 | −7.5 | −1.8 | −4.0 | −2.7 | −0.4 |
[CuII(Me6TREN)]2+ + S [CuII(Me6TREN)(S)]2+ | −44.7 | −55.6 | −30.5 | −33.9 | −41.8 | −16.1 | −10.1 | −32.2 | −11.7 |
[CuII(PMDETA)]2+ + S [CuII(PMDETA)(S)]2+ | −48.7 | −60.3 | - | −36.6 | −46.1 | - | −18.7 | −31.0 | - |
[CuII(PMDETA)(S)]2+ + S [CuII(PMDETA)(S)2]2+ | −29.1 | −38.5 | - | −18.5 | −24.2 | - | −6.3 | −17.0 | - |
[CuII(TPMA)]2+ + S [CuII(TPMA)(S)]2+ | −43.7 | −52.7 | −32.0 | −31.8 | −39.5 | −18.3 | −19.1 | −29.6 | −15.7 |
Isomer | ||||||
---|---|---|---|---|---|---|
ΔEr Gas Phase | ΔGr Gas Phase | ΔGr In MeCN 1 | ΔEr Gas Phase | ΔGr Gas Phase | ΔGr In DMSO 1 | |
I1 | −15.9 | −2.3 | 4.4 | −25.6 | −11.0 | −0.5 |
I2 | −19.4 | −8.1 | −1.1 | −29.7 | −15.1 | −4.7 |
I3 | −11.2 | 0.5 | 4.6 | −25.7 | −11.7 | −3.9 |
I4 | −6.1 | 5.5 | 10.6 | −17.8 | −3.3 | 4.5 |
Reaction | S = MeCN | S = DMSO | ||||
---|---|---|---|---|---|---|
ΔE Gas Phase | ΔGr Gas Phase | ΔGr 1 In Solution | ΔE Gas Phase | ΔGr Gas Phase | ΔGr 1 In Solution | |
[CuI(Me6TREN)(S)]+ + AlCl [CuII(Me6TREN)Cl]+ + Al• + S | 25.2 | 13.6 | 4.7 | 28.1 | 15.4 | 3.8 |
[CuI(Me6TREN)(S)]+ + AlBr [CuII(Me6TREN)Br]+ + Al• + S | 26.1 | 14.5 | 6.2 | 29.0 | 16.4 | 5.4 |
[CuI(Me6TREN)(S)]+ + EtCliBu [CuII(Me6TREN)Cl]+ + EtiBu• + S | 28.6 | 14.9 | 5.1 | 31.5 | 16.7 | 4.2 |
[CuI(Me6TREN)(S)]+ + EtBriBu [CuII(Me6TREN)Br]+ + EtiBu• + S | 29.0 | 15.0 | 5.8 | 31.9 | 16.9 | 4.9 |
[CuI(Me6TREN)(S)]+ + MeClPr [CuII(Me6TREN)Cl]+ + MePr• + S | 30.0 | 17.8 | 8.1 | 32.9 | 19.6 | 7.3 |
[CuI(Me6TREN)(S)]+ + MeBrPr [CuII(Me6TREN)Br]+ + MePr• + S | 31.2 | 18.8 | 9.8 | 34.1 | 20.7 | 9.0 |
[CuI(PMDETA)(S)]+ + AlCl [CuII(PMDETA)Cl]+ + Al• + S | 32.7 | 20.9 | 9.4 | 33.9 | 19.9 | 5.8 |
[CuI(PMDETA)(S)]+ + AlBr [CuII(PMDETA)Br]+ + Al• + S | 33.4 | 21.4 | 10.5 | 34.6 | 20.3 | 7.0 |
[CuI(PMDETA)(S)]+ + EtCliBu [CuII(PMDETA)Cl]+ + EtiBu• + S | 36.1 | 22.2 | 9.7 | 37.3 | 21.2 | 6.2 |
[CuI(PMDETA)(S)]+ + EtBriBu [CuII(PMDETA)Br]+ + EtiBu• + S | 36.3 | 21.8 | 10.1 | 37.5 | 20.8 | 6.6 |
[CuI(PMDETA)(S)]+ + MeClPr [CuII(PMDETA)Cl]+ + MePr• + S | 37.5 | 25.1 | 12.8 | 38.7 | 24.1 | 9.2 |
[CuI(PMDETA)(S)]+ + MeBrPr [CuII(PMDETA)Br]+ + MePr• + S | 38.5 | 25.7 | 14.1 | 39.7 | 24.7 | 10.6 |
[CuI(TPMA)(S)]+ + AlCl [CuII(TPMA)Cl]+ + Al• + S | 27.1 | 15.7 | 7.3 | 29.2 | 16.4 | 5.9 |
[CuI(TPMA)(S)]+ + AlBr [CuII(TPMA)Br]+ + Al• + S | 27.6 | 16.3 | 8.5 | 29.7 | 17.0 | 7.1 |
[CuI(TPMA)(S)]+ + EtCliBu [CuII(TPMA)Cl]+ + EtiBu• + S | 30.6 | 17.0 | 7.6 | 32.6 | 17.7 | 6.2 |
[CuI(TPMA)(S)]+ + EtBriBu [CuII(TPMA)Br]+ + EtiBu• + S | 30.5 | 16.8 | 8.1 | 32.6 | 17.5 | 6.7 |
[CuI(TPMA)(S)]+ + MeClPr [CuII(TPMA)Cl]+ + MePr• + S | 31.9 | 19.9 | 10.7 | 34.0 | 20.6 | 9.3 |
[CuI(TPMA)(S)]+ + MeBrPr [CuII(TPMA)Cl]+ + MePr• + S | 32.7 | 20.6 | 12.1 | 34.8 | 21.3 | 10.7 |
[CuI(PMDETA)(S)]+ + AlCl [CuII(PMDETA)Cl(S)]+ + Al• | 15.0 | 12.4 | 5.8 | 2.7 | 4.6 | −1.0 |
[CuI(PMDETA)(S)]+ + AlBr [CuII(PMDETA)Br(S)]+ + Al• | 14.0 | 14.3 | 9.4 | 4.9 | 5.2 | 2.4 |
[CuI(PMDETA)(S)]+ + EtCliBu [CuII(PMDETA)Cl(S)]+ + EtiBu• | 18.5 | 13.6 | 6.1 | 6.1 | 5.9 | −0.7 |
[CuI(PMDETA)(S)]+ + EtBriBu [CuII(PMDETA)Br(S)]+ + EtiBu• | 16.9 | 13.8 | 9.0 | 7.8 | 5.7 | 2.0 |
[CuI(PMDETA)(S)]+ + MeClPr [CuII(PMDETA)Cl(S)]+ + MePr• | 19.8 | 16.6 | 9.2 | 7.5 | 8.8 | 2.4 |
[CuI(PMDETA)(S)]+ + MeBrPr [CuII(PMDETA)Br(S)]+ + MePr• | 19.1 | 17.6 | 13.0 | 10.0 | 9.6 | 6.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Racioppi, S.; Orian, L.; Tubaro, C.; Gennaro, A.; Isse, A.A. Solvent Coordination Effect on Copper-Based Molecular Catalysts for Controlled Radical Polymerization. Catalysts 2022, 12, 1656. https://doi.org/10.3390/catal12121656
Racioppi S, Orian L, Tubaro C, Gennaro A, Isse AA. Solvent Coordination Effect on Copper-Based Molecular Catalysts for Controlled Radical Polymerization. Catalysts. 2022; 12(12):1656. https://doi.org/10.3390/catal12121656
Chicago/Turabian StyleRacioppi, Stefano, Laura Orian, Cristina Tubaro, Armando Gennaro, and Abdirisak Ahmed Isse. 2022. "Solvent Coordination Effect on Copper-Based Molecular Catalysts for Controlled Radical Polymerization" Catalysts 12, no. 12: 1656. https://doi.org/10.3390/catal12121656
APA StyleRacioppi, S., Orian, L., Tubaro, C., Gennaro, A., & Isse, A. A. (2022). Solvent Coordination Effect on Copper-Based Molecular Catalysts for Controlled Radical Polymerization. Catalysts, 12(12), 1656. https://doi.org/10.3390/catal12121656