Efficient Reduction of Cr (VI) to Cr (III) over a TiO2-Supported Palladium Catalyst Using Formic Acid as a Reductant
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the Prepared Sample
2.2. Catalysts Activity Studies
2.2.1. Evaluation of Catalytic Properties of Cr (VI) Reduction
2.2.2. Pd/TiO2 Catalyzed the Nitro Compounds Reduction
2.3. Recyclability of Pd/TiO2
3. Materials and Methods
3.1. Materials
3.2. Synthesis of Pd/TiO2(P25)
3.3. Characterization
3.4. Catalytic Reduction of K2Cr2O7
3.5. Catalytic Reduction of Nitro Compounds
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gupta, K.; Joshi, P.; Gusain, R.; Khatri, O.P. Recent advances in adsorptive removal of heavy metal and metalloid ions by metal oxide-based nanomaterials. Coord. Chem. Rev. 2021, 445, 214100. [Google Scholar] [CrossRef]
- Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front. Pharmacol. 2021, 12, 643972. [Google Scholar] [CrossRef] [PubMed]
- Handa, K.; Jindal, R. Genotoxicity induced by hexavalent chromium leading to eryptosis in Ctenopharyngodon idellus. Chemosphere 2020, 247, 125967. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, C.C.; Bravo Gomez, M.E.; Hernandez Zavala, A. Hexavalent chromium: Regulation and health effects. J. Trace Elem. Med. Biol. 2021, 65, 126729. [Google Scholar] [CrossRef] [PubMed]
- Barrera-Diaz, C.E.; Lugo-Lugo, V.; Bilyeu, B. A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction. J. Hazard. Mater. 2012, 223, 1–12. [Google Scholar] [CrossRef]
- He, C.; Gu, L.; Xu, Z.; He, H.; Fu, G.; Han, F.; Huang, B.; Pan, X. Cleaning chromium pollution in aquatic environments by bioremediation, photocatalytic remediation, electrochemical remediation and coupled remediation systems. Environ. Chem. Lett. 2020, 18, 561–576. [Google Scholar] [CrossRef]
- Ayyildiz, O.; Acar, E.; Ileri, B. Sonocatalytic Reduction of Hexavalent Chromium by Metallic Magnesium Particles. Water Air Soil Pollut. 2016, 22, 1–9. [Google Scholar] [CrossRef]
- Sayles, R.; Smith, H.M.; Jeffrey, P. Customer priorities for water and wastewater services: A comparative evaluation of three elicitation methods. Water Environ. J. 2020, 35, 55–66. [Google Scholar] [CrossRef]
- Singh, P.; Itankar, N.; Patil, Y. Biomanagement of hexavalent chromium: Current trends and promising perspectives. J. Environ. Manag. 2021, 279, 111547. [Google Scholar] [CrossRef]
- Lakshmi, S.; Suvedha, K.; Sruthi, R.; Lavanya, J.; Varjani, S.; Nakkeeran, E. Hexavalent chromium sequestration from electronic waste by biomass of Aspergillus carbonarius. Bioengineered 2020, 11, 708–717. [Google Scholar] [CrossRef]
- Uddin, M.J.; Jeong, Y.-K.; Lee, W. Microbial fuel cells for bioelectricity generation through reduction of hexavalent chromium in wastewater: A review. Int. J. Hydrogen Energy 2021, 46, 11458–11481. [Google Scholar] [CrossRef]
- Deng, X.; Chen, Y.; Wen, J.; Xu, Y.; Zhu, J.; Bian, Z. Polyaniline-TiO2 composite photocatalysts for light-driven hexavalent chromium ions reduction. Chin. Sci. Bull. 2020, 65, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Besharat, F.; Ahmadpoor, F.; Nasrollahzadeh, M. Graphene-based (nano)catalysts for the reduction of Cr (VI): A review. J. Mol. Liq. 2021, 334, 116123. [Google Scholar] [CrossRef]
- Wang, C.; Sun, S.; Zhang, L.; Yin, J.; Jiao, T.; Zhang, L.; Xu, Y.; Zhou, J.; Peng, Q. Facile preparation and catalytic performance characterization of AuNPs-loaded hierarchical electrospun composite fibers by solvent vapor annealing treatment. Colloids Surf. A 2019, 561, 283–291. [Google Scholar] [CrossRef]
- Rai, R.K.; Mahata, A.; Mukhopadhyay, S.; Gupta, S.; Li, P.Z.; Nguyen, K.T.; Zhao, Y.; Pathak, B.; Singh, S.K. Room-temperature chemoselective reduction of nitro groups using non-noble metal nanocatalysts in water. Adv. Inorg. Chem. 2014, 53, 2904–2909. [Google Scholar] [CrossRef] [PubMed]
- Villaverde, M.M.; Bertero, N.M.; Garetto, T.F.; Marchi, A.J. Selective liquid-phase hydrogenation of furfural to furfuryl alcohol over Cu-based catalysts. Catal. Today 2013, 213, 87–92. [Google Scholar] [CrossRef]
- Wang, Q.; Feng, J.; Zheng, L.; Wang, B.; Bi, R.; He, Y.; Liu, H.; Li, D. Interfacial Structure-Determined Reaction Pathway and Selectivity for 5-(Hydroxymethyl)furfural Hydrogenation over Cu-Based Catalysts. ACS Catal. 2019, 10, 1353–1365. [Google Scholar] [CrossRef]
- Yurderi, M.; Bulut, A.; Kanberoglu, G.S.; Kaya, M.; Kanbur, Y.; Zahmakiran, M. Ruthenium Nanoparticles Supported on Reduced Graphene Oxide: Efficient Catalyst for the Catalytic Reduction of Cr (VI) in the Presence of Amine-Boranes. ChemistrySelect 2020, 5, 6961–6970. [Google Scholar] [CrossRef]
- Nie, R.; Tao, Y.; Nie, Y.; Lu, T.; Wang, J.; Zhang, Y.; Lu, X.; Xu, C.C. Recent Advances in Catalytic Transfer Hydrogenation with Formic Acid over Heterogeneous Transition Metal Catalysts. ACS Catal. 2021, 11, 1071–1095. [Google Scholar] [CrossRef]
- Doustkhah, E.; Hasani, M.; Ide, Y.; Assadi, M.H.N. Pd Nanoalloys for H2 Generation from Formic Acid. ACS Appl. Nano Mater. 2019, 3, 22–43. [Google Scholar] [CrossRef] [Green Version]
- Eppinger, J.; Huang, K.-W. Formic Acid as a Hydrogen Energy Carrier. ACS Energy Lett. 2016, 2, 188–195. [Google Scholar] [CrossRef] [Green Version]
- Zhong, H.; Iguchi, M.; Chatterjee, M.; Himeda, Y.; Xu, Q.; Kawanami, H. Formic Acid-Based Liquid Organic Hydrogen Carrier System with Heterogeneous Catalysts. Adv. Sustain. Syst. 2018, 2, 1700161. [Google Scholar] [CrossRef]
- Yao, Y.; Hu, H.; Zheng, H.; Wei, F.; Gao, M.; Zhang, Y.; Wang, S. Zn-MoS2 nanocatalysts anchored in porous membrane for accelerated catalytic conversion of water contaminants. Biochem. Eng. J. 2020, 398, 125455. [Google Scholar] [CrossRef]
- Farooqi, Z.H.; Akram, M.W.; Begum, R.; Wu, W.; Irfan, A. Inorganic nanoparticles for reduction of hexavalent chromium: Physicochemical aspects. J. Hazard. Mater. 2021, 402, 123535. [Google Scholar] [CrossRef] [PubMed]
- Dai, S.; Wu, X.; Zhang, J.; Fu, Y.; Li, W. Coenzyme A-regulated Pd nanocatalysts for formic acid-mediated reduction of hexavalent chromium. Biochem. Eng. J. 2018, 351, 959–966. [Google Scholar] [CrossRef]
- Nasrollahzadeh, M.; Issaabadi, Z.; Sajadi, S.M. Green synthesis of Pd/Fe3O4 nanocomposite using Hibiscus tiliaceus L. extract and its application for reductive catalysis of Cr (VI) and nitro compounds. Sep. Purif. Technol. 2018, 197, 253–260. [Google Scholar] [CrossRef]
- Moyo, M.; Modise, S.J.; Pakade, V.E. Palladium nanoparticles dispersed on functionalized macadamia nutshell biomass for formic acid-mediated removal of chromium (VI) from aqueous solution. Sep. Purif. Technol. 2020, 743, 140614. [Google Scholar] [CrossRef]
- Veerakumar, P.; Lin, K.C. An overview of palladium supported on carbon-based materials: Synthesis, characterization, and its catalytic activity for reduction of hexavalent chromium. Chemosphere 2020, 253, 126750. [Google Scholar] [CrossRef] [PubMed]
- Meng, A.; Zhang, L.; Cheng, B.; Yu, J. Dual Cocatalysts in TiO2 Photocatalysis. Adv. Mater. 2019, 31, e1807660. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Liu, B.; Sang, Y.; Liu, H. Heterostructures construction on TiO2 nanobelts: A powerful tool for building high-performance photocatalysts. Appl. Catal. B 2017, 202, 620–641. [Google Scholar] [CrossRef]
- Li, X.; Pan, Y.; Yi, H.; Hu, J.; Yang, D.; Lv, F.; Li, W.; Zhou, J.; Wu, X.; Lei, A.; et al. Mott–Schottky Effect Leads to Alkyne Semihydrogenation over Pd-Nanocube@N-Doped Carbon. ACS Catal. 2019, 9, 4632–4641. [Google Scholar] [CrossRef]
- Huang, H.; Feng, J.; Zhang, S.; Zhang, H.; Wang, X.; Yu, T.; Chen, C.; Yi, Z.; Ye, J.; Li, Z.; et al. Molecular-level understanding of the deactivation pathways during methanol photo-reforming on Pt-decorated TiO2. Appl. Catal. B 2020, 272, 118980. [Google Scholar] [CrossRef]
- Krishnakumar, B.; Kumar, S.; Gil, J.M.; Pandiyan, V.; Aguiar, A.; Sobral, A.J.F.N. Highly active P25@Pd/C nanocomposite for the degradation of Naphthol Blue Black with visible light. J. Mol. Struct. 2018, 1153, 346–352. [Google Scholar] [CrossRef]
- Bansal, P.; Verma, A. Applications of sunlight responsive Fe-Ag-TiO2 composite incorporating in-situ dual effect for the degradation of pentoxifylline. Mater. Sci. Eng. B 2018, 236, 197–207. [Google Scholar] [CrossRef]
- Ikhlef-Taguelmimt, T.; Hamiche, A.; Yahiaoui, I.; Bendellali, T.; Lebik-Elhadi, H.; Ait-Amar, H.; Aissani-Benissad, F. Tetracycline hydrochloride degradation by heterogeneous photocatalysis using TiO2(P25) immobilized in biopolymer (chitosan) under UV irradiation. Water Sci. Technol. 2020, 82, 1570–1578. [Google Scholar] [CrossRef] [PubMed]
- Rajaramanan, T.; Natarajan, M.; Ravirajan, P.; Senthilnanthanan, M.; Velauthapillai, D. Ruthenium (Ru) Doped Titanium Dioxide (P25) Electrode for Dye Sensitized Solar Cells. Energies 2020, 13, 1532. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Yin, H.; Li, F.; Zhou, J.; Wang, L.; Wang, J.; Ai, S. Polydopamine-sensitized WS2/black-TiO2 heterojunction for histone acetyltransferase detection with enhanced visible-light-driven photoelectrochemical activity. Biochem. Eng. J. 2020, 393, 124707. [Google Scholar] [CrossRef]
- Xu, X.; Luo, J.; Li, L.; Zhang, D.; Wang, Y.; Li, G. Unprecedented catalytic performance in amine syntheses via Pd/g-C3N4 catalyst-assisted transfer hydrogenation. Green Chem. 2018, 20, 2038–2046. [Google Scholar] [CrossRef]
- Hengsawad, T.; Jindarat, T.; Resasco, D.E.; Jongpatiwut, S. Synergistic effect of oxygen vacancies and highly dispersed Pd nanoparticles over Pd-loaded TiO2 prepared by a single-step sol–gel process for deoxygenation of triglycerides. Appl. Catal. A 2018, 566, 74–86. [Google Scholar] [CrossRef]
- Han, E.; Vijayarangamuthu, K.; Youn, J.-s.; Park, Y.-K.; Jung, S.-C.; Jeon, K.-J. Degussa P25 TiO2 modified with H2O2 under microwave treatment to enhance photocatalytic properties. Catal. Today 2018, 303, 305–312. [Google Scholar] [CrossRef]
- Hussain, E.; Majeed, I.; Nadeem, M.A.; Badshah, A.; Chen, Y.; Nadeem, M.A.; Jin, R. Titania-Supported Palladium/Strontium Nanoparticles (Pd/Sr-NPs@P25) for Photocatalytic H2 Production from Water Splitting. J. Phys. Chem. C 2016, 120, 17205–17213. [Google Scholar] [CrossRef]
- Li, X.; Feng, J.; Sun, J.; Wang, Z.; Zhao, W. Solvent-Free Catalytic Oxidation of Benzyl Alcohol over Au-Pd Bimetal Deposited on TiO2: Comparison of Rutile, Brookite, and Anatase. Nanoscale Res. Lett. 2019, 14, 394. [Google Scholar] [CrossRef] [PubMed]
- Hernandez Rodriguez, M.J.; Pulido Melian, E.; Arana, J.; Navio, J.A.; Gonzalez Diaz, O.M.; Santiago, D.E.; Dona Rodriguez, J.M. Influence of Water on the Oxidation of NO on Pd/TiO2 Photocatalysts. Nanomaterials 2020, 10, 2354. [Google Scholar] [CrossRef] [PubMed]
- Kohsuke Mori, K.M.; Hiromi, Y. Ru−Ni Nanoparticles on TiO2 Support as Extremely Active Catalysts for Hydrogen Production from Ammonia−Borane. ACS Catal. 2016, 6, 3128–3313. [Google Scholar] [CrossRef]
- Veerakumar, P.; Thanasekaran, P.; Lin, K.-C.; Liu, S.-B. Biomass Derived Sheet-like Carbon/Palladium Nanocomposite: An Excellent Opportunity for Reduction of Toxic Hexavalent Chromium. ACS Sustain. Chem. Eng. 2017, 5, 5302–5312. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, C.; Pan, G.; Zhang, Y.; Ding, F.; Qu, J.; Xu, X.; Su, X. Efficient Reduction of Cr (VI) to Cr (III) over a TiO2-Supported Palladium Catalyst Using Formic Acid as a Reductant. Catalysts 2022, 12, 179. https://doi.org/10.3390/catal12020179
Qin C, Pan G, Zhang Y, Ding F, Qu J, Xu X, Su X. Efficient Reduction of Cr (VI) to Cr (III) over a TiO2-Supported Palladium Catalyst Using Formic Acid as a Reductant. Catalysts. 2022; 12(2):179. https://doi.org/10.3390/catal12020179
Chicago/Turabian StyleQin, Chengxin, Ganen Pan, Yingxue Zhang, Fangjun Ding, Jianyu Qu, Xingliang Xu, and Xiurong Su. 2022. "Efficient Reduction of Cr (VI) to Cr (III) over a TiO2-Supported Palladium Catalyst Using Formic Acid as a Reductant" Catalysts 12, no. 2: 179. https://doi.org/10.3390/catal12020179
APA StyleQin, C., Pan, G., Zhang, Y., Ding, F., Qu, J., Xu, X., & Su, X. (2022). Efficient Reduction of Cr (VI) to Cr (III) over a TiO2-Supported Palladium Catalyst Using Formic Acid as a Reductant. Catalysts, 12(2), 179. https://doi.org/10.3390/catal12020179