Influence of Nitrogen and Sulfur Doping of Carbon Xerogels on the Performance and Stability of Counter Electrodes in Dye Sensitized Solar Cells
Abstract
:1. Introduction
2. Experimental Section
2.1. Synthesis and Doping of Carbon Xerogels
2.2. Physical-Chemical Characterization
2.3. Electrochemical Characterization
3. Results and Discussion
3.1. Physical–Chemical Characterization
3.2. Electrochemical Characterization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- O’Regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737–740. [Google Scholar] [CrossRef]
- Grätzel, M. Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J. Photochem. Photobiol. A Chem. 2004, 164, 3–14. [Google Scholar] [CrossRef]
- Yella, A.; Lee, H.-W.; Tsao, H.N.; Yi, C.; Chandiran, A.K.; Nazeeruddin, M.K.; Diau, E.W.-G.; Yeh, C.-Y.; Zakeeruddin, S.M.; Gratzel, M. Porphyrin-Sensitized Solar Cells with Cobalt (II/III)-Based Redox Electrolyte Exceed 12 Percent Efficiency. Science 2011, 334, 629–634. [Google Scholar] [CrossRef] [PubMed]
- Ning, Z.; Fu, Y.; Tian, H. Improvement of dye-sensitized solar cells: What we know and what we need to know. Energy Environ. Sci. 2010, 3, 1170–1181. [Google Scholar] [CrossRef]
- Bella, F.; Gerbaldi, C.; Barolo, C.; Grätzel, M. Aqueous dye-sensitized solar cells. Chem. Soc. Rev. 2015, 44, 3431–3473. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Shao, L.-L. Review on the recent progress of carbon counter electrodes for dye-sensitized solar cells. Chem. Eng. J. 2016, 304, 629–645. [Google Scholar] [CrossRef]
- Kaur, K.; Patyal, M.; Gupta, N. A review on the use of carbon matrix incorporated with macrocyclic metal complexes as counter electrodes for platinum free dye sensitized solar cells. J. Coord. Chem. 2021, 74, 543–562. [Google Scholar] [CrossRef]
- Kokkonen, M.; Talebi, P.; Zhou, J.; Asgari, S.; Soomro, S.A.; Elsehrawy, F.; Halme, J.; Ahmad, S.; Hagfeldt, A.; Hashmi, S.G. Advanced research trends in dye-sensitized solar cells. J. Mater. Chem. A 2021, 9, 10527–10545. [Google Scholar] [CrossRef]
- Papageorgiou, N. Counter-electrode function in nanocrystalline photoelectrochemical cell configurations. Coord. Chem. Rev. 2004, 248, 1421–1446. [Google Scholar] [CrossRef]
- Bay, L.; West, K.; Winther-Jensen, B.; Jacobsen, T. Electrochemical reaction rates in a dye-sensitised solar cell—The iodide/tri-iodide redox system. Sol. Energy Mater. Sol. Cells 2006, 90, 341–351. [Google Scholar] [CrossRef]
- Wu, M.; Ma, T. Recent Progress of Counter Electrode Catalysts in Dye-Sensitized Solar Cells. J. Phys. Chem. C 2014, 118, 16727–16742. [Google Scholar] [CrossRef]
- Yun, S.; Hagfeldt, A.; Ma, T.; Yun, S.; Hagfeldt, A.; Ma, T. Pt-Free Counter Electrode for Dye-Sensitized Solar Cells with High Efficiency. Adv. Mater. 2014, 26, 6210–6237. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Lan, Z.; Lin, J.; Huang, M.; Huang, Y.; Fan, L.; Luo, G.; Lin, Y.; Xie, Y.; Wei, Y. Counter electrodes in dye-sensitized solar cells. Chem. Soc. Rev. 2017, 46, 5975–6023. [Google Scholar] [CrossRef] [Green Version]
- Torres, D.; Sebastián, D.; Lázaro, M.J.; Pinilla, J.L.; Suelves, I.; Aricò, A.S.; Baglio, V. Performance and stability of counter electrodes based on reduced few-layer graphene oxide sheets and reduced graphene oxide quantum dots for dye-sensitized solar cells. Electrochim. Acta 2019, 306, 396–406. [Google Scholar] [CrossRef]
- Lu, M.N.; Chang, C.Y.; Wei, T.C.; Lin, J.Y. Recent Development of Graphene-Based Cathode Materials for Dye-Sensitized Solar Cells. J. Nanomater. 2016, 2016, 4742724. [Google Scholar] [CrossRef]
- Kouhnavard, M.; Ludin, N.A.; Ghaffari, B.V.; Sopian, K.; Ikeda, S. Carbonaceous Materials and Their Advances as a Counter Electrode in Dye-Sensitized Solar Cells: Challenges and Prospects. ChemSusChem 2015, 8, 1510–1533. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Hu, Y.H. Graphene as a counter electrode material for dye-sensitized solar cells. Energy Environ. Sci. 2012, 5, 8182–8188. [Google Scholar] [CrossRef]
- Sebastián, D.; Baglio, V.; Girolamo, M.; Moliner, R.; Lázaro, M.J.; Aricò, A.S. Carbon nanofiber-based counter electrodes for low cost dye-sensitized solar cells. J. Power Sources 2014, 250, 242–249. [Google Scholar] [CrossRef] [Green Version]
- Denaro, T.; Baglio, V.; Girolamo, M.; Antonucci, V.; Arico’, A.S.; Matteucci, F.; Ornelas, R. Investigation of low cost carbonaceous materials for application as counter electrode in dye-sensitized solar cells. J. Appl. Electrochem. 2009, 39, 2173–2179. [Google Scholar] [CrossRef]
- Zhang, J.; Hao, Y.; Yang, L.; Mohammadi, H.; Vlachopoulos, N.; Sun, L.; Hagfeldt, A.; Sheibani, E. Electrochemically polymerized poly (3,4-phenylenedioxythiophene) as efficient and transparent counter electrode for dye sensitized solar cells. Electrochim. Acta 2019, 300, 482–488. [Google Scholar] [CrossRef]
- Liu, S.; Li, Z.; Zhao, K.; Hao, M.; Zhang, Z.; Li, L.; Zhang, Y.; Zhang, W. A facile hydrothemal synthesis of MoS2@Co3S4 composites based on metal organic framework compounds as a high-efficiency liquid-state solar cell counter electrode. J. Alloys Compd. 2020, 831, 154910. [Google Scholar] [CrossRef]
- Mahato, S.; Nandigana, P.; Pradhan, B.; Subramanian, B.; Panda, S.K. Enhanced efficiency of DSSC by lyophilized tin-doped molybdenum sulfide as counter electrode. J. Alloys Compd. 2022, 894, 162406. [Google Scholar] [CrossRef]
- Baskaran, P.; Nisha, K.D.; Harish, S.; Ikeda, H.; Archana, J.; Navaneethan, M. Enhanced catalytic performance of Cu2ZnSnS4/MoS2 nanocomposites based counter electrode for Pt-free dye-sensitized solar cells. J. Alloys Compd. 2022, 894, 162166. [Google Scholar] [CrossRef]
- Yildiz, A.; Chouki, T.; Atli, A.; Harb, M.; Verbruggen, S.W.; Ninakanti, R.; Emin, S. Efficient Iron Phosphide Catalyst as a Counter Electrode in Dye-Sensitized Solar Cells. ACS Appl. Energy Mater. 2021, 4, 10618–10626. [Google Scholar] [CrossRef]
- Nithiananth, S.; Silambarasan, K.; Logu, T.; Harish, S.; Ramesh, R.; Muthamizhchelvan, C.; Shimomura, M.; Archana, J.; Navaneethan, M. Transition divalent metal substitution in chalcopyrite CuInSe2 (In = Co, Ni, and Mn) counter electrode for dye-sensitized solar cell applications. Mater. Lett. 2022, 308, 130887. [Google Scholar] [CrossRef]
- Wei, P.; Hao, Z.; Yang, Y.; Liu, L. Facile and functional synthesis of Ni0.85Se/Carbon nanospheres with hollow structure as counter electrodes of DSSCs. J. Electroanal. Chem. 2021, 903, 115830. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Y.; Cai, J.; Zhu, J. In situ grown hierarchical NiCo2O4@MnMoO4 core–shell nanoarrays on carbon cloth as high-performance counter electrode for dye-sensitized solar cells. Sol. Energy 2021, 227, 616–624. [Google Scholar] [CrossRef]
- Huang, Y.-J.; Kumar Sahoo, P.; Tsai, D.-S.; Lee, C.-P.; Huang, Y.-J.; Sahoo, P.K.; Drygała, A.; Wyrwał, J. Recent Advances on Pt-Free Electro-Catalysts for Dye-Sensitized Solar Cells. Molecule 2021, 26, 5186. [Google Scholar] [CrossRef]
- Muchuweni, E.; Martincigh, B.S.; Nyamori, V.O. Recent advances in graphene-based materials for dye-sensitized solar cell fabrication. RSC Adv. 2020, 10, 44453–44469. [Google Scholar] [CrossRef]
- Tan, Z.; Zhao, B.; Shen, P.; Jiang, S.; Jiang, P.; Wang, X.; Tan, S. Low-cost quasi-solid-state dye-sensitized solar cells based on a metal-free organic dye and a carbon aerogel counter electrode. J. Mater. Sci. 2011, 46, 7482–7488. [Google Scholar] [CrossRef]
- Huang, Y.J.; Lin, Y.J.; Chien, H.J.; Lin, Y.F.; Ho, K.C. A Pt-free pristine monolithic carbon aerogel counter electrode for dye-sensitized solar cells: Up to 20% under dim light illumination. Nanoscale 2019, 11, 12507–12516. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Shen, W.; Li, C.; Zheng, J.; Yu, F. Graphene cryogel-based counter electrode materials freeze-dried using different solution media for dye-sensitized solar cells. Chem. Eng. J. 2017, 319, 155–162. [Google Scholar] [CrossRef]
- Al-Muhtaseb, S.A.; Ritter, J.A. Preparation and Properties of Resorcinol-Formaldehyde Organic and Carbon Gels. Adv. Mater. 2003, 15, 101–114. [Google Scholar] [CrossRef]
- Alegre, C.; Sebastián, D.; Gálvez, M.E.; Moliner, R.; Lázaro, M.J. Sulfurized carbon xerogels as Pt support with enhanced activity for fuel cell applications. Appl. Catal. B Environ. 2016, 192, 260–267. [Google Scholar] [CrossRef]
- Kiciński, W.; Dziura, A. Heteroatom-doped carbon gels from phenols and heterocyclic aldehydes: Sulfur-doped carbon xerogels. Carbon N. Y. 2014, 75, 56–67. [Google Scholar] [CrossRef]
- Liu, S.; Deng, C.; Yao, L.; Zhong, H.; Zhang, H. The key role of metal dopants in nitrogen-doped carbon xerogel for oxygen reduction reaction. J. Power Sources 2014, 269, 225–235. [Google Scholar] [CrossRef]
- Kang, K.Y.; Lee, B.I.; Lee, J.S. Hydrogen adsorption on nitrogen-doped carbon xerogels. Carbon N. Y. 2009, 47, 1171–1180. [Google Scholar] [CrossRef]
- Sánchez-Sánchez, Á.; Suárez-García, F.; Martínez-Alonso, A.; Tascón, J.M.D. Synthesis, characterization and dye removal capacities of N-doped mesoporous carbons. J. Colloid Interface Sci. 2015, 450, 91–100. [Google Scholar] [CrossRef]
- Jin, H.; Li, J.; Chen, F.; Gao, L.; Zhang, H.; Liu, D.; Liu, Q. Nitrogen-doped carbon xerogels as novel cathode electrocatalysts for oxygen reduction reaction in direct borohydride fuel cells. Electrochim. Acta 2016, 222, 438–445. [Google Scholar] [CrossRef]
- Pérez-Cadenas, M.; Moreno-Castilla, C.; Carrasco-Marín, F.; Pérez-Cadenas, A.F. Surface chemistry, porous texture, and morphology of N-doped carbon xerogels. Langmuir 2009, 25, 466–470. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, H.; Xu, Z.; Zhong, H.; Jin, H. Nitrogen-doped carbon xerogel as high active oxygen reduction catalyst for direct methanol alkaline fuel cell. Int. J. Hydrogen Energy 2012, 37, 19065–19072. [Google Scholar] [CrossRef]
- Liu, X.; Li, S.; Mei, J.; Lau, W.M.; Mi, R.; Li, Y.; Liu, H.; Liu, L. From melamine-resorcinol-formaldehyde to nitrogen-doped carbon xerogels with micro- and meso-pores for lithium batteries. J. Mater. Chem. A 2014, 2, 14429–14438. [Google Scholar] [CrossRef]
- Alegre, C.; Sebastián, D.; Gálvez, M.E.; Baquedano, E.; Moliner, R.; Aricò, A.S.; Baglio, V.; Lázaro, M.J. N-Doped Carbon Xerogels as Pt Support for the Electro-Reduction of Oxygen. Materials 2017, 10, 1092. [Google Scholar] [CrossRef] [PubMed]
- Arenillas, A.; Menéndez, J.A.; Reichenauer, G.; Celzard, A.; Fierro, V.; Maldonado Hodar, F.J.; Bailόn-Garcia, E.; Job, N. Organic and Carbon Gels: From Laboratory to Industry? Springer: Cham, Switzerland, 2019; ISBN 9783030138974. [Google Scholar]
- Job, N.; Théry, A.; Pirard, R.; Marien, J.; Kocon, L.; Rouzaud, J.-N.; Béguin, F.; Pirard, J.-P. Carbon aerogels, cryogels and xerogels: Influence of the drying method on the textural properties of porous carbon materials. Carbon N. Y. 2005, 43, 2481–2494. [Google Scholar] [CrossRef]
- Figueiredo, J.L. Carbon gels with tuned properties for catalysis and energy storage. J. Sol-Gel Sci. Technol. 2019, 89, 12–20. [Google Scholar] [CrossRef]
- Kiciński, W.; Szala, M.; Bystrzejewski, M. Sulfur-doped porous carbons: Synthesis and applications. Carbon N. Y. 2014, 68, 1–32. [Google Scholar] [CrossRef]
- Ngidi, N.P.D.; Muchuweni, E.; Nyamori, V.O. Dual heteroatom-doped reduced graphene oxide and its application in dye-sensitized solar cells. Opt. Mater. 2021, 122, 111689. [Google Scholar] [CrossRef]
- Wang, Q.; Moser, J.-E.; Grätzel, M. Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells. J. Phys. Chem. B 2005, 109, 14945–14953. [Google Scholar] [CrossRef] [Green Version]
- Yun, S.; Lund, P.D.; Hinsch, A. Stability assessment of alternative platinum free counter electrodes for dye-sensitized solar cells. Energy Environ. Sci. 2015, 8, 3495–3514. [Google Scholar] [CrossRef] [Green Version]
- Syrrokostas, G.; Siokou, A.; Leftheriotis, G.; Yianoulis, P. Degradation mechanisms of Pt counter electrodes for dye sensitized solar cells. Sol. Energy Mater. Sol. Cells 2012, 103, 119–127. [Google Scholar] [CrossRef]
Carbon Material | SBET [m2·g−1] | Vpore [cm3·g−1] | Vmicro [cm3·g−1] | Vmeso [cm3·g−1] | Øpore [nm] |
---|---|---|---|---|---|
CXG | 660 | 1.79 | 0.15 | 1.64 | 23 |
N-CXG | 497 | 1.35 | 0.14 | 1.21 | 19 |
S-CXG | 570 | 1.56 | 0.09 | 1.38 | 13 |
Material | C | N | S | H | C | N | S | O |
---|---|---|---|---|---|---|---|---|
Weight % (Elemental Analysis) | Atomic % (XPS) | |||||||
CXG | 95.3 | 0.2 | - | 0.7 | 96.7 | - | - | 3.3 |
N-CXG | 93.3 | 3.4 | - | 0.8 | 94.5 | 2.7 | - | 2.9 |
S-CXG | 91.8 | 0.2 | 4.2 | 0.6 | 94.3 | - | 2.5 | 3.1 |
Counter Electrode | η [%] | OCP [V] (a) | jsc [mA cm−2] (b) | FF [-] (c) | Rct [Ω cm2] (d) |
---|---|---|---|---|---|
CXG | 2.5 | 0.747 | 6.8 | 0.49 | 90 |
N-CXG | 3 | 0.781 | 6.1 | 0.63 | 12 |
S-CXG | 2.8 | 0.77 | 6.8 | 0.53 | 32 |
Pt | 3.6 | 0.749 | 8 | 0.6 | 10.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alegre, C.; Sebastián, D.; Lázaro, M.J.; Girolamo, M.; Aricò, A.S.; Baglio, V. Influence of Nitrogen and Sulfur Doping of Carbon Xerogels on the Performance and Stability of Counter Electrodes in Dye Sensitized Solar Cells. Catalysts 2022, 12, 264. https://doi.org/10.3390/catal12030264
Alegre C, Sebastián D, Lázaro MJ, Girolamo M, Aricò AS, Baglio V. Influence of Nitrogen and Sulfur Doping of Carbon Xerogels on the Performance and Stability of Counter Electrodes in Dye Sensitized Solar Cells. Catalysts. 2022; 12(3):264. https://doi.org/10.3390/catal12030264
Chicago/Turabian StyleAlegre, Cinthia, David Sebastián, María Jesús Lázaro, Mariarita Girolamo, Antonino Salvatore Aricò, and Vincenzo Baglio. 2022. "Influence of Nitrogen and Sulfur Doping of Carbon Xerogels on the Performance and Stability of Counter Electrodes in Dye Sensitized Solar Cells" Catalysts 12, no. 3: 264. https://doi.org/10.3390/catal12030264
APA StyleAlegre, C., Sebastián, D., Lázaro, M. J., Girolamo, M., Aricò, A. S., & Baglio, V. (2022). Influence of Nitrogen and Sulfur Doping of Carbon Xerogels on the Performance and Stability of Counter Electrodes in Dye Sensitized Solar Cells. Catalysts, 12(3), 264. https://doi.org/10.3390/catal12030264