Polyacrylonitrile Derived Robust and Flexible Poly(ionic liquid)s Nanofiber Membrane as Catalyst Supporter
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of PW-PIL NF Membrane
2.2. Photodegradation of Methyl Orange under Visible Light
3. Experimental
3.1. Materials and Methods
3.2. Synthesis of Imidazolin Group-Containing Polymers
3.3. Synthesis of Br-Based Poly(ionic liquid)s NF Membrane
3.4. Synthesis of PW12O403− Based Poly(ionic liquid)s NF Membrane
3.5. Preparation of PW-PIL NF Membranes
3.6. Photocatalytic Degradation of Methyl Orange (MO) and Recyclization
3.7. Characterization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bode-Aluko, C.A.; Pereao, O.; Ndayambaje, G.; Petrik, L. Adsorption of toxic metals on modified polyacrylonitrile nanofibers: A review. Water Air Soil Pollut. 2017, 228, 1–11. [Google Scholar] [CrossRef]
- Geller, B.E. Polyacrylonitrile fibres. Prospects for development of production. A review. Fiber Chem. 1997, 29, 341–345. [Google Scholar] [CrossRef]
- Geller, B.E. Status and prospects for development of polyacrylonitrile fiber production. A review. Fiber Chem. 2002, 34, 151–161. [Google Scholar] [CrossRef]
- Li, L.; Wang, X.-F.; Zhong, J.-J.; Qian, X.; Song, S.-L.; Zhang, Y.-G.; Li, D.-H. Nitrogen-Enriched Porous Polyacrylonitrile-Based Carbon Fibers for CO2 Capture. Ind. Eng. Chem. Res. 2018, 57, 11608–11616. [Google Scholar] [CrossRef]
- Morcali, M.H.; Zeytuncu, B. Investigation of adsorption parameters for platinum and palladium onto a modified polyacrylonitrile-based sorbent. Int. J. Miner. Process. 2015, 137, 52–58. [Google Scholar] [CrossRef]
- Li, Y.; Wang, H.; Lu, J.; Chu, A.; Zhang, L.; Ding, Z.; Xu, S.; Gu, Z.; Shi, G. Preparation of immobilized lipase by modified polyacrylonitrile hollow membrane using nitrile-click chemistry. Bioresour. Technol. 2018, 274, 9–17. [Google Scholar] [CrossRef]
- Lin, K.; Song, M.; Cai, D.; Hao, X.; Wu, Y. Polymer (fiber)-supported palladium catalyst containing imidazolinyl rings and its application to the Heck reaction. Tetrahedron Lett. 2003, 44, 3955–3957. [Google Scholar] [CrossRef]
- Almasian, A.; Jalali, M.; Fard, G.C.; Maleknia, L. Surfactant grafted PDA-PAN nanofiber: Optimization of synthesis, characterization and oil absorption property. Chem. Eng. J. 2017, 326, 1232–1241. [Google Scholar] [CrossRef]
- Miao, L.; Liu, G.; Wang, J. Ag-nanoparticle-bearing poly(vinylidene fluoride) nanofiber mats as Janus filters for catalysis and separation. ACS Appl. Mater. Interfaces 2019, 11, 7397–7404. [Google Scholar] [CrossRef]
- Lu, J.; Yan, F.; Texter, J. Advanced applications of ionic liquids in polymer science. Prog. Polym. Sci. 2009, 34, 431–448. [Google Scholar] [CrossRef]
- Baldez, E.E.; Robaina, N.F.; Cassella, R.J. Employment of polyurethane foam for the adsorption of Methylene Blue in aqueous medium. J. Hazard. Mater. 2008, 159, 580–586. [Google Scholar] [CrossRef]
- Hu, F.; Fang, C.; Wang, Z.; Liu, C.; Zhu, B.; Zhu, L. Poly(N-vinyl imidazole) gel composite porous membranes for rapid separation of dyes through permeating adsorption. Sep. Purif. Technol. 2017, 188, 1–10. [Google Scholar] [CrossRef]
- Esther, F.; Tibor, C.; Gyula, O. Removal of synthetic dyes from wastewaters: A review. Environ. Int. 2004, 30, 953–971. [Google Scholar]
- Yu, S.; Wang, X.; Ai, Y.; Liang, Y.; Ji, Y.; Li, J.; Hayat, T.; Alsaedi, A.; Wang, X. Spectroscopic and theoretical studies on the counterion effect of Cu(ii) ion and graphene oxide interaction with titanium dioxide. Environ. Sci. Nano 2016, 3, 1361–1368. [Google Scholar] [CrossRef]
- Yuan, Y.J.; Ye, Z.J.; Lu, H.W.; Hu, B.; Li, Y.H.; Chen, D.Q.; Zhong, J.S.; Yu, Z.T.; Zou, Z.G. Constructing anatase TiO2 nanosheets with exposed (001) facets/layered MoS2 two-dimensional nanojunctions for enhanced solar hydrogen generation. ACS Catal. 2016, 6, 532–541. [Google Scholar] [CrossRef]
- Molinari, R.; Lavorato, C.; Argurio, P.; Szyma´nski, K.; Darowna, D.; Mozia, S. Overview of Photocatalytic Membrane Reactors in Organic Synthesis, Energy Storage and Environmental Applications. Catalysts 2019, 9, 239. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Han, Z.; Li, J.; Zhao, J.; Zhao, X. Coordinative integration of copper (II) and iron (II) phthalocyanine into amidoximated PAN fiber for enhanced photocatalytic activity under visible light irradiation. J. Colloid Interface Sci. 2018, 533, 333–343. [Google Scholar] [CrossRef]
- Sun, W.; Li, X.; Shao, C.; Li, X.; Zhao, L.; Lu, N.; Liu, Y. Controllable preparation of three-dimensional porous WO3 with enhanced visible light photocatalytic activity via a freeze-drying method. J. Mater. Sci. Mater. Electron. 2018, 29, 9605–9612. [Google Scholar] [CrossRef]
- Li, X.; Yin, R.; Liu, Y.; Luo, Q.; An, J.; Wang, D.; Liu, S.; Dai, B. Enhanced visible light photocatalytic activity of zno nanoparticles modified by cyclized polyacrynitrile. Environ. Prog. Sustain. Energy 2018, 38, 336–344. [Google Scholar] [CrossRef]
- Keita, B.; Nadjo, L. Polyoxometalate-based homogeneous catalysis of electrode reactions: Recent achievements. J. Mol. Catal. A Chem. 2007, 262, 190–215. [Google Scholar] [CrossRef]
- Zhang, G.; Keita, B.; Biboum, R.N.; Miserque, F.; Berthet, P.; Dolbecq, A.; Mialane, P.; Catala, L.; Nadjo, L. Synthesis of various crystalline gold nanostructures in water: The polyoxometalate β-[H4PMo12O40]3− as the reducing and stabilizing agent. J. Mater. Chem. 2009, 19, 8639–8644. [Google Scholar] [CrossRef]
- Ji, X.; Zhang, Q.; Qu, X.; Wang, Q.; Song, X.-M.; Liang, F.; Yang, Z. Poly(ionic liquid) Janus nanosheets towards dye degradation. RSC Adv. 2015, 5, 21877–21880. [Google Scholar] [CrossRef]
- Tang, X.; Hou, Y.; Meng, Q.B.; Zhang, G.; Liang, F.; Song, X.M. Heteropoly acids-functionalized Janus particles as catalytic emulsifier for heterogeneous acylation in flow ionic liquid-in-oil Pickering emulsion. Colloids Surf. A. Physicochem. Eng. Asp. 2019, 570, 191–198. [Google Scholar] [CrossRef]
- Li, Q.; Guo, J.; Chen, Y.; Kim, H. Preparation and characterization of polyacrylonitrile doped PVDF/heteropoly acid composite membranes. High Perform. Polym. 2012, 24, 282–288. [Google Scholar] [CrossRef]
- Horovitz, I.; Avisar, D.; Baker, M.A.; Grilli, R.; Lozzi, L.; Di Camillo, D.; Mamane, H. Carbamazepine degradation using a N-doped TiO2 coated photocatalytic membrane reactor: Influence of physical parameters. J. Hazard. Mater. 2016, 310, 98–107. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.-Y.; Irawan, A.; Ku, Y. Photocatalytic degradation of Acid Red 4 using a titanium dioxide membrane supported on a porous ceramic tube. Water Res. 2008, 42, 4725–4732. [Google Scholar] [CrossRef]
- Dzinun, H.; Othman MH, D.; Ismail, A.F.; Puteh, M.H.; Rahman, M.A.; Jaafar, J. Stability study of PVDF/TiO2 dual layer hollow fibre membranes under long-term UV irradiation exposure. J. Water Process Eng. 2017, 15, 78–82. [Google Scholar] [CrossRef]
- Kim, J.H.; Joshi, M.K.; Lee, J.; Park, C.H.; Kim, C.S. Polydopamine-assisted immobilization of hierarchical zinc oxide nanostructures on electrospun nanofibrous membrane for photocatalysis and antimicrobial activity. J. Colloid Interface Sci. 2018, 513, 566–574. [Google Scholar] [CrossRef]
- Feng, J.; Xiong, S.; Wang, Y. Atomic layer deposition of hybrid metal oxides on carbon nanotube membranes for photodegradation of dyes. Compos. Commun. 2018, 12, 39–46. [Google Scholar] [CrossRef]
- De Filpo, G.; Pantuso, E.; Armentano, K.; Formoso, P.; Di Profio, G.; Poerio, T.; Fontananova, E.; Meringolo, C.; Mashin, A.I.; Nicoletta, F.P. Chemical Vapor Deposition of Photocatalyst Nanoparticles on PVDF Membranes for Advanced Oxidation Processes. Membranes 2018, 8, 35. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Yadav, V.; Purkait, M.K. Cu2O photocatalyst modified antifouling polysulfone mixed matrix membrane for ultrafiltration of protein and visible light driven photocatalytic pharmaceutical removal. Sep. Purif. Technol. 2018, 212, 191–204. [Google Scholar] [CrossRef]
- Rao, G.; Zhang, Q.; Zhao, H.; Chen, J.; Li, Y. Novel titanium dioxide/iron (III) oxide/graphene oxide photocatalytic membrane for enhanced humic acid removal from water. Chem. Eng. J. 2016, 302, 633–640. [Google Scholar] [CrossRef]
- Gao, B.; Chen, W.; Liu, J.; An, J.; Wang, L.; Zhu, Y.; Sillanpää, M. Continuous removal of tetracycline in a photocatalytic membrane reactor (PMR) with ZnIn2S4 as adsorption and photocatalytic coating layer on PVDF membrane. J. Photochem. Photobiol. A: Chem. 2018, 364, 732–739. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, L. Evaluation of the antifouling and photocatalytic properties of novel poly(vinylidene fluoride) membranes with a reduced graphene oxide-Bi2WO6 active layer. J. Appl. Polym. Sci. 2017, 134. [Google Scholar] [CrossRef]
- Yu, Z.; Min, X.; Li, F.; Yin, D.; Peng, Y.; Zeng, G. A mussel-inspired method to fabricate a novel reduced graphene oxide/Bi12O17Cl2 composites membrane for catalytic degradation and oil/water separation. Polym. Adv. Technol. 2018, 30, 101–109. [Google Scholar] [CrossRef] [Green Version]
- Baig, U.; Matin, A.; Gondal, M.; Zubair, S. Facile fabrication of superhydrophobic, superoleophilic photocatalytic membrane for efficient oil-water separation and removal of hazardous organic pollutants. J. Clean. Prod. 2018, 208, 904–915. [Google Scholar] [CrossRef]
- Alias, S.S.; Harun, Z.; Latif, I.S.A. Characterization and performance of porous photocatalytic ceramic membranes coated with TiO2 via different dip-coating routes. J. Mater. Sci. 2018, 53, 11534–11552. [Google Scholar] [CrossRef]
- Dong, P.; Huang, Z.; Nie, X.; Cheng, X.; Jin, Z.; Zhang, X. Plasma enhanced decoration of nc-TiO2 on electrospun PVDF fibers for photocatalytic application. Mater. Res. Bull. 2019, 111, 102–112. [Google Scholar] [CrossRef]
- Kovács, I.; Beszédes, S.; Kertész, S.; Veréb, G.; Hodúr, C.; Papp, I.Z.; Kukovecz, A.; László, Z. Investigation of Titanium-Dioxide Coatings on Membrane Filtration Properties. Studia Univ. Babes-Bolyai Chem. 2017, 62, 249–259. [Google Scholar] [CrossRef]
- Sampathkumar, R.; Sabesan, R.; Krishnan, S. Dipole moment studies of the structure of 2,6-diaryl-4-piperidones. J. Mol. Liq. 2006, 130, 2–6. [Google Scholar] [CrossRef]
- Zhang, Z.; Liao, Z.; Zhang, G. Degradation performance of a Keggin type Zn–Mo–Zr catalyst for acidic green B with ultrasonic waves. RSC Adv. 2015, 5, 63104–63110. [Google Scholar] [CrossRef]
- Wang, H.; Huang, X.; Li, W.; Gao, J.; Xue, H.; Li, R.K.; Mai, Y.-W. TiO2 nanoparticle decorated carbon nanofibers for removal of organic dyes. Colloids Surf. A Physicochem. Eng. Asp. 2018, 549, 205–211. [Google Scholar] [CrossRef]
- Cheng, H.; Huang, B.; Yang, K.; Wang, Z.; Qin, X.; Zhang, X.; Dai, Y. Facile Template-Free Synthesis of Bi2O2CO3 Hierarchical Microflowers and Their Associated Photocatalytic Activity. ChemPhysChem 2010, 11, 2167–2173. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Chu, S.; Guo, Y.; Luo, L.; Kong, F.; Wang, Y.; Zou, Z. Hyperbranched polymeric N-oxide: A novel kind of metal-free photocatalyst. Chem. Commun. 2012, 48, 3533–3535. [Google Scholar] [CrossRef]
- Huang, Y.; Yuan, Z.; Zhao, D.; Wang, F.; Zhang, K.; Li, Y.; Wen, Y.; Wang, C. Polymyxin B immobilized nanofiber sponge for endotoxin adsorption. Eur. Polym. J. 2018, 110, 69–75. [Google Scholar] [CrossRef]
- Luo, Q.; Yang, X.; Zhao, X.; Wang, D.; Yin, R.; Li, X.; An, J. Facile preparation of well-dispersed, Z.nO/cyclized polyacrylonitrile nanocomposites with highly enhanced visible-light photocatalytic activity. Appl. Catal. B Environ. 2017, 204, 304–315. [Google Scholar] [CrossRef]
- Xue, G.; Dai, Q.; Jiang, S. Chemical reactions of imidazole with metallic silver studied by the use of SERS and XPS techniques. J. Am. Chem. Soc. 1988, 110, 2393–2395. [Google Scholar] [CrossRef]
- Zhou, M.; Yu, J. Preparation and enhanced daylight-induced photocatalytic activity of C,N,S-tridoped titanium dioxide powders. J. Hazard. Mater. 2008, 152, 1229–1236. [Google Scholar] [CrossRef]
- Zhou, Q.; Li, L.; Zhang, X.; Yang, H.; Cheng, Y.; Che, H.; Wang, L.; Cao, Y. Construction of heterojunction and homojunction to improve the photocatalytic performance of ZnO quantum dots sensitization three-dimensional ordered hollow sphere ZrO2–TiO2 arrays. Int. J. Hydrogen Energy 2020, 45, 31812–31824. [Google Scholar] [CrossRef]
- Ndlwana, L.; Raleie, N.; Dimpe, M.; Ogutu, H.; Motsa, M.M.; Mamba, B.B. Sustainable Hydrothermal and Solvothermal, Synthetic Approaches for Advanced Carbon Materials in Multidimensional Applications: A Review. Preprints 2021. [Google Scholar] [CrossRef]
- Taghavi, M.; Ehrampoush, M.H.; Ghaneian, M.T.; Tabatabaee, M.; Fakhri, Y. Application of a Keggin-type heteropoly acid on supporting nanoparticles in photocatalytic degradation of organic pollutants in aqueous solutions. J. Clean. Prod. 2018, 197, 1447–1453. [Google Scholar] [CrossRef]
- Zhong, J.B. Photocatalytic decolorization of methyl orange solution with phosphotungstic acid. Iran. J. Chem. Chem. Eng. 2013, 32, 57–65. [Google Scholar]
- Maeda, K.; Teramura, K.; Saito, N.; Inoue, Y.; Kobayashi, H.; Domen, K. Overall water splitting using (oxy)nitride photocatalysts. Pure Appl. Chem. 2006, 78, 2267–2276. [Google Scholar] [CrossRef]
- Rauf, M.; Ashraf, S. Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chem. Eng. J. 2009, 151, 10–18. [Google Scholar] [CrossRef]
- Chen, G.; Sun, M.; Wei, Q.; Zhang, Y.; Zhu, B.; Du, B. Ag3PO4/graphene-oxide composite with remarkably enhanced visible-light-driven photocatalytic activity toward dyes in water. J. Hazard. Mater. 2013, 244, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Ge, H.; Tian, H.; Zhou, Y.; Wu, S.; Liu, D.; Fu, X.; Song, X.-M.; Shi, X.; Wang, X.; Li, N. Influence of Surface States on the Evaluation of the Flat Band Potential of TiO2. ACS Appl. Mater. Interfaces 2014, 6, 2401–2406. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Zhou, X.; Yuan, C.; Zhang, Y.; Tong, Q.; Li, Y.; Cui, L.; Liu, D.; Zhang, W. One-dimensional Fe2O3/TiO2 photoelectrode and investigation of its photoelectric properties in photoelectrochemical cell. Appl. Surf. Sci. 2017, 397, 112–118. [Google Scholar] [CrossRef]
- Mendes-Felipe, C.; Veloso-Fernández, A.; Vilas-Vilela, J.L.; Ruiz-Rubio, L. Hybrid Organic–Inorganic Membranes for Photocatalytic Water Remediation. Catalysts 2022, 12, 180. [Google Scholar] [CrossRef]
Photocatalytic Membrane | Membrane Preparation Method | Degradation Material | Cost | Recyclability | Visible Light | Reference |
---|---|---|---|---|---|---|
PW-PIL membrane | Free-standing photocatalytic membrane | MO wastewater degradation | Economic PAN | Insoluble Easy Flexibility | Response | |
Al2O3/TiO2 | Coated on the photocatalytic membrane | Carbamazepine degradation | Expensive TiO2, Al2O3 | Soluble Difficult Rigidity | No response | [25] |
Ceramic/TiO2 | Coated on the photocatalytic membrane | Acid Red 4 degradation | Expensive TiO2 | Soluble Difficult Rigidity | No response | [26] |
PVDF/TiO2 | Blended into the membrane matrix | Wastewater degradation | Expensive TiO2 | Insoluble Difficult Flexibility | No response | [27] |
PU/ZnO | Dip-coating on the membrane | MB degradation, antimicrobial activity | Expensive ZnO | Insoluble Difficult Flexibility | No response | [28] |
CNT/ZnO-TiO2 | Dip-coating on the membrane | MB degradation | Expensive TiO2, ZnO | Soluble Difficult Rigidity | No response | [29] |
PVDF/ZnO-TiO2 | Chemical vapor deposition on the membrane | MB degradation | Expensive TiO2, ZnO | Soluble Difficult Flexibility | No response | [30] |
PSF/Cu2O | Hydrothermal synthesis on the membrane | Removal of IBP | Expensive Cu2O | Insoluble Easy Flexibility | Response | [31] |
GO/Fe2O3-TiO2 | Dip-coating on the membrane | Humic Acid Removal from Water | Expensive TiO2, Fe2O3 | Soluble Difficult Rigidity | No response | [32] |
PVDF/ZnIn2S4 | Dip-coating on the membrane | Removal of tetracycline | Expensive ZnIn2S4 | Insoluble Easy Flexibility | Response | [33] |
RGO/Bi2WO6 | Dip-coating on the membrane | Removal of CIP | Expensive Bi2WO6 | Soluble Difficult Rigidity | Response | [34] |
RGO/PDA/Bi12O17Cl2 | Dip-coating on the membrane | Degradation MB and oil/water separation | Expensive Bi12O17Cl2 | Soluble Easy Rigidity | Response | [35] |
Steel/CeO2 | Dip-coating on the membrane | Removal of MB pollutants | Expensive CeO2 | Soluble Difficult Rigidity | No response | [36] |
Ceramic/TiO2 | Dip-coating on the membrane | Removal of HA | Expensive TiO2 | Soluble Difficult Rigidity | No response | [37] |
PVDF/TiO2 | Electrospinning and hydrothermal reaction | CO2 photoreduction | Expensive TiO2 | Soluble Easy Flexibility | No response | [38] |
PES/TiO2 | Physical deposition | Acid Red1 degradation | Expensive TiO2 | Soluble Difficult Rigidity | No response | [39] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Meng, Q.-B.; Wang, B.-X.; Zhang, Y.; Mao, H.; Fang, D.-W.; Song, X.-M. Polyacrylonitrile Derived Robust and Flexible Poly(ionic liquid)s Nanofiber Membrane as Catalyst Supporter. Catalysts 2022, 12, 266. https://doi.org/10.3390/catal12030266
Gao Y, Meng Q-B, Wang B-X, Zhang Y, Mao H, Fang D-W, Song X-M. Polyacrylonitrile Derived Robust and Flexible Poly(ionic liquid)s Nanofiber Membrane as Catalyst Supporter. Catalysts. 2022; 12(3):266. https://doi.org/10.3390/catal12030266
Chicago/Turabian StyleGao, Yue, Qing-Bo Meng, Bao-Xin Wang, Yu Zhang, Hui Mao, Da-Wei Fang, and Xi-Ming Song. 2022. "Polyacrylonitrile Derived Robust and Flexible Poly(ionic liquid)s Nanofiber Membrane as Catalyst Supporter" Catalysts 12, no. 3: 266. https://doi.org/10.3390/catal12030266
APA StyleGao, Y., Meng, Q. -B., Wang, B. -X., Zhang, Y., Mao, H., Fang, D. -W., & Song, X. -M. (2022). Polyacrylonitrile Derived Robust and Flexible Poly(ionic liquid)s Nanofiber Membrane as Catalyst Supporter. Catalysts, 12(3), 266. https://doi.org/10.3390/catal12030266