Low-Temperature SCR Catalyst Development and Industrial Applications in China
Abstract
:1. Introduction
2. Low-Temperature SCR Process
3. SCR Catalysts
3.1. V2O5-WO3(MoO3)/TiO2
3.2. MnO2-Based Catalysts
3.3. CeO2-Based Catalysts
3.4. MnO2-CeO2 Catalysts
3.5. Zeolite SCR Catalysts
4. Deactivation of Low Temperature SCR Catalyst
4.1. SO2 Poisoning
4.1.1. Reduction in SO2 Adsorption/Oxidation
4.1.2. Increasing the Adsorption of Active Intermediate Species with the Coexistence of Sulfate Species
4.1.3. Building Sacrificial Sites to Conserve Active Sites
4.1.4. Promoting the Decomposition of Sulfates
4.2. H2O Poisoning
4.2.1. Doping with Rare Earth Metal Elements or Transition Metal Elements
4.2.2. Doping or Modification of the Catalyst Surface with Hydrophobic Materials or Moieties
4.2.3. Regulating the Crystal Phase and Structure
4.3. Alkali Poisoning
4.3.1. Providing More Acidic Sites
4.3.2. Building Alkaline Capture Sites to Protect Active Sites
5. Industrial Applications of Low-Temperature SCR Catalysts in China
6. Concluding Remarks and Future Perspectives
- (1)
- The SO2 poisoning of the low-temperature SCR catalyst is still a vast problem in practice, especially in flue gas with high humidity.
- (2)
- NH3 slips from the deNOx system, releasing ammonium salts to the environment. The selective oxidation of the NH3 catalyst should be developed, which should be coupled with the SCR catalyst in practical applications.
- (3)
- In some industries, there may also be harmful elements, such as As, Hg, and Pd, in flue gas, which will affect the service life of the SCR catalysts, but also cause air pollution. Therefore, in the design of the catalyst and pollution control engineering, new technologies should be developed to solve the complex smoke pollution problems with, for example, the development of multi-functional SCR catalysts.
- (4)
- In flue gas, such as sintering, in addition to NOx, there is a relatively high concentration of CO. How to use the oxidation of CO to increase the temperature of the SCR catalyst bed or how to use CO as a reducing agent to treat NOx are also very important topics that need to be studied in the future.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, X.W.; Li, L.L.; Sun, J.F.; Wan, H.Q.; Tang, C.J.; Gao, F.; Dong, L. Analysis of NOx emission and control in China and research progress in denitration catalysts. Ind. Catal. 2019, 27, 1–23. [Google Scholar]
- Guo, K.; Ji, J.W.; Song, W.; Sun, J.F.; Tang, C.J.; Dong, L. Conquering ammonium bisulfate poison over low-temperature NH3-SCR catalysts: A critical review. Appl. Catal. B 2021, 297, 120388. [Google Scholar] [CrossRef]
- Devaiah, D.; Padmanabha, R.E.; Benjaram, M.R.; Panagiotis, G.S. A Review of Low Temperature NH3-SCR for Removal of NOx. Catalysts 2019, 9, 349. [Google Scholar]
- Marberger, A.; Ferri, D.; Elsener, M.; Kröcher, O. The Significance of Lewis Acid Sites for the Selective Catalytic Reduction of Nitric Oxide on Vanadium-Based Catalysts. Angew. Chem. Int. Ed. 2016, 55, 11989–11994. [Google Scholar] [CrossRef] [PubMed]
- Chao, J.D.; He, H.; Song, L.Y.; Fang, Y.J.; Liang, Q.M.; Zhang, G.Z.; Qiu, W.G.; Zhang, R. Promotional Effect of Pr-Doping on the NH3-SCR Activity over the V2O5-MoO3/TiO2 Catalyst. Chem. J. Chin. Univ. 2015, 36, 523–530. [Google Scholar]
- Liang, Q.M.; Li, J.; He, H.; Yue, T.; Tong, L. Effects of SO2 and H2O on low-temperature NO conversion over F-V2O5-WO3/TiO2 catalysts. J. Environ. Sci. 2020, 90, 253–261. [Google Scholar] [CrossRef]
- Wu, R.; Li, L.C.; Zhang, N.Q.; He, J.D.; Song, L.Y.; Zhang, G.Z.; Zhang, Z.L.; He, H. Enhancement of low-temperature NH3-SCR catalytic activity and H2O & SO2 resistance over commercial V2O5-MoO3/TiO2 catalyst by high shear-induced doping of expanded graphite. Catal. Today 2021, 376, 302–310. [Google Scholar]
- Zhang, D.J.; Ma, Z.R.; Wang, B.D.; Sun, Q.; Xu, W.Q.; Zhu, T. Effects of MOx (M=Mn, Cu, Sb, La) on V-Mo-Ce/Ti selective catalytic reduction catalysts. J. Rare. Earths. 2020, 38, 157–166. [Google Scholar] [CrossRef]
- Liang, Q.M.; Li, J.; Yue, T. Promotional effect of CeO2 on low-temperature selective catalytic reduction of NO by NH3 over V2O5-WO3/TiO2 catalysts. Environ. Technol. Inno. 2021, 21, 101209. [Google Scholar] [CrossRef]
- Gao, F.Y.; Tang, X.L.; Yi, H.H.; Zhao, S.Z.; Li, C.L.; Li, J.Y.; Shi, Y.R.; Meng, X.M. A Review on selective catalytic reduction of NOx by NH3 over Mn–based catalysts at low temperatures: Catalysts, mechanisms, kinetics and DFT calculations. Catalysts 2017, 7, 199. [Google Scholar] [CrossRef]
- Kijlstra, W.S.; Brands, D.S.; Smit, H.I.; Poels, E.K.; Bliek, A. Mechanism of the Selective Catalytic Reduction of NO with NH3 over MnOx/Al2O3. J. Catal. 1997, 171, 219–230. [Google Scholar] [CrossRef]
- Chen, Z.H.; Yang, Q.; Li, H.; Li, X.H.; Wang, L.F.; Chi Tsang, S. Cr-MnOx Mixed-Oxide Catalysts for Selective Catalytic Reduction of NOx with NH3 at Low Temperature. J. Catal. 2010, 276, 56–65. [Google Scholar] [CrossRef]
- Liu, Y.Z.; Guo, R.T.; Duan, C.P.; Wu, G.L.; Miao, Y.F.; Gu, J.W.; Pan, W.G. A highly effective urchin-like MnCrOx catalyst for the selective catalytic reduction of NOx with NH3. Fuel 2020, 271, 117667. [Google Scholar] [CrossRef]
- Gao, F.Y.; Tang, X.L.; Yi, H.H.; Zhao, S.Z.; Wang, J.G.; Shi, Y.R.; Meng, X.M. Novel Co-or Ni-Mn binary oxide catalysts with hydroxyl groups for NH3–SCR of NOx at low temperature. Appl. Surf. Sci. 2018, 443, 103–113. [Google Scholar] [CrossRef]
- Zhao, Q.; Chen, B.B.; Crocker, M.; Shi, C. Insights into the structure-activity relationships of highly efficient CoMn oxides for the low temperature NH3-SCR of NOx. Appl. Catal. B 2020, 277, 119215. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Guo, R.T.; Shi, X.; Liu, X.Y.; Qin, H.; Liu, Y.Z.; Duan, C.P.; Guo, D.Y.; Pan, W.G. The superior performance of CoMnOx catalyst with ball-flowerlike structure for low-temperature selective catalytic reduction of NOx by NH3. Chem. Eng. J. 2020, 381, 122753. [Google Scholar] [CrossRef]
- Sun, P.; Huang, S.X.; Guo, R.T.; Li, M.Y.; Liu, S.M.; Pan, W.G.; Fu, Z.G.; Liu, S.W.; Sun, X.; Liu, J. The enhanced SCR performance and SO2 resistance of Mn/TiO2 catalyst by the modification with Nb: A mechanistic study. Appl. Surf. Sci. 2018, 447, 479–488. [Google Scholar] [CrossRef]
- Liu, L.J.; Xu, K.; Su, S.; He, L.M.; Qing, M.X.; Chi, H.Y.; Liu, T.; Hu, S.; Wang, Y.; Xiang, J. Efficient Sm modified Mn/TiO2 catalysts for selective catalytic reduction of NO with NH3 at low temperature. Appl. Catal. A Gen. 2020, 592, 117413. [Google Scholar] [CrossRef]
- Xu, Q.; Fang, Z.L.; Chen, Y.Y.; Guo, Y.L.; Guo, Y.; Wang, L.; Wang, Y.S.; Zhang, J.S.; Zhan, W.C. Titania-Samarium-Manganese Composite Oxide for the Low Temperature Selective Catalytic Reduction of NO with NH3. Environ. Sci. Technol. 2020, 54, 2530–2538. [Google Scholar] [CrossRef] [PubMed]
- Gao, E.H.; Sun, G.J.; Zhang, W.; Bernards, M.T.; He, Y.; Pan, H.; Shi, Y. Surface lattice oxygen activation via Zr4+ Cations substituting on A2+ sites of MnCr2O4 forming ZrxMn1-xCr2O4 catalysts for enhanced NH3-SCR performance. Chem. Eng. J. 2020, 380, 122397. [Google Scholar] [CrossRef]
- Yu, J.; Guo, F.; Wang, Y.L.; Zhu, J.H.; Liu, Y.Y.; Su, F.B.; Gao, S.Q.; Xu, G.W. Sulfur poisoning resistant mesoporous Mn-base catalyst for low-temperature SCR of NO with NH3. Appl. Catal. B 2010, 95, 160–168. [Google Scholar] [CrossRef]
- Sun, X.L.; He, H.; Su, Y.C.; Yan, J.F.; Song, L.Y.; Qiu, W.G. CeO2-TiO2 Mixed Oxides Catalysts for Selective Catalytic Reduction of NOx with NH3: Structure-properties Relationships. Chem. J. Chin. Univ. 2017, 38, 814–822. [Google Scholar]
- Cheng, J.; Song, L.Y.; Wu, R.; Li, S.N.; Sun, Y.M.; Zhu, H.T.; Qiu, W.G.; He, H. Promoting effect of microwave irradiation on CeO2-TiO2 catalyst for selective catalytic reduction of NO by NH3. J. Rare. Earths. 2020, 38, 59–69. [Google Scholar] [CrossRef]
- Jiang, Y.; Xing, Z.M.; Wang, X.C.; Huang, S.B.; Wang, X.W.; Liu, Q.Y. Activity and characterization of a Ce–W–Ti oxide catalyst prepared by a single step sol–gel method for selective catalytic reduction of NO with NH3. Fuel 2015, 151, 124–129. [Google Scholar] [CrossRef]
- Li, X.; Li, J.H.; Peng, Y.; Chang, H.Z.; Zhang, T.; Zhao, S.; Si, W.Z.; Hao, J.M. Mechanism of Arsenic Poisoning on SCR Catalyst of CeW/Ti and its Novel Efficient Regeneration Method with Hydrogen. Appl. Catal. B 2016, 184, 246–257. [Google Scholar] [CrossRef]
- Liu, S.S.; Wang, H.; Wei, Y.; Zhang, R.D. Core-shell structure effect on CeO2 and TiO2 supported WO3 for the NH3- SCR process. Mol. Catal. 2020, 485, 110822. [Google Scholar] [CrossRef]
- Kim, G.J.; Lee, S.H.; Nam, K.B.; Hong, S.C. A study on the structure of tungsten by the addition of ceria: Effect of monomeric structure over W/Ce/TiO2 catalyst on the SCR reaction. Appl. Surf. Sci. 2020, 507, 145064. [Google Scholar] [CrossRef]
- Li, L.L.; Li, P.X.; Tan, W.; Ma, K.L.; Zou, W.X.; Tang, C.J.; Dong, L. Enhanced low-temperature NH3-SCR performance of CeTiOx catalyst via surface Mo modification. Chin. J. Catal. 2020, 41, 364–373. [Google Scholar] [CrossRef]
- Fan, J.; Ning, P.; Song, Z.X.; Liu, X.; Wang, L.Y.; Wang, J.; Wang, H.M.; Long, K.X.; Zhang, Q.L. Mechanistic Aspects of NH3-SCR Reaction over CeO2/TiO2-ZrO2-SO42− Catalyst: In Situ DRIFTS Investigation. Chem. Eng. J. 2018, 334, 855–863. [Google Scholar] [CrossRef]
- Kwon, D.W.; Nam, K.B.; Hong, S.C. The role of ceria on the activity and SO2 resistance of catalysts for the selective catalytic reduction of NOx by NH3. Appl. Catal. B 2015, 166–167, 37–44. [Google Scholar] [CrossRef]
- Leng, X.S.; Zhang, Z.P.; Li, Y.S.; Zhang, T.R.; Ma, S.B.; Yuan, F.L.; Niu, X.N.; Zhu, Y.J. Excellent low temperature NH3-SCR activity over MnaCe0.3TiOx (a = 0.1–0.3) oxides: Influence of Mn addition. Fuel Process. Technol. 2018, 181, 33–43. [Google Scholar] [CrossRef]
- Zhang, X.L.; Zhang, X.C.; Yang, X.J.; Chen, Y.Z.; Hu, X.R.; Wu, X.P. CeMn/TiO2 catalysts prepared by different methods for enhanced low-temperature NH3-SCR catalytic performance. Chem. Eng. Sci. 2021, 238, 116588. [Google Scholar] [CrossRef]
- Yang, C.; Yang, J.; Jiao, Q.R.; Zhao, D.; Zhang, Y.X.; Liu, L.; Hu, G.; Li, J.L. Promotion effect and mechanism of MnOx doped CeO2 nano-catalyst for NH3-SCR. Ceram. Int. 2020, 46, 4394–4401. [Google Scholar] [CrossRef]
- Yang, J.; Ren, S.; Zhang, T.S.; Su, Z.H.; Long, H.M.; Kong, M.; Yao, L. Iron doped effects on active sites formation over activated carbon supported Mn-Ce oxide catalysts for low-temperature SCR of NO. Chem. Eng. J. 2020, 379, 122398. [Google Scholar] [CrossRef]
- Zhu, K.M.; Yan, W.Q.; Liu, S.J.; Wu, X.D.; Cui, S.; Shen, X.D. One-step hydrothermal synthesis of MnOx-CeO2/reduced graphene oxide composite aerogels for low temperature selective catalytic reduction of NOx. Appl. Surf. Sci. 2020, 508, 145024. [Google Scholar] [CrossRef]
- Zhang, R.D.; Liu, N.; Lei, Z.G.; Chen, B.H. Selective Transformation of Various Nitrogen-Containing Exhaust Gases toward N2 over Zeolite Catalysts. Chem. Rev. 2016, 116, 3658–3721. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.R.; Wang, Y.L.; Walter, E.D.; Szanyi, J.; Wang, Y.; Gao, F. Influences of Na+ co-cation on the structure and performance of Cu/SSZ-13 selective catalytic reduction catalysts. Catal. Today 2020, 339, 233–240. [Google Scholar] [CrossRef]
- Li, R.; Wang, P.Q.; Ma, S.B.; Yuan, F.L.; Li, Z.B.; Zhu, Y.J. Excellent selective catalytic reduction of NOx by NH3 over Cu/SAPO-34 with hierarchical pore structure. Chem. Eng. J. 2020, 379, 122376. [Google Scholar] [CrossRef]
- Yue, Y.Y.; Liu, B.; Qin, P.; Lv, N.G.; Wang, T.H.; Bi, X.T.; Zhu, H.B.; Yuan, P.; Bai, Z.S.; Cui, Q.Y.; et al. One-pot synthesis of FeCu-SSZ-13 zeolite with superior performance in selective catalytic reduction of NO by NH3 from natural aluminosilicates. Chem. Eng. J. 2020, 398, 125515. [Google Scholar] [CrossRef]
- Zhang, M.Z.; Wang, J.; Zhang, Y.H.; Zhang, M.G.; Zhou, Y.F.; Phoutthavong, T.; Liang, P.; Zhang, H.W. Simultaneous removal of NO and Hg0 in flue gas over Co-Ce oxide modified rod-like MnO2 catalyst: Promoting effect of Co doping on activity and SO2 resistance. Fuel 2020, 276, 118018. [Google Scholar] [CrossRef]
- Hao, Z.F.; Jiao, Y.L.; Shi, Q.; Zhang, H.; Zhan, S.H. Improvement of NH3-SCR performance and SO2 resistance over Sn modified CeMoOx electrospun fibers at low temperature. Catal. Today 2019, 327, 37–46. [Google Scholar] [CrossRef]
- Xiong, S.C.; Peng, Y.; Wang, D.; Huang, N.; Zhang, Q.F.; Yang, S.J.; Chen, J.J.; Li, J.H. The role of the Cu dopant on a Mn3O4 spinel SCR catalyst: Improvement of low-temperature activity and sulfur resistance. Chem. Eng. J. 2020, 387, 124090. [Google Scholar] [CrossRef]
- Jiang, L.J.; Liu, Q.C.; Ran, G.J.; Kong, M.; Ren, S.; Yang, J.; Li, J. V2O5-modified Mn-Ce/AC catalyst with high SO2 tolerance for low-temperature NH3-SCR of NO. Chem. Eng. J. 2019, 370, 810–821. [Google Scholar] [CrossRef]
- Xie, A.J.; Tang, Y.R.; Huang, X.Y.; Jin, X.; Gu, P.F.; Luo, S.P.; Yao, C.; Li, X.Z. Three-dimensional nanoflower MnCrOx/Sepiolite catalyst with increased SO2 resistance for NH3-SCR at low temperature. Chem. Eng. J. 2019, 370, 897–905. [Google Scholar] [CrossRef]
- Wu, R.; Zhang, N.Q.; Liu, X.J.; Li, L.C.; Song, L.Y.; Qiu, W.G.; He, H. The Keggin Structure: An Important Factor in Governing NH3-SCR Activity Over the V2O5-MoO3/TiO2 Catalyst. Catal. Lett. 2018, 148, 1228–1235. [Google Scholar] [CrossRef]
- Wu, R.; Zhang, N.Q.; Li, L.C.; He, H.; Song, L.Y.; Qiu, W.G. DRIFT Study on Promotion Effect of the Keggin Structure over V2O5-MoO3/TiO2 Catalysts for Low Temperature NH3-SCR Reaction. Catalysts 2018, 8, 143. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.M.; Shen, B.X.; Zhu, S.W.; Wang, Z. Promotion of Fe and Co doped Mn-Ce/TiO2 catalysts for low temperature NH3-SCR with SO2 tolerance. Fuel 2019, 249, 54–60. [Google Scholar] [CrossRef]
- Wang, B.; Wang, M.X.; Han, L.N.; Hou, Y.Q.; Bao, W.R.; Zhang, C.M.; Feng, G.; Chang, L.P.; Huang, Z.G.; Wang, J.C. Improved Activity and SO2 Resistance by Sm modulated Redox of MnCeSmTiOx Mesoporous Amorphous Oxides for Low-Temperature NH3-SCR of NO. ACS Catal. 2020, 10, 9034–9045. [Google Scholar] [CrossRef]
- Hou, X.X.; Chen, H.P.; Liang, Y.H.; Wei, Y.L.; Li, Z.Q. La Modifed Fe-Mn/TiO2 Catalysts to Improve SO2 Resistance for NH3-SCR at Low-Temperature. Catal. Surv. Asia. 2020, 24, 291–299. [Google Scholar] [CrossRef]
- Zhu, H.T.; Song, L.Y.; He, H.; Yin, M.Q.; Cheng, J.; Sun, Y.M.; Li, S.N.; Qiu, W.G. Sulfur Tolerance of the CeTiOx Catalysts for Selective Catalytic Reduction of NO with NH3. Chem. J. Chin. Univ. 2019, 40, 350–357. [Google Scholar]
- Liu, Z.; Wang, M.M.; Liu, S.J.; Chen, Z.; Yang, L.Z.; Sun, K.A.; Chen, Y.J.; Zeng, L.Y.; Wang, W.H.; Zhao, J.C.; et al. Design of assembled composite of Mn3O4@Graphitic carbon porous nanodandelions: A catalyst for Low-temperature selective catalytic reduction of NOx with remarkable SO2 resistance. Appl. Catal. B 2020, 269, 118731. [Google Scholar] [CrossRef]
- Xu, Z.C.; Li, Y.R.; Guo, J.X.; Xiong, J.; Lin, Y.T.; Zhu, T.Y. An efficient and sulfur resistant K-modified activated carbon for SCR denitri-fication compared with acid- and Cu-modified activated carbon. Chem. Eng. J. 2020, 395, 125047. [Google Scholar] [CrossRef]
- Zhang, Y.P.; Li, G.B.; Wu, P.; Zhuang, K.; Shen, K.; Wang, S.; Huang, T.J. Effect of SO2 on the Low-Temperature Denitrification Performance of Ho-Modified Mn/Ti Catalyst. Chem. Eng. J. 2020, 400, 122597. [Google Scholar] [CrossRef]
- Yu, Y.X.; Tan, W.; An, D.Q.; Wang, X.W.; Liu, A.N.; Zou, W.X.; Tang, C.J.; Ge, C.Y.; Tong, Q.; Sun, J.F.; et al. Insight into the SO2 resistance mechanism on γ-Fe2O3 catalyst in NH3-SCR reaction: A collaborated experimental and DFT study. Appl. Catal. B. 2021, 281, 119544. [Google Scholar] [CrossRef]
- Ye, D.; Ren, X.Y.; Qu, R.Y.; Liu, S.J.; Zheng, C.H.; Gao, X. Designing SO2-resistant cerium-based catalyst by modifying with Fe2O3 for the selective catalytic reduction of NO with NH3. Mol. Catal. 2019, 462, 10–18. [Google Scholar] [CrossRef]
- Kang, L.; Han, L.P.; He, J.B.; Li, H.R.; Yan, T.T.; Chen, G.R.; Zhang, J.P.; Shi, L.Y.; Zhang, D.S. Improved NOx reduction in the presence of SO2 by using Fe2O3-promoted halloysite-supported CeO2-WO3 catalysts. Environ. Sci. Technol. 2019, 53, 938–945. [Google Scholar] [CrossRef]
- Chen, S.N.; Yan, Q.H.; Zhang, C.; Wang, Q. A novel highly active and sulfur resistant catalyst from Mn-Fe-Al layered double hydroxide for low temperature NH3-SCR. Catal. Today 2019, 327, 81–89. [Google Scholar] [CrossRef]
- Cao, L.; Wu, X.D.; Chen, Z.; Ma, Y.; Ma, Z.R.; Ran, R.; Si, Z.C.; Weng, D.; Wang, B.D. A comprehensive study on sulfur tolerance of niobia modified CeO2/WO3-TiO2 catalyst for low-temperature NH3-SCR. Appl. Catal. A Gen. 2019, 580, 121–130. [Google Scholar] [CrossRef]
- Wang, X.B.; Duan, R.B.; Liu, W.; Wang, D.W.; Wang, B.R.; Xu, Y.R.; Niu, C.H.; Shi, J.W. The insight into the role of CeO2 in improving low-temperature catalytic performance and SO2 tolerance of MnCoCeOx microflowers for the NH3-SCR of NOx. Appl. Surf. Sci. 2020, 510, 145517. [Google Scholar] [CrossRef]
- Cai, S.X.; Hu, H.; Li, H.R.; Shi, L.Y.; Zhang, D.S. Design of multi-shell Fe2O3@MnOx@CNTs for the selective catalytic reduction of NO with NH3: Improvement of catalytic activity and SO2 tolerance. Nanoscale 2016, 8, 3588–3598. [Google Scholar] [CrossRef]
- Shao, J.M.; Lin, F.W.; Huang, Y.K.; Wang, Z.H.; Li, Y.; Chen, G.Y.; Cen, K.F. MnOx fabrication with rational design of morphology for enhanced activity in NO oxidation and SO2 resistance. Appl. Surf. Sci. 2020, 503, 144064. [Google Scholar] [CrossRef]
- Fan, Z.Y.; Shi, J.W.; Niu, C.H.; Wang, B.R.; He, C.; Cheng, Y.H. The insight into the role of Al2O3 in promoting the SO2 tolerance of MnOx for low-temperature selective catalytic reduction of NOx with NH3. Chem. Eng. J. 2020, 398, 125572. [Google Scholar] [CrossRef]
- Song, L.Y.; Chao, J.D.; Fang, Y.J.; He, H.; Li, J.; Qiu, W.G.; Zhang, G.Z. Promotion of ceria for decomposition of ammonia bisulfate over V2O5-MoO3/TiO2 catalyst for selective catalytic reduction. Chem. Eng. J. 2016, 303, 275–281. [Google Scholar] [CrossRef]
- Ye, D.; Qu, R.Y.; Song, H.; Zheng, C.H.; Gao, X.; Luo, Z.Y.; Ni, M.J.; Cen, K.F. Investigation of the promotion effect of WO3 on the decomposition and reactivity of NH4HSO4 with NO on V2O5-WO3/TiO2 SCR catalysts. RSC Adv. 2016, 6, 55584–55592. [Google Scholar] [CrossRef]
- Ye, D.; Qu, R.Y.; Zheng, C.H.; Cen, K.F.; Gao, X. Mechanistic investigation of enhanced reactivity of NH4HSO4 and NO on Nb- and Sb-doped VW/Ti SCR catalysts. Appl. Catal. A Gen. 2018, 549, 310–319. [Google Scholar] [CrossRef]
- Guo, K.; Fan, G.F.; Gu, D.; Yu, S.H.; Ma, K.L.; Liu, A.N.; Tan, W.; Wang, J.M.; Du, X.Z.; Zou, W.X.; et al. Pore Size Expansion Accelerates Ammonium Bisulfate Decomposition for Improved Sulfur Resistance in Low Temperature NH3-SCR. ACS. Appl. Mater. Interfaces 2019, 11, 4900–4907. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.K.; Wachs, I.E. A perspective on the selective catalytic reduction (SCR) of NO with NH3 by supported V2O5-WO3/TiO2 catalysts. ACS. Catal. 2018, 8, 6537–6551. [Google Scholar] [CrossRef]
- Wang, H.J.; Huang, B.C.; Yu, C.L.; Lu, M.J.; Huang, H.; Zhou, Y.L. Research progress, challenges and perspectives on the sulfur and water resistance of catalysts for low temperature selective catalytic reduction of NOx by NH3. Appl. Catal. A Gen. 2019, 588, 117207. [Google Scholar] [CrossRef]
- Zhang, N.Q.; Li, L.C.; Guo, Y.Z.; He, J.D.; Wu, R.; Song, L.Y.; Zhang, G.Z.; Zhao, J.S.; Wang, D.S.; He, H. A MnO2-based catalyst with H2O resistance for NH3-SCR: Study of catalytic activity and reactants-H2O competitive adsorption. Appl. Catal. B 2020, 270, 118860. [Google Scholar] [CrossRef]
- Ma, S.B.; Tan, H.S.; Li, Y.S.; Wang, P.Q.; Zhao, C.; Niu, X.Y.; Zhu, Y.J. Excellent low-temperature NH3-SCR NO removal performance and enhanced H2O resistance by Ce addition over the Cu0.02Fe0.2CeyTi1-yOx(y = 0.1, 0.2, 0.3) catalysts. Chemosphere 2020, 243, 125309. [Google Scholar] [CrossRef]
- Guo, M.Y.; Zhao, P.P.; Liu, Q.L.; Liu, C.X.; Han, J.F.; Ji, N.; Song, C.F.; Ma, D.G.; Lu, X.B.; Liang, X.Y.; et al. Improved low-temperature activity and H2O resistance of Fe-doped Mn-Eu catalysts for NO removal by NH3-SCR. ChemCatChem 2019, 11, 4954–4965. [Google Scholar] [CrossRef]
- Zhang, N.Q.; Li, L.C.; Zhang, B.B.; Sun, Y.M.; Song, L.Y.; Wu, R.; He, H. Polytetrafluoroethylene modifying: A low cost and easy way to improve the H2O resistance ability over MnOx for low-temperature NH3-SCR. J. Environ. Chem. Eng. 2019, 7, 103044. [Google Scholar] [CrossRef]
- Wang, S.; Gao, Q.; Dong, X.Q.; Wang, Q.Y.; Niu, Y.; Chen, Y.F.; Jiang, H.X. Enhancing the Water Resistance of Mn-MOF-74 by Modification in Low Temperature NH3-SCR. Catalysts 2019, 9, 1004. [Google Scholar] [CrossRef] [Green Version]
- Hu, P.P.; Huang, Z.W.; Hua, W.M.; Gu, X.; Tang, X.F. Effect of H2O on catalytic performance of manganese oxides in NO reduction by NH3. Appl. Catal. A Gen. 2012, 437–438, 139–148. [Google Scholar] [CrossRef]
- Qiu, M.Y.; Zhan, S.H.; Yu, H.B.; Zhu, D.D.; Wang, S.Q. Facile preparation of ordered mesoporous MnCo2O4 for low-temperature selective catalytic reduction of NO with NH3. Nanoscale. 2015, 7, 2568–2577. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.L.; Hao, J.M.; Xu, W.G.; Li, J.H. Low temperature selective catalytic reduction of NOx with NH3 over amorphous MnOx catalysts prepared by three methods. Catal. Commun. 2007, 8, 329–334. [Google Scholar] [CrossRef]
- Li, J.H.; Peng, Y.; Chang, H.Z.; Li, X.; Crittenden, J.C.; Hao, J.M. Chemical poison and regeneration of SCR catalysts for NOx removal from stationary sources. Front. Environ. Sci. Eng. 2016, 10, 413–427. [Google Scholar] [CrossRef]
- Zhang, L.J.; Cui, S.P.; Guo, H.X.; Ma, X.Y.; Luo, X.G. The influence of K+ cation on the MnOx-CeO2/TiO2 catalysts for selective catalytic reduction of NOx with NH3 at low temperature. J. Mol. Catal. A Chem. 2014, 390, 14–21. [Google Scholar] [CrossRef]
- Li, H.R.; Miao, J.F.; Su, Q.F.; Yu, Y.K.; Chen, Y.T.; Chen, J.S.; Wang, J.X. Improvement in alkali metal resistance of commercial V2O5-WO3/TiO2 SCR catalysts modified by Ce and Cu. J. Mater. Sci. 2019, 54, 14707–14719. [Google Scholar] [CrossRef]
- Kang, K.K.; Yao, X.J.; Cao, J.; Li, Z.; Rong, J.; Luo, W.; Zhao, W.X.; Chen, Y. Enhancing the K resistance of CeTiOx catalyst in NH3-SCR reaction by CuO modification. J. Hazard. Mater. 2021, 402, 123551. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.Z.; Zi, Z.H.; Sun, Y.L.; Fang, Q.L.; Xu, J.C.; Song, W.Y.; Yu, H.L.; Liu, E.H. Enhancing low-temperature SCR de-NOx and alkali metal poisoning resistance of 3Mn10Fe/Ni catalyst by adding Co. Catal. Sci. Technol. 2019, 9, 3214–3225. [Google Scholar] [CrossRef]
- Nie, H.; Li, W.; Wu, Q.R.; Rac, V.; Raki´c, V.; Du, X.S. The Poisoning of V2O5-WO3/TiO2 and V2O5-Ce(SO4)2/TiO2 SCR Catalysts by KCl and The Partial Regeneration by SO2. Catalysts 2020, 10, 207. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.L.; Yan, L.J.; Gu, Y.D.; Kuboon, S.C.; Li, H.R.; Yan, T.T.; Shi, L.Y.; Zhang, D.S. Poisoning-Resistant NOx Reduction in the Presence of Alkaline and Heavy Metals over H-SAPO-34-Supported Ce-Promoted Cu-Based Catalysts. Environ. Sci. Technol. 2020, 54, 6396–6405. [Google Scholar] [CrossRef] [PubMed]
- Zha, K.W.; Feng, C.; Han, L.P.; Li, H.R.; Yan, T.Y.; Kuboon, S.C.; Shi, L.Y.; Zhang, D.S. Promotional effects of Fe on manganese oxide octahedral molecular sieves for alkali-resistant catalytic reduction of NOx: XAFS and in situ DRIFTs study. Chem. Eng. J. 2020, 381, 122764. [Google Scholar] [CrossRef]
- Wang, P.L.; Wang, H.Q.; Chen, X.B.; Liu, Y.; Weng, X.L.; Wu, Z.B. Novel SCR Catalyst with Superior Alkaline Resistance Performance: Enhanced Self-Protection Originated from Modifying Protonated Titanate Nanotubes. J. Mater. Chem. A 2015, 3, 680–690. [Google Scholar] [CrossRef]
- Yan, L.J.; Gu, Y.D.; Han, L.P.; Wang, P.L.; Li, H.R.; Yan, T.T.; Kuboon, S.C.; Shi, L.Y.; Zhang, D.S. Dual Promotional Effects of TiO2-Decorated Acid-Treated MnOx Octahedral Molecular Sieve Catalysts for Alkaline-Resistant Reduction of NOx. ACS Appl. Mater. Interfaces 2019, 11, 11507–11517. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.X.; Cong, Q.L.; Chen, L.; Shi, Y.; Shi, Y.; Li, S.J.; Li, W. The alkali resistance of CuNbTi catalyst for selective reduction of NO by NH3: A comparative investigation with VWTi catalyst. Appl. Catal. B 2019, 246, 166–179. [Google Scholar] [CrossRef]
- Ma, Y.L.; Gao, F.Y.; Jia, G.R.; Huang, S.P.; Zhao, S.Z.; Yi, H.H.; Tang, X.L. Overview on development, application and manufacturing technology of SCR catalysts for De-NOx. Mod. Chem. Ind. 2019, 39, 8. [Google Scholar]
- World’s First Coke Oven Flue Gas Desulphurisation and Denitrification Plant Settled in Baosteel’s Zhanjiang Iron and Steel Base. Available online: https://factory.mysteel.com/15/1117/11/A4BB04BBE2C2B939.html (accessed on 17 November 2015).
- Renfon Steel Sinter Flue Gas Low Temperature SCR Denitrification Project to Be Commissioned in August. Available online: https://factory.mysteel.com/18/0427/13/AD03519E2A6E95B7.html (accessed on 27 April 2018).
Catalysts | Reaction Condition | NO Conversion before and after Introducing SO2 | Reference |
---|---|---|---|
Sn/0.2-CeMoOx | T = 225 °C, [NH3] = [NO] = 500 ppm, [O2] = 5%, [SO2] = 200 ppm, GHSV = 100,000 h−1 | Decline from 99% to 91% | [41] |
(Cu1.0Mn2.0)1−δO4 | T = 200 °C, [NH3] = [NO] = 500 ppm, [O2] = 3%, [SO2] = 50 ppm, [H2O] = 5 vol%, GHSV = 100,000 h−1 | Maintained at ~87% | [42] |
Mn-Ce(0.4)-V/AC | T = 200 °C, [NH3] = [NO] = 500 ppm, [O2] = 5%, [SO2] = 100 ppm, [H2O] = 10 vol%, GHSV = 18,000 h−1 | Maintained at ~80% | [43] |
MnCrOx/Sepiolite | T = 220 °C, [NH3] = [NO] = 1000 ppm, [O2] = 5%, [SO2] = 200 ppm, GHSV = 35,000 h−1 | Decline from 87% to 85% | [44] |
V2O5-MoO3/TiO2 | T = 250 °C, [NH3] = [NO] = 1000 ppm, [O2] = 5%, [SO2] = 1000 ppm, [H2O] = 10 vol%, GHSV = 40,000 h−1 | Decline from 100% to 83% | [45] |
2Fe4Co-MCT | T = 200 °C, [NH3] = [NO] = 500 ppm, [O2] = 6%, [SO2] = 200 ppm, [H2O] = 10 vol%, GHSV = 12,000 h−1 | Decline from 98% to 90% | [47] |
MnCeSmTiOx | T = 200 °C, [NH3] = [NO] = 500 ppm, [O2] = 5%, [SO2] = 200 ppm, [H2O] = 5 vol%, GHSV = 80,000 h−1 | Maintained at ~70% | [48] |
Fe–Mn/TiO2(0.02La) | T = 200 °C, [NH3] = [NO] = 1000 ppm, [O2] = 7%, [SO2] = 100 ppm, GHSV = 30,000 h−1 | Maintained at ~99% | [49] |
CeTiOx | T = 300 °C, [NH3] = [NO] = 1000 ppm, [O2] = 6%, [SO2] = 175 ppm, [H2O] = 6 vol%, GHSV = 30,000 h−1 | Decline from 100% to 70% | [50] |
Mn3O4@G-A | T = 160 °C, [NH3] = 660 ppm, [NO] = 600 ppm, [O2] = 5%, [SO2] = 50 ppm, GHSV = 20,000 h−1 | Decline from 100% to 70% | [51] |
0.2HoMn/Ti | T = 180 °C, [NH3] = [NO] = 500 ppm, [O2] = 6%, [SO2] = 100 ppm, [H2O] = 10 vol%, GHSV = 20,000 h−1 | Decline from 100% to 80% | [53] |
CeO2-Fe2O3-Nb2O5 | T = 300 °C, [NH3] = [NO] = 667 ppm, [O2] = 5%, [SO2] = 200 ppm, GHSV = 120,000 mL·g−1·h−1 | Maintained at ~92% | [55] |
Fe(4)@CeW/H | T = 300 °C, [NH3] = [NO] = 500 ppm, [O2] = 5%, [SO2] = 100 ppm, [H2O] = 8 vol%, GHSV = 40,000 h−1 | Decline from 100% to 82% | [56] |
Mn1Fe0.25Al0.75Ox | T = 150 °C, [NH3] = [NO] = 500 ppm, [O2] = 5%, [SO2] = 50 ppm, GHSV = 60,000 h−1 | Maintained at ~80% | [57] |
NbCeWTi | T = 270 °C, [NH3] = [NO] = 500 ppm, [O2] = 5%, [SO2] = 200 ppm, [H2O] = 5 vol%, GHSV = 80,000 h−1 | Decline from 92% to 71% | [58] |
Fe@Mn@CNTs | T = 240 °C, [NH3] = [NO] = 550 ppm, [O2] = 5%, [SO2] = 100 ppm, [H2O] = 10 vol%, GHSV = 20,000 h−1 | Decline from 100% to 91% | [60] |
Catalyst | Company | Cooperative Unit | Temperature Window in Which It Is Run | Application Examples |
---|---|---|---|---|
“Fangxin” Vanadium-Titanium Catalyst | Advanced E-catal. Co., Ltd. | Beijing University of Technology | 160–400 °C | Zhanjiang Baosteel Group Co., Ltd. 7 M top mounted coking furnace-DeNOx |
Low-temperature honeycomb and foam type non-vanadium catalysts | Zhongneng Guoxin (Beijing) Technology Development Co. | Tsinghua University | 150–400 °C | Cement kiln low-temperature SCR denitrification |
Mn/FA-PG non-vanadium catalyst | Hefei Chenxi Environmental Protection Engineering Co. | Hefei University of Technology | 180–300 °C | Shandong Tiexiong Xinsha Energy Co. Coke oven flue gas |
MnOx-CoOx(CeOx)TiO2 Honeycomb/stacked bar catalysts | Shanghai Han Yu Environmental Materials Co. | Zhejiang University | 130–260 °C | Glass kiln and petrochemical field |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, H.; Song, L.; Li, K.; Wu, R.; Qiu, W.; He, H. Low-Temperature SCR Catalyst Development and Industrial Applications in China. Catalysts 2022, 12, 341. https://doi.org/10.3390/catal12030341
Zhu H, Song L, Li K, Wu R, Qiu W, He H. Low-Temperature SCR Catalyst Development and Industrial Applications in China. Catalysts. 2022; 12(3):341. https://doi.org/10.3390/catal12030341
Chicago/Turabian StyleZhu, Hongtai, Liyun Song, Kai Li, Rui Wu, Wenge Qiu, and Hong He. 2022. "Low-Temperature SCR Catalyst Development and Industrial Applications in China" Catalysts 12, no. 3: 341. https://doi.org/10.3390/catal12030341
APA StyleZhu, H., Song, L., Li, K., Wu, R., Qiu, W., & He, H. (2022). Low-Temperature SCR Catalyst Development and Industrial Applications in China. Catalysts, 12(3), 341. https://doi.org/10.3390/catal12030341