Preparation and Properties of Magnesium Cement-Based Photocatalytic Materials
Abstract
:1. Introduction
2. Results and Discussion
2.1. Material Characterization
2.2. Photocatalytic Performance
2.3. Photocatalytic Durability
3. Materials and Methods
3.1. Materials
3.2. Synthesis and Characterization
3.2.1. Preparation of Magnesia Cement-Based Photocatalytic Materials
3.2.2. Preparation of Magnesia Cement-Based Photocatalytic Functional Coating
3.3. Characterization
3.4. Photocatalytic Performance Test
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Klepeis, N.E.; Nelson, W.C.; Ott, W.R.; Robinson, J.P.; Tsang, A.M.; Switzer, P.; Behar, J.V.; Hern, S.C.; Engelmann, W.H. The National Human Activity Pattern Survey (NHAPS): A Resource for Assessing Exposure to Environmental Pollutants. J. Expo. Sci. Environ. Epidemiol. 2001, 11, 231–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, B.F.; Hu, Z.B.; Liu, M.; Yang, H.L.; Kong, Q.X.; Liu, Y.H. Review of Research on Air-Conditioning Systems and Indoor Air Quality Control for Human Health. Int. J. Refrig. 2009, 32, 3–20. [Google Scholar] [CrossRef]
- Yin, T.; Meng, X.; Wang, S.; Yao, X.; Liu, N.; Shi, L. Study on the Adsorption of Low-Concentration VOCs on Zeolite Composites Based on Chemisorption of Metal-Oxides under Dry and Wet Conditions. Sep. Purif. Technol. 2022, 280, 119634. [Google Scholar] [CrossRef]
- Li, Z.; Jin, Y.; Chen, T.; Tang, F.; Cai, J.; Ma, J. Trimethylchlorosilane Modified Activated Carbon for the Adsorption of VOCs at High Humidity. Sep. Purif. Technol. 2021, 272, 118659. [Google Scholar] [CrossRef]
- Zhu, L.; Shen, D.; Luo, K.H. A Critical Review on VOCs Adsorption by Different Porous Materials: Species, Mechanisms and Modification Methods. J. Hazard. Mater. 2020, 389, 122102. [Google Scholar] [CrossRef]
- Li, X.; Zhang, L.; Yang, Z.; Wang, P.; Yan, Y.; Ran, J. Adsorption Materials for Volatile Organic Compounds (VOCs) and the Key Factors for VOCs Adsorption Process: A Review. Sep. Purif. Technol. 2020, 235, 116213. [Google Scholar] [CrossRef]
- Shao, Y.; Wang, Y.; Yi, F.; Zhang, Y.; Liu, W.; Yang, C.; Meng, H.; Cui, P.; Zhong, W. Gaseous Formaldehyde Degrading by Methylobacterium Sp. XJLW. Appl. Biochem. Biotechnol. 2019, 189, 262–272. [Google Scholar] [CrossRef]
- Wantz, E.; Kane, A.; Lhuissier, M.; Amrane, A.; Audic, J.-L.; Couvert, A. A Mathematical Model for VOCs Removal in a Treatment Process Coupling Absorption and Biodegradation. Chem. Eng. J. 2021, 423, 130106. [Google Scholar] [CrossRef]
- Abdullah, H.I.; Al-Amiery, A.A.; Al-Baghdadi, S.B. The Using of Nanomaterials as Catalysts for Photodegradations. J. Phys. Conf. Ser. 2021, 1853, 012052. [Google Scholar] [CrossRef]
- Mengjie, W.; Kun, L. Application of and Research on TiO2 Photocatalysis Technology. E3S Web Conf. 2020, 165, 05001. [Google Scholar] [CrossRef]
- Si, H.; Fang, Y.; Yang, L. Application of Supported TiO2 in Carbonated Binding Material and Its Photocatalytic Performance. Catalysts 2020, 10, 1336. [Google Scholar] [CrossRef]
- Yang, L.; Hakki, A.; Wang, F.; Macphee, D.E. Photocatalyst Efficiencies in Concrete Technology: The Effect of Photocatalyst Placement. Appl. Catal. B Environ. 2018, 222, 200–208. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Hakki, A.; Wang, F.; Macphee, D.E. Different Roles of Water in Photocatalytic DeNOx Mechanisms on TiO2: Basis for Engineering Nitrate Selectivity? ACS Appl. Mater. Interfaces 2017, 9, 17034–17041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadeghfar, F.; Zalipour, Z.; Taghizadeh, M.; Taghizadeh, A.; Ghaedi, M. Photodegradation Processes. In Interface Science and Technology; Elsevier: Amsterdam, The Netherlands, 2021; Volume 32, pp. 55–124. ISBN 978-0-12-818806-4. [Google Scholar]
- Guarino, M.; Costa, A.; Porro, M. Photocatalytic TiO2 Coating—To Reduce Ammonia and Greenhouse Gases Concentration and Emission from Animal Husbandries. Bioresour. Technol. 2008, 99, 2650–2658. [Google Scholar] [CrossRef]
- Chen, J.; Poon, C. Photocatalytic Construction and Building Materials: From Fundamentals to Applications. Build. Environ. 2009, 44, 1899–1906. [Google Scholar] [CrossRef]
- Cassar, L. Photocatalysis of Cementitious Materials: Clean Buildings and Clean Air. MRS Bull. 2004, 29, 328–331. [Google Scholar] [CrossRef]
- Macphee, D.E.; Folli, A. Photocatalytic Concretes—The Interface between Photocatalysis and Cement Chemistry. Cem. Concr. Res. 2016, 85, 48–54. [Google Scholar] [CrossRef]
- Bloh, J.Z.; Folli, A.; Macphee, D.E. Photocatalytic NOx Abatement: Why the Selectivity Matters. RSC Adv. 2014, 4, 45726–45734. [Google Scholar] [CrossRef]
- Zhao, D.; Wang, F.; Liu, P.; Yang, L.; Hu, S.; Zhang, W. Preparation, Physicochemical Properties, and Long-Term Performance of Photocatalytic Ceramsite Sand in Cementitious Materials. Appl. Sci. 2017, 7, 828. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Haneda, H.; Hishita, S.; Ohashi, N. Visible-Light-Driven N–F–Codoped TiO2 Photocatalysts. 1. Synthesis by Spray Pyrolysis and Surface Characterization. Chem. Mater. 2005, 17, 2588–2595. [Google Scholar] [CrossRef]
- Barba-Nieto, I.; Caudillo-Flores, U.; Fernández-García, M.; Kubacka, A. Sunlight-Operated TiO2-Based Photocatalysts. Molecules 2020, 25, 4008. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Zhang, Y.; Soe, K.; Hutchison, W.D.; Timmers, H.; Poblete, M.R. Effect of Fly Ash on Mechanical Properties of Magnesium Oxychloride Cement under Water Attack. Struct. Concr. 2020, 21, 1181–1199. [Google Scholar] [CrossRef]
- McEvoy, J.G.; Cui, W.Q.; Zhang, Z.S. Synthesis and Characterization of Ag/AgCl–Activated Carbon Composites for Enhanced Visible Light Photocatalysis. Appl. Catal. B Environ. 2014, 144, 702–712. [Google Scholar] [CrossRef]
- Yang, L.; Wang, F.; Shu, C.; Liu, P.; Zhang, W.; Hu, S. An In-Situ Synthesis of Ag/AgCl/TiO2/Hierarchical Porous Magnesian Material and Its Photocatalytic Performance. Sci. Rep. 2016, 6, 21617. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Gao, Y.; Wang, F.; Liu, P.; Hu, S. Enhanced Photocatalytic Performance of Cementitious Material with TiO2@Ag Modified Fly Ash Micro-Aggregates. Chin. J. Catal. 2017, 38, 357–364. [Google Scholar] [CrossRef]
- Yamashita, H.; Kawasaki, S.; Ichihashi, Y.; Harada, M.; Takeuchi, M.; Anpo, M.; Stewart, G.; Fox, M.A.; Louis, C.; Che, M. Characterization of Titanium–Silicon Binary Oxide Catalysts Prepared by the Sol–Gel Method and Their Photocatalytic Reactivity for the Liquid-Phase Oxidation of 1-Octanol. J. Phys. Chem. B 1998, 102, 5870–5875. [Google Scholar] [CrossRef]
- Xu, X.; Wu, C.; Guo, A.; Qin, B.; Sun, Y.; Zhao, C.; Zhang, F.; Cai, A. Visible-Light Photocatalysis of Organic Contaminants and Disinfection Using Biomimetic-Synthesized TiO2-Ag-AgCl Composite. Appl. Surf. Sci. 2022, 588, 152886. [Google Scholar] [CrossRef]
- Wu, Z.; Liu, M.; Wang, Y.; Lin, Z. Study of In Situ Formation of Magnesium Hydroxide Whisker via Basic Magnesium Chloride Whisker Regulated by Organic Parcels at Low Temperature. Chin. J. Struct. Chem. 2014, 33, 881–887. [Google Scholar] [CrossRef]
Element | Spot 1 | Spot 2 | Spot 3 | Spot 4 | Spot 5 | Spot 6 |
---|---|---|---|---|---|---|
O | 54.76 | 61.76 | 54.03 | 59.56 | 59.27 | 62.53 |
Mg | 18.27 | 27.96 | 18.05 | 28.81 | 28.31 | 26.97 |
Al | 0.73 | 0.64 | 0.52 | 0.63 | 0.50 | 0.63 |
Si | 18.24 | 0.93 | 18.08 | 0.88 | 0.87 | 0.84 |
Cl | 5.01 | 7.35 | 7.91 | 8.06 | 8.68 | 6.84 |
Ca | 1.99 | 0.52 | 0.37 | 0.42 | 0.61 | 0.36 |
Ti | 1.00 | 1.63 | 1.04 | 1.68 | 1.76 | 1.83 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, Y.; Shu, C.; Yang, L.; Xue, C.; Luo, P.; Xu, X. Preparation and Properties of Magnesium Cement-Based Photocatalytic Materials. Catalysts 2022, 12, 420. https://doi.org/10.3390/catal12040420
Fang Y, Shu C, Yang L, Xue C, Luo P, Xu X. Preparation and Properties of Magnesium Cement-Based Photocatalytic Materials. Catalysts. 2022; 12(4):420. https://doi.org/10.3390/catal12040420
Chicago/Turabian StyleFang, Yongle, Chang Shu, Lu Yang, Cheng Xue, Ping Luo, and Xingang Xu. 2022. "Preparation and Properties of Magnesium Cement-Based Photocatalytic Materials" Catalysts 12, no. 4: 420. https://doi.org/10.3390/catal12040420
APA StyleFang, Y., Shu, C., Yang, L., Xue, C., Luo, P., & Xu, X. (2022). Preparation and Properties of Magnesium Cement-Based Photocatalytic Materials. Catalysts, 12(4), 420. https://doi.org/10.3390/catal12040420