Synthesis, Structure, and Photocatalytic Activity of TiO2-Montmorillonite Composites
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural, Morphological, and Chemical Bonds
2.2. Photocatalytic Activity and Dye Degradation
2.3. N2 Adsorption–Desorption Isotherms, Light Absorption, and Behavior of Photogenerated Charge Carriers
2.4. Mechanism of Photocatalytic
3. Materials and Methods
3.1. Materials
3.2. Preparation of TiO2
3.3. Preparation of TiO2-MMT Composites
3.4. Characterization
3.5. Photocatalytic Performance Evaluation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Changotra, R.; Rajput, H.; Guin, J.P.; Varshney, L.; Dhir, A. Hybrid coagulation, gamma irradiation and biological treatment of real pharmaceutical wastewater. Chem. Eng. J. 2019, 370, 595–605. [Google Scholar] [CrossRef]
- Feng, Z.; Chen, H.; Li, H.; Yuan, R.; Wang, F.; Chen, Z.; Zhou, B. Preparation, characterization, and application of magnetic activated carbon for treatment of biologically treated papermaking wastewater. Sci. Total Environ. 2020, 713, 136423. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.K. Suhas Application of low-cost adsorbents for dye removal—A review. J. Environ. Manag. 2009, 90, 2313–2342. [Google Scholar] [CrossRef] [PubMed]
- Katheresan, V.; Kansedo, J.; Lau, S.Y. Efficiency of various recent wastewater dye removal methods: A review. J. Environ. Chem. Eng. 2018, 6, 4676–4697. [Google Scholar] [CrossRef]
- Tavangar, T.; Karimi, M.; Rezakazemi, M.; Reddy, K.R.; Aminabhavi, T.M. Textile waste, dyes/inorganic salts separation of cerium oxide-loaded loose nanofiltration polyethersulfone membranes. Chem. Eng. J. 2020, 385, 123787. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, D.; Xiang, C.; Zhang, F.; Liu, L.; Zhou, X.; Zhang, H. Facile Synthesis of Boron Organic Polymers for Efficient Removal and Separation of Methylene Blue, Rhodamine B, and Rhodamine 6G. ACS Sustain. Chem. Eng. 2018, 6, 16777–16787. [Google Scholar] [CrossRef]
- Zhao, R.; Wang, Y.; Li, X.; Sun, B.; Wang, C. Synthesis of beta-Cyclodextrin-Based Electrospun Nanofiber Membranes for Highly Efficient Adsorption and Separation of Methylene Blue. ACS Appl. Mater. Interfaces 2015, 7, 26649–26657. [Google Scholar] [CrossRef]
- Yan, H.; Yang, H.; Li, A.; Cheng, R. pH-tunable surface charge of chitosan/graphene oxide composite adsorbent for efficient removal of multiple pollutants from water. Chem. Eng. J. 2016, 284, 1397–1405. [Google Scholar] [CrossRef]
- Kyzas, G.; Deliyanni, E.A.; Lazaridis, N.K. Magnetic modification of microporous carbon for dye adsorption. J. Colloid Interface Sci. 2014, 430, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.; Sun, H.; Peng, T.; Lv, X. Comparison of the Phase Transition and Degradation of Methylene Blue of TiO2, TiO2/Montmorillonite Mixture and TiO2/Montmorillonite Composite. Front. Chem. 2019, 7, 538. [Google Scholar] [CrossRef] [Green Version]
- An, M.; Li, L.; Wu, Q.; Yu, H.; Gao, X.; Zu, W.; Guan, J.; Yu, Y. CdS QDs modified three-dimensional ordered hollow spherical ZnTiO3-ZnO-TiO2 composite with improved photocatalytic performance. J. Alloys Compd. 2022, 895, 162638. [Google Scholar] [CrossRef]
- Yang, M.; Pu, Y.; Wang, W.; Li, J.; Guo, X.; Shi, R.; Shi, Y. Highly efficient Ag2O/AgNbO3 p-n heterojunction photocatalysts with enhanced visible-light responsive activity. J. Alloys Compd. 2019, 811, 151831. [Google Scholar] [CrossRef]
- Thuc, C.-N.H.; Grillet, A.-C.; Reinert, L.; Ohashi, F.; Thuc, H.H.; Duclaux, L. Separation and purification of montmorillonite and polyethylene oxide modified montmorillonite from Vietnamese bentonites. Appl. Clay Sci. 2010, 49, 229–238. [Google Scholar] [CrossRef]
- Rasouli, F.; Aber, S.; Salari, D.; Khataee, A.R. Optimized removal of Reactive Navy Blue SP-BR by organo-montmorillonite based adsorbents through central composite design. Appl. Clay Sci. 2014, 87, 228–234. [Google Scholar] [CrossRef]
- Butman, M.F.; Gushchin, A.A.; Ovchinnikov, N.L.; Gusev, G.I.; Zinenko, N.V.; Karamysheva, S.P.; Krämer, K.W. Synergistic Effect of Dielectric Barrier Discharge Plasma and TiO2-Pillared Montmorillonite on the Degradation of Rhodamine B in an Aqueous Solution. Catalysts 2020, 10, 359. [Google Scholar] [CrossRef] [Green Version]
- Hassani, A.; Khataee, A.; Karaca, S.; Fathinia, M. Heterogeneous photocatalytic ozonation of ciprofloxacin using synthesized titanium dioxide nanoparticles on a montmorillonite support: Parametric studies, mechanistic analysis and intermediates identification. RSC Adv. 2016, 6, 87569–87583. [Google Scholar] [CrossRef]
- Kameshima, Y.; Tamura, Y.; Nakajima, A.; Okada, K. Preparation and properties of TiO2/montmorillonite composites. Appl. Clay Sci. 2009, 45, 20–23. [Google Scholar] [CrossRef]
- Zhang, G.K.; Ding, X.M.; He, F.S.; Yu, X.Y.; Zhou, J.; Hu, Y.J.; Xie, J.W. Low-Temperature Synthesis and Photocatalytic Activity of TiO2 Pillared Montmorillonite. Langmuir 2008, 24, 1026–1030. [Google Scholar] [CrossRef] [PubMed]
- Tao, E.; Xiao, X.; Yang, S. A new synthesizing method of TiO2 with montmorillonite: Effective photoelectron transfer to degrade Rhodamine B. Sep. Purif. Technol. 2021, 258, 118070. [Google Scholar] [CrossRef]
- Hsing, J.; Kameshima, Y.; Nishimoto, S.; Miyake, M. Preparation of carbon-modified N–TiO2/montmorillonite composite with high photocatalytic activity under visible light radiation. J. Ceram. Soc. Jpn. 2018, 126, 230–235. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.E.; Khan, M.M.; Min, B.-K.; Cho, M.H. Microbial fuel cell assisted band gap narrowed TiO2 for visible light-induced photocatalytic activities and power generation. Sci. Rep. 2018, 8, 1723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ide, Y.; Torii, M.; Sano, T. Layered Silicate as an Excellent Partner of a TiO2 Photocatalyst for Efficient and Selective Green Fine-Chemical Synthesis. J. Am. Chem. Soc. 2013, 135, 11784–11786. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Bai, H.; Tan, X.; Lian, J. IR and XPS investigation of visible-light photocatalysis—Nitrogen–carbon-doped TiO2 film. Appl. Surf. Sci. 2006, 253, 1988–1994. [Google Scholar] [CrossRef]
- Xiong, F.; Yin, L.-L.; Li, F.; Wu, Z.; Wang, Z.; Sun, G.; Xu, H.; Chai, P.; Gong, X.-Q.; Huang, W. Anatase TiO2(001)-(1 × 4) Surface Is Intrinsically More Photocatalytically Active than the Rutile TiO2(110)-(1 × 1) Surface. J. Phys. Chem. C 2019, 123, 24558–24565. [Google Scholar] [CrossRef]
- Doustkhah, E.; Assadi, M.H.N.; Komaguchi, K.; Tsunoji, N.; Esmat, M.; Fukata, N.; Tomita, O.; Abe, R.; Ohtani, B.; Ide, Y. In situ Blue titania via band shape engineering for exceptional solar H2 production in rutile TiO2. Appl. Catal. B Environ. 2021, 297, 120380. [Google Scholar] [CrossRef]
- Pellegrino, F.; Pellutiè, L.; Sordello, F.; Minero, C.; Ortel, E.; Hodoroaba, V.-D.; Maurino, V. Influence of agglomeration and aggregation on the photocatalytic activity of TiO2 nanoparticles. Appl. Catal. B Environ. 2017, 216, 80–87. [Google Scholar] [CrossRef]
- Kang, S.-Z.; Wu, T.; Li, X.; Mu, J. Effect of montmorillonite on the photocatalytic activity of TiO2 nanoparticles. Desalination 2010, 262, 147–151. [Google Scholar] [CrossRef]
- Dao, T.B.T.; Ha, T.T.L.; Nguyen, T.D.; Le, H.N.; Ha-Thuc, C.N.; Nguyen, T.M.L.; Perre, P.; Nguyen, D.M. Effectiveness of photocatalysis of MMT-supported TiO2 and TiO2 nanotubes for rhodamine B degradation. Chemosphere 2021, 280, 130802. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Liu, S.; Su, K.; Jia, K. Facile synthesis of Ti3+ self-doped and sulfur-doped TiO2 nanotube arrays with enhanced visible-light photoelectrochemical performance. J. Alloys Compd. 2019, 804, 10–17. [Google Scholar] [CrossRef]
- Chen, Q.; Lu, P.; Hao, Y.; Zhang, M. Morphology, structure and properties of Bi2S3 nanocrystals: Role of mixed valence effects of cobalt. J. Mater. Sci. Mater. Electron. 2021, 32, 24459–24483. [Google Scholar] [CrossRef]
- Sheydaei, M.; Aber, S. Preparation of Nano-Lepidocrocite and an Investigation of Its Ability to Remove a Metal Complex Dye. Clean Soil Air Water 2013, 41, 890–898. [Google Scholar] [CrossRef]
- Khataee, A.; Sheydaei, M.; Hassani, A.; Taseidifar, M.; Karaca, S. Sonocatalytic removal of an organic dye using TiO2/Montmorillonite nanocomposite. Ultrason. Sonochem. 2015, 22, 404–411. [Google Scholar] [CrossRef]
- Miao, S.; Liu, Z.; Han, B.; Zhang, J.; Yu, X.; Du, J.; Sun, Z. Synthesis and characterization of TiO2-montmorillonite nanocomposites and their application for removal of methylene blue. J. Mater. Chem. 2006, 16, 579–584. [Google Scholar] [CrossRef]
- Mishra, A.; Sharma, M.; Mehta, A.; Basu, S. Microwave Treated Bentonite Clay Based TiO2 Composites: An Efficient Photocatalyst for Rapid Degradation of Methylene Blue. J. Nanosci. Nanotechnol. 2017, 17, 1149–1155. [Google Scholar] [CrossRef]
- Pang, Y.L.; Abdullah, A.Z. Effect of carbon and nitrogen co-doping on characteristics and sonocatalytic activity of TiO2 nanotubes catalyst for degradation of Rhodamine B in water. Chem. Eng. J. 2013, 214, 129–138. [Google Scholar] [CrossRef]
- Liu, J.; Li, X.; Zuo, S.; Yu, Y. Preparation and photocatalytic activity of silver and TiO2 nanoparticles/montmorillonite composites. Appl. Clay Sci. 2007, 37, 275–280. [Google Scholar] [CrossRef]
- Hu, S.; Wang, A.; Li, X.; Löwe, H. Hydrothermal synthesis of well-dispersed ultrafine N-doped TiO2 nanoparticles with enhanced photocatalytic activity under visible light. J. Phys. Chem. Solids 2010, 71, 156–162. [Google Scholar] [CrossRef]
- Yuan, W.; Yuan, P.; Liu, D.; Yu, W.; Laipan, M.; Deng, L.; Chen, F. In Situ hydrothermal synthesis of a novel hierarchically porous TS-1/modified-diatomite composite for methylene blue (MB) removal by the synergistic effect of adsorption and photocatalysis. J. Colloid Interface Sci. 2016, 462, 191–199. [Google Scholar] [CrossRef]
- Cui, J.; Zhang, Z.; Han, F. Effects of pH on the gel properties of montmorillonite, palygorskite and montmorillonite-palygorskite composite clay. Appl. Clay Sci. 2020, 190, 105543. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, X.; Wu, F.; Tang, Z.; Zhao, T.; Niu, L.; Fang, M.; Wang, H.; Wang, F. Impact of montmorillonite clay on the homo- and heteroaggregation of titanium dioxide nanoparticles (nTiO2) in synthetic and natural waters. Sci. Total Environ. 2021, 784, 147019. [Google Scholar] [CrossRef]
- Zhang, J.; Yuan, W.; Xia, T.; Ao, C.; Zhao, J.; Huang, B.; Wang, Q.; Zhang, W.; Lu, C. A TiO2 Coated Carbon Aerogel Derived from Bamboo Pulp Fibers for Enhanced Visible Light Photo-Catalytic Degradation of Methylene Blue. Nanomaterials 2021, 11, 239. [Google Scholar] [CrossRef] [PubMed]
- Karimi-Maleh, H.; Kumar, B.G.; Rajendran, S.; Qin, J.; Vadivel, S.; Durgalakshmi, D.; Gracia, F.; Soto-Moscoso, M.; Orooji, Y.; Karimi, F. Tuning of metal oxides photocatalytic performance using Ag nanoparticles integration. J. Mol. Liq. 2020, 314, 113588. [Google Scholar] [CrossRef]
- Tran, N.T.; Kim, D.; Yoo, K.S.; Kim, J. Synthesis of Cu-doped MOF-235 for the Degradation of Methylene Blue under Visible Light Irradiation. Bull. Korean Chem. Soc. 2019, 40, 112–117. [Google Scholar] [CrossRef]
- Liu, L.; Liu, Y.; Wang, X.G.; Hu, N.; Li, Y.; Li, C.; Meng, Y.; An, Y.L. Synergistic effect of B-TiO2 and MIL-100(Fe) for high-efficiency photocatalysis in methylene blue degradation. Appl. Surf. Sci. 2021, 561, 149969. [Google Scholar] [CrossRef]
- Xia, L.; Ni, J.; Wu, P.; Ma, J.; Bao, L.; Shi, Y.; Wang, J. Photoactive metal–organic framework as a bifunctional material for 4-hydroxy-4′-nitrobiphenyl detection and photodegradation of methylene blue. Dalton Trans. 2018, 47, 16551–16557. [Google Scholar] [CrossRef]
- Mohamadi Zalani, N.; Koozegar Kaleji, B.; Mazinani, B. Synthesis and characterisation of the mesoporous ZnO-TiO2 nanocomposite; Taguchi optimisation and photocatalytic methylene blue degradation under visible light. Mater. Technol. 2019, 35, 281–289. [Google Scholar] [CrossRef]
- Jatoi, Y.F.; Fiaz, M.; Athar, M. Synthesis of efficient TiO2/Al2O3@Cu(BDC) composite for water splitting and photodegradation of methylene blue. J. Aust. Ceram. Soc. 2021, 57, 489–496. [Google Scholar] [CrossRef]
- Hussain, H.M.; Fiaz, M.; Athar, M. Facile refluxed synthesis of TiO2/Ag2O@Ti-BTC as efficient catalyst for photodegradation of methylene blue and electrochemical studies. J. Iran. Chem. Soc. 2021, 18, 1269–1277. [Google Scholar] [CrossRef]
- Ninness, B.J.; Bousfield, D.W.; Tripp, C.P. Formation of a thin TiO2 layer on the surfaces of silica and kaolin pigments through atomic layer deposition. Colloids Surfaces A Physicochem. Eng. Asp. 2003, 214, 195–204. [Google Scholar] [CrossRef]
- Othman, I.; Mohamed, R.; Ibrahem, F. Study of photocatalytic oxidation of indigo carmine dye on Mn-supported TiO2. J. Photochem. Photobiol. A Chem. 2007, 189, 80–85. [Google Scholar] [CrossRef]
- Wu, G.; Zheng, S.; Wu, P.; Su, J.; Liu, L. Electronic and optical properties analysis on Bi/N-codoped anatase TiO2. Solid State Commun. 2013, 163, 7–10. [Google Scholar] [CrossRef]
- Chen, K.; Li, J.; Wang, W.; Zhang, Y.; Wang, X.; Su, H. The preparation of vanadium-doped TiO2-montmorillonite nanocomposites and the photodegradation of sulforhodamine B under visible light irradiation. Appl. Surf. Sci. 2011, 257, 7276–7285. [Google Scholar] [CrossRef]
- Yang, X.; Cao, C.; Erickson, L.; Hohn, K.; Maghirang, R.; Klabunde, K. Synthesis of visible-light-active TiO2-based photocatalysts by carbon and nitrogen doping. J. Catal. 2008, 260, 128–133. [Google Scholar] [CrossRef]
- Cheng, Y.; Gao, J.; Shi, Q.; Li, Z.; Huang, W. In situ electrochemical reduced Au loaded black TiO2 nanotubes for visible light photocatalysis. J. Alloys Compd. 2022, 901, 163562. [Google Scholar] [CrossRef]
- Low, J.X.; Zhang, L.Y.; Tong, T.; Shen, B.J.; Yu, J.G. TiO2/MXene Ti3C2 composite with excellent photocatalytic CO2 reduction activity. J. Catal. 2018, 361, 255–266. [Google Scholar] [CrossRef]
- Kato, K.; Shirai, T. Highly efficient water purification by WO3-based homo/heterojunction photocatalyst under visible light. J. Alloys Compd. 2022, 901, 163434. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, J.; Wang, J.; Li, M.; Cheng, Q.; Wang, Z.; Wang, X.; Li, J.; Li, Y.; Zhang, G. 2D WO3–x Nanosheet with Rich Oxygen Vacancies for Efficient Visible-Light-Driven Photocatalytic Nitrogen Fixation. Langmuir 2022, 38, 1178–1187. [Google Scholar] [CrossRef]
- Xu, Y.; Mo, Y.; Tian, J.; Wang, P.; Yu, H.; Yu, J. The synergistic effect of graphitic N and pyrrolic N for the enhanced photocatalytic performance of nitrogen-doped graphene/TiO2 nanocomposites. Appl. Catal. B Environ. 2016, 181, 810–817. [Google Scholar] [CrossRef]
- Suriye, K.; Praserthdam, P.; Jongsomjit, B. Control of Ti3+surface defect on TiO2 nanocrystal using various calcination atmospheres as the first step for surface defect creation and its application in photocatalysis. Appl. Surf. Sci. 2007, 253, 3849–3855. [Google Scholar] [CrossRef]
- Ma, X.; Xiang, Q.; Liao, Y.; Wen, T.; Zhang, H. Visible-light-driven CdSe quantum dots/graphene/TiO2 nanosheets composite with excellent photocatalytic activity for E. coli disinfection and organic pollutant degradation. Appl. Surf. Sci. 2018, 457, 846–855. [Google Scholar] [CrossRef]
- Isari, A.A.; Payan, A.; Fattahi, M.; Jorfi, S.; Kakavandi, B. Photocatalytic degradation of rhodamine B and real textile wastewater using Fe-doped TiO2 anchored on reduced graphene oxide (Fe-TiO2/rGO): Characterization and feasibility, mechanism and pathway studies. Appl. Surf. Sci. 2018, 462, 549–564. [Google Scholar] [CrossRef]
- Mishra, A.; Mehta, A.; Sharma, M.; Basu, S. Enhanced heterogeneous photodegradation of VOC and dye using microwave synthesized TiO2/Clay nanocomposites: A comparison study of different type of clays. J. Alloys Compd. 2017, 694, 574–580. [Google Scholar] [CrossRef]
Parameters | a (Å) | b (Å) | c (Å) | V (Å3) | D (nm) |
---|---|---|---|---|---|
TiO2 | 3.776 | 3.776 | 7.486 | 92.43 | 9.74 |
30%, pH = 6, 160 °C, 24 h TiO2-MMT (30%-TM) | 3.780 | 3.780 | 9.510 | 117.67 | 9.28 |
40%, pH = 6, 160 °C, 24 h TiO2-MMT (40%-TM) | 3.776 | 3.776 | 9.486 | 117.13 | 9.28 |
50%, pH = 6, 160 °C, 24 h TiO2-MMT (50%-TM) | 3.776 | 3.776 | 9.486 | 117.13 | 9.42 |
60%, pH = 6, 160 °C, 24 h, TiO2-MMT (60%-TM) | 3.783 | 3.783 | 9.497 | 117.70 | 9.43 |
70%, pH = 6, 160 °C, 24 h TiO2-MMT (70%-TM) | 3.784 | 3.784 | 9.514 | 117.97 | 9.24 |
pH = 2, 30%, 160 °C, 24 h TiO2-MMT (pH = 2-TM) | 3.784 | 3.784 | 9.514 | 117.97 | 9.65 |
pH = 4, 30%, 160 °C, 24 h TiO2-MMT (pH = 4-TM) | 3.776 | 3.776 | 9.486 | 117.13 | 9.00 |
pH = 6, 30%, 160 °C, 24 h TiO2-MMT (pH = 6-TM) | 3.780 | 3.780 | 9.510 | 117.67 | 9.28 |
pH = 8, 30%, 160 °C, 24 h TiO2-MMT (pH = 8-TM) | 3.785 | 3.785 | 9.785 | 121.40 | 11.76 |
140 °C, 30%, pH = 6, 24 h TiO2-MMT (140 °C-TM) | 3.780 | 3.780 | 9.510 | 117.67 | 8.98 |
160 °C, 30%, pH = 6, 24 h TiO2-MMT (160 °C-TM) | 3.780 | 3.780 | 9.510 | 117.67 | 9.28 |
180 °C, 30%, pH = 6,24 h TiO2-MMT (180 °C-TM) | 3.807 | 3.807 | 9.090 | 114.09 | 9.52 |
200 °C, 30%, pH = 6, 24 h, TiO2-MMT (200 °C-TM) | 3.807 | 3.807 | 9.090 | 114.09 | 9.79 |
18 h, 30%, pH = 6, 160 °C TiO2-MMT (18 h-TM) | 3.784 | 3.784 | 9.515 | 117.99 | 9.994 |
20 h, 30%, pH = 6, 160 °C TiO2-MMT (20 h-TM) | 3.784 | 3.784 | 9.515 | 117.99 | 10.73 |
24 h, 30%, pH = 6, 160 °C TiO2-MMT (24 h-TM) | 3.780 | 3.780 | 9.510 | 117.67 | 9.28 |
Material | Light Source | Pollutant | % Degradation | Time (min) | Reference |
---|---|---|---|---|---|
CA/TiO2 | Visible light | Methylene blue | 85 | 300 | [41] |
ZnO/Ag | Visible light | Methyl orange | 78 | 180 | [42] |
NiO/Ag | Visible light | Methyl orange | 42 | 180 | [42] |
TiO2/Ag | Visible light | Methyl orange | 86 | 180 | [42] |
Cu-MOF-235 | Visible light | Methylene blue | 90 | 480 | [43] |
B-TiO2/MIL100(Fe) | Visible light | Methylene blue | 91.12 | 60 | [44] |
Cd-TCAA | Visible light | Methylene blue | 81 | 175 | [45] |
ZnO-TiO2 | Visible light | Methylene blue | 62 | 120 | [46] |
TiO2/Al2O3@Cu(BDC) | Visible light | Methylene blue | 33.77 | 30 | [47] |
TiO2@Ti(BTC) | Visible light | Methylene blue | 56 | 60 | [48] |
30%-MT | Visible light | Methylene blue | 95.6 | 120 | This work |
Sample | BET Surface Area (m2/g) | BJH Pore Volume (cm3/g) | Pore Diameter (nm) |
---|---|---|---|
TiO2 | 38.925 | 0.1179 | 10.001 |
30%-MT | 77.069 | 0.2489 | 15.192 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Miao, B.; Chen, Q.; Bai, Z.; Cao, Y.; Davaa, B. Synthesis, Structure, and Photocatalytic Activity of TiO2-Montmorillonite Composites. Catalysts 2022, 12, 486. https://doi.org/10.3390/catal12050486
Zhang Y, Miao B, Chen Q, Bai Z, Cao Y, Davaa B. Synthesis, Structure, and Photocatalytic Activity of TiO2-Montmorillonite Composites. Catalysts. 2022; 12(5):486. https://doi.org/10.3390/catal12050486
Chicago/Turabian StyleZhang, Yonghui, Baoji Miao, Qiuling Chen, Zhiming Bai, Yange Cao, and Basandorj Davaa. 2022. "Synthesis, Structure, and Photocatalytic Activity of TiO2-Montmorillonite Composites" Catalysts 12, no. 5: 486. https://doi.org/10.3390/catal12050486
APA StyleZhang, Y., Miao, B., Chen, Q., Bai, Z., Cao, Y., & Davaa, B. (2022). Synthesis, Structure, and Photocatalytic Activity of TiO2-Montmorillonite Composites. Catalysts, 12(5), 486. https://doi.org/10.3390/catal12050486