Different Chiral Ligands Assisted Enantioselective C-H Functionalization with Transition-Metal Catalysts
Abstract
:1. Introduction
2. Chiral Ligands for Enantioselective C–H Functionalization
2.1. Chiral Phosphoric Acid (CPA) Derivatives as Chiral Ligands
2.2. 3,3’-Dihalogen-BINOL as a Chiral Ligand
2.3. Amino Acids and Their Derivatives as Chiral Ligands
2.4. Cyclopentadiene (Cpx) and Carboxylic Acid as Chiral Ligands
2.5. Other Chiral Catalysts: Chiral Sulfoxide; Chiral Phosphate Ligand (CPL); Chiral Boryl Ligand (CBL)
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zheng, C.; You, S.-L. Recent Develoment of Direct Asymmetric Functionalization of Inert C-H Bonds. RSC. Adv. 2014, 4, 6173–6214. [Google Scholar] [CrossRef]
- Dalton, T.; Faber, T.; Glorius, F. C-H Activation: Toward Sustainability and Applications. ACS Cent. Sci. 2021, 7, 245–261. [Google Scholar] [CrossRef] [PubMed]
- Lam, N.Y.; Wu, K.; Yu, J.-Q. Advancing the Logic of Chemical Synthesis: C-H Activation as Strategic and Tactical Disconnections for C-C Bond Construction. Angew. Chem. Int. Ed. 2021, 60, 15767–15790. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-H.; Grebies, S.; Boultadakis-Arapinis, M.; Daniliuc, C.; Glorius, F. Rh(I)/NHC*-Catalyzed Site- and Enantioselective Functionalization of C(sp3)-H Bonds Toward Chiral Triarylmethanes. ACS Catal. 2016, 6, 7652–7656. [Google Scholar] [CrossRef]
- Nasrallah, A.; Boquet, V.; Hecker, A.; Retailleau, P.; Darses, B.; Dauban, P. Catalytic Enantioselective Intermolecular Benzylic C(sp3)-H Amination. Angew. Chem. Int. Ed. 2019, 58, 8192–8196. [Google Scholar] [CrossRef]
- Qiu, M.; Fu, X.; Fu, P.; Huang, J.-H. Construction of Aziridine, Azetiding, Indole and Quinoline-like Heterocycles via Pd-mediate C-H Activation/Annulation Strategies. Org. Biomol. Chem. 2022, 20, 1339–1359. [Google Scholar] [CrossRef]
- Desai, L.-V.; Hull, K.-L.; Sanford, M.-S. Palladium-Catalyzed Oxygenation of Unactivated C(sp3)-H Bonds. J. Am. Chem. Soc. 2004, 126, 9542–9543. [Google Scholar] [CrossRef]
- Ren, Z.; Mo, F.; Dong, G. Catalytic Functionalization of Unactivated C(sp3)-H Bonds via exo-Directing Groups: Synthesis of Chemically Differnetiated 1,2-Diols. J. Am. Chem. Soc. 2012, 134, 16991–16994. [Google Scholar] [CrossRef]
- Moghimi, S.; Mahdavi, M.; Shafiee, A.; Foroumadi, A. Transition-Metal-Catalyzed Acyloxylation: Activation of C(sp2)-H and C(sp3)-H Bonds. Eur. J. Org. Chem. 2016, 2016, 3282–3299. [Google Scholar] [CrossRef]
- Giri, R.; Chen, X.; Yu, J.-Q. Palladium-Catalyzed Asymmetric Iodination of Unactivated C-H Bonds under Mild Conditions. Angew. Chem. Int. Ed. 2005, 44, 2112–2115. [Google Scholar] [CrossRef]
- Sahoo, S.-R.; Dutta, S.; Al-Thabaiti, S.; Mokhtar, M.; Maiti, D. Transition-Metal Catalyzed C-H Bond Activation by exo-metallacyle Intermediates. Chem. Commun. 2021, 57, 11885–11903. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Zhu, L.; Luo, S. Organocatalysis in Inert C-H Bond Functionalization. Chem. Rev. 2017, 117, 9433–9520. [Google Scholar] [CrossRef] [PubMed]
- Carey, J.-S.; Laffan, D.; Thomson, C.; Williams, M.-T. Analysis of the Reactions used for the Preparation of Drug Candiate Molecules. Org. Biomol. Chem. 2006, 4, 2337–2347. [Google Scholar] [CrossRef]
- Karimov, R.; Hartwig, J.-F. Transition-Metal-Catalyzed Selective Functionalization of C(sp3)-H Bonds in Natural Products. Angew. Chem. Int. Ed. 2018, 57, 4234–4241. [Google Scholar] [CrossRef] [PubMed]
- Saint-Denis, T.-G.; Zhu, R.-Y.; Chen, G.; Wu, Q.-F.; Yu, J.-Q. Enantioselective C(sp3)-H Bond Activation by Chiral Transition Metal Catalysis. Science 2018, 359, 759–771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zamfir, A.; Schenker, S.; Tsogoeva, S.-B. Chiral BINOL-Derived Phosphoric Acids: Privileged Brϕnsted Acid Organocatalysts for C-C Bond Fromation Reactions. Org. Biomol. Chem. 2010, 8, 5262–5267. [Google Scholar] [CrossRef] [PubMed]
- Parmar, D.; Sugiono, E.; Raja, S.; Rueping, M. Complete Field Guide to Asymmetric BINOL-Phosphate Derived Brϕnsted Acid and and Metal Catalysis: History and Classification by Mode of Activation: Brϕnsted Acidity, Hydorgen Bonding, Ion Paring and Metal Phosphates. Chem. Rev. 2014, 114, 9047–9153. [Google Scholar] [CrossRef]
- Yan, S.-B.; Zhang, S.; Duan, W.-L. Palladium-Catalyzed Asymmetric Arylation of C(sp3)-H Bonds of Aliphatic Amides: Controlling Enantioselectivity Using Chiral Phosphoric Amides/Acids. Org. Lett. 2015, 17, 2458–2461. [Google Scholar] [CrossRef]
- Shabashov, D.; Daugulis, O. Auxilliary-Assisted Palladium-Catalyzed Arylation and Akylation of sp2 and sp3 Carborn-Hydrogen Bonds. J. Am. Chem. Soc. 2010, 132, 3965–3972. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J. Origins of the Enantioselectivity of a Palladium Catalyst with BINOL-Phosphoric Acid Ligands. Org. Biomol. Chem. 2018, 16, 8064–8071. [Google Scholar] [CrossRef]
- Tong, H.-R.; Zheng, S.; Li, X.; Deng, Z.; Wang, H.; He, G.; Peng, Q.; Chen, G. Pd(0)-Catalyzed Bidentate Auxiliary Directed Enantioselective Benzylic C-H Arylation of 3-Arylpropanamides Using the BINOL Phosphoramidite Ligand. ACS Catal. 2018, 8, 11502–11512. [Google Scholar] [CrossRef]
- Jain, P.; Verma, P.; Xia, G.; Yu, J.-Q. Enantioselective Amine α-Functionalization via Palladium-Catalyzed C-H Arylation of Thioamides. Nat. Chem. 2017, 9, 140–144. [Google Scholar] [CrossRef] [PubMed]
- Campos, K.-R.; Klapars, A.; Waldman, J.-H.; Dormer, P.-G.; Chen, C.-Y. Enantioselective, Palladium-Catalyzed α-arylation of N-Boc-Pyrrolidine. J. Am. Chem. Soc. 2006, 128, 3538–3539. [Google Scholar] [CrossRef] [PubMed]
- Beng, T.-K.; Gawley, R.-E. Application of Catalytic Dynamic Resolution of N-Boc-2-Lithiopiperidine to the Asymmetric Synthesis of 2-Aryl and 2-Vinyl Piperidines. Org. Lett. 2011, 13, 394–397. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Romine, A.-M.; Rubel, C.-Z.; Engle, K.-M.; Shi, B.-F. Transition-Metal-Catalyzed, Coordination-Assisted Functionalization of Nonactivated C(sp3)-H Bonds. Chem. Rev. 2021, 121, 14957–15074. [Google Scholar] [CrossRef]
- He, C.; Gaunt, M.-J. Ligand-Enabled Catalytic C-H Arylation of Aliphatic Amines by a Four-membered-Ring Cyclopalladation Pathway. Angew. Chem. 2015, 127, 16066–16070. [Google Scholar] [CrossRef]
- Smalley, A.-P.; Cuthbertson, J.-D.; Gaunt, M.-J. Palladium-Catalyzed Enantioselective C-H Activation of Aliphatic Amines Using Chiral Anionic BINOL-Phosphoric Acid Ligands. J. Am. Chem. Soc. 2017, 139, 1412–1415. [Google Scholar] [CrossRef] [Green Version]
- Yan, S.-Y.; Han, Y.-Q.; Yao, Q.-J.; Nie, X.-L.; Liu, L.; Shi, B.-F. Palladium(II)-Catalyzed Enantioselective Arylation of Unbiased Methylene C(sp3)-H Bonds Enabled by a 2-Pyridinylisopropyl Auxiliary and Chiral Phosphoric Acids. Angew. Chem. Int. Ed. 2018, 57, 9093–9097. [Google Scholar] [CrossRef]
- Han, Y.-Q.; Zhang, Q.; Yang, X.; Jiang, M.-X.; Ding, Y.; Shi, B.-F. Pd(II)-Catalyzed Enantioselective Intramolecular Arylation of Unbiased C(sp3)−H Bonds to Construct Chiral Benzo-ring Compounds. Org. Lett. 2021, 23, 97–101. [Google Scholar] [CrossRef]
- Chen, Y.; Yekta, S.; Yudin, A.-K. Modified BINOL Ligands in Asymmetric Catalysis. Chem. Rev. 2003, 103, 3155–3212. [Google Scholar] [CrossRef]
- Melander, C.; Worthington, R.-J. Overcoming Resistance to b-Lactam Antibiotics. J. Org. Chem. 2013, 78, 4207–4213. [Google Scholar]
- Mimieux Vaske, Y.-S.; Mahoney, M.-E.; Konopelski, J.-P.; Rogow, D.-L.; McDonald, W.-J. Enantiomerically Pure trans-β-Lactams from α-Amino Acids via Compact Flourescent Light (CFL) Continuous-Flow Photolysis. J. Am. Chem. Soc. 2010, 132, 11379–11385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, T.; Jiang, M.-X.; Yang, X.; Yue, Q.; Han, Y.-Q.; Ding, Y.; Shi, B.-F. Synthesis of Chiral b-Lactams by Pd-Catalyzed Enantioselective Amidation of Methylene C(sp3)-H Bonds. Chin. J. Chem. 2020, 38, 242–246. [Google Scholar] [CrossRef]
- Tong, H.-R.; Zheng, W.; Lv, X.; He, G.; Liu, P.; Chen, G. Asymmetric Synthesis of beta-Lactam via Palladium-Catalyzed Enantioselective Intramolecular C(sp3)-H Amidation. ACS Catal. 2020, 10, 114–120. [Google Scholar] [CrossRef]
- Han, Y.-Q.; Ding, Y.; Zhou, T.; Yan, S.-Y.; Song, H.; Shi, B.-F. Pd(II)-Catalyzed Enantioselective Alkynylation of Unbiased Methylene C(sp3)-H Bonds Using 3,3′-Fluorinated-BINOL as a Chiral Ligand. J. Am. Chem. Soc. 2019, 141, 4558–4563. [Google Scholar] [CrossRef]
- Ano, Y.; Tobisu, M.; Chatani, N. Palladium-Catalyzed Direct Ethynylation of C(sp3)-H Bonds in Aliphatic Carboxylic Acid Derivatives. J. Am. Chem. Soc. 2011, 133, 12984–12986. [Google Scholar] [CrossRef]
- Jiang, M.-X.; Yang, X.; Han, Q.-Y.; Zhou, T.; Xu, X.-T.; Zhang, K.; Shi, B.-F. Pd(II)-Catalyzed Asymmetric Intramolecular Arylation of Unbaised Methylene C(sp3)-H Bonds Using Readily Accessible 3,3′-F2-BINOL as Chiral Ligand. Org. Chem. Front. 2021, 8, 2903–2908. [Google Scholar] [CrossRef]
- Yang, X.; Jiang, M.-X.; Zhou, T.; Han, Q.-Y.; Xu, X.-T.; Zhang, K.; Shi, B.-F. Pd(II)-Catalyzed Enantioselective Arylation of Unbasied Methylene C(sp3)-H Bonds Enabled by a 3,3′-F2-BINOL Ligand. Chem. Commun. 2021, 57, 5562–5565. [Google Scholar] [CrossRef]
- Shao, Q.; Wu, K.; Zhuang, Z.; Qian, S.; Yu, J.-Q. From Pd(OAc)2 to Chiral Catalysts: The Discovery and Development of Bifunctional Mono-N-Protected Amino Acid Ligands for Diverse C-H Functionalization Reactions. Acc. Chem. Res. 2020, 53, 833–851. [Google Scholar] [CrossRef]
- Shi, B.-F.; Maugel, N.; Zhang, Y.-H.; Yu, J.-Q. PdII-Catalyzed Enantioselective Activation of sp2 and sp3 C-H Bonds Using mono Protected Amino Acids as Chiral Ligands. Angew. Chem. Int. Ed. 2008, 47, 4882–4886. [Google Scholar] [CrossRef]
- Liu, W.; Yang, W.; Zhu, J.; Guo, Y.; Wang, N.; Ke, J.; Yu, P.; He, C. Dual-Ligand-Enabled Ir(III)-Catalyzed Enantioselective C-H Amidation for the Synthesis of Chiral Sulfoxides. ACS Catal. 2020, 10, 7207–7215. [Google Scholar] [CrossRef]
- Chen, G.; Gong, W.; Zhuang, Z.; Andra, M.-S.; Chen, Y.-Q.; Hong, X.; Yang, Y.-F.; Liu, T.; Houk, K.-N.; Yu, J.-Q. Ligand-Accelerated Enantioselective Methylene C(sp3)-H Bond Activation. Science 2016, 353, 1023–1027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Q.-F.; Shen, P.-X.; He, J.; Wang, X.-B.; Zhang, F.; Shao, Q.; Zhu, R.-Y.; Mapelli, C.; Qiao, J.-X.; Poss, M.-A.; et al. Fromation of a-chiral centers by asymmetric β-C(sp3)-H Arylation, Alkenylation and Alkynylation. Science 2017, 355, 499–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, L.; Shen, P.-X.; Shao, Q.; Hong, K.; Qiao, T.-X.; Yu, J.-Q. PdII-Catalyzed Enantioselective C(sp3)-H Activation/Cross-Coupling Reactions of Free Carboxylic Acids. Angew. Chem. Int. Ed. 2019, 58, 2134–2138. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Z.; Yu, J.-Q. Pd(II)-Catalyzed Enantioselective γ-C(sp3)-H Functionalization of Free Cyclopropylmethyl Amines. J. Am. Chem. Soc. 2020, 142, 12015–12019. [Google Scholar] [CrossRef]
- Xiao, L.-J.; Hong, K.; Luo, F.; Hu, L.; Ewing, W.-R.; Yeung, K.-S.; Yu, J.-Q. PdII-Catalyzed Enantioselective C(sp3)-H Arylation of Cyclobutyl Ketones Using a Chiral Transient Directing Group. Angew. Chem. Int. Ed. 2020, 59, 9594–9600. [Google Scholar] [CrossRef]
- Li, H.-L.; Yang, D.-F.; Jing, H.-Q.; Antilla, J.-C.; Kuninobu, Y. Palladium-Catalyzed Enantioselective C(sp3)-H Arylation of 2-Propyl Azaaryls Enabled by an Amino Acid Ligand. Org. Lett. 2022, 24, 1286–1291. [Google Scholar] [CrossRef]
- Ye, B.; Cramer, N. Chiral Cyclopenyadienyl Ligands as Stereocontrolling Element in Asymmetric C-H Functionalization. Science 2012, 338, 504–506. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.; You, S.-L. Construction of Axial Chirality by Rhodium-Catalyzed Asymmetric Dehydrogenative Heck Coupling of Biaryl Compounds with Alkenes. Angew. Chem. Int. Ed. 2014, 53, 13244–13247. [Google Scholar] [CrossRef]
- Li, H.; Gontla, R.; Flegel, J.; Merten, C.; Ziegler, S.; Antonchick, A.-P.; Waldmann, H. Enantioselective Formal C(sp3)-H Bond Activation in the Synthesis of Bioactive Spiropyrazolone Derivatives. Angew. Chem. Int. Ed. 2019, 58, 307–311. [Google Scholar] [CrossRef]
- Shan, G.; Flegel, J.; Li, H.; Merten, C.; Ziegler, S.; Antonchick, A.-P.; Waldmann, H. C-H Bond Activation for the Synthesis of Heterocyclic Atropisomers Yields Hedgehog Pathway Inhibitors. Angew. Chem. Int. Ed. 2018, 57, 14250–14254. [Google Scholar] [CrossRef] [PubMed]
- Ueura, K.; Satoh, T.; Miura, M. An Efficient Waste-Free Oxidative Coupling via Regioselective C-H Bond Cleavage: Rh/Cu-Catalyzed Reaction of Benzoic Acids with Alkynes and Acrylates under Air. Org. Lett. 2007, 9, 1407–1409. [Google Scholar] [CrossRef] [PubMed]
- Yoshino, T.; Ikemoto, H.; Matsunaga, S.; Kanai, M. A Cationic High-Valent Cp*CoIII Complex for the Catalytic Generation of Nucleophilic Organometallic Species: Directed C-H Bond Activation. Angew. Chem. Int. Ed. 2013, 52, 2207–2211. [Google Scholar] [CrossRef] [PubMed]
- Yoshino, T.; Matsnaga, S. Chiral Carboxylic Acid Assisted Enantioselective C-H Activation with Achiral CpxMIII (M = Co, Rh, Ir) Catalysts. ACS Catal. 2021, 11, 6455–6466. [Google Scholar] [CrossRef]
- Lin, L.; Fukagawa, S.; Sekine, D.; Tomita, E.; Yoshino, T.; Matsunaga, S. Chiral Carboxylic Acid-Enabled Achiral Rhodium(III)-Catalyzed Enantioselective C-H Functionalization. Angew. Chem. Int. Ed. 2018, 57, 12048–12052. [Google Scholar] [CrossRef] [Green Version]
- Fukagawa, S.; Kato, Y.; Tanaka, R.; Kojima, M.; Yoshino, T.; Matsunaga, S. Enantioselective C(sp3)-H Amidation of Thioamides Catalyzed by a CobaltIII/Chiral Carboxylic Acid Hybrid System. Angew. Chem. Int. Ed. 2018, 58, 1153–1157. [Google Scholar] [CrossRef] [PubMed]
- Fukagawa, S.; Kojima, M.; Yoshino, T.; Matsunaga, S. Catalytic Enantioselective Methylene C(sp3)-H Amidation of 8-Alkylquinolines Using Cp*RhIII/Chiral Carboxylic Acid System. Angew. Chem. Int. Ed. 2019, 58, 18154–18158. [Google Scholar] [CrossRef]
- Jerhaoui, S. Sulfoxydes: Novel Stratefy for the Asymmetric C(sp3)-H Activation. Organic Chemistry. Ph.D. Thesis, Université de Strasbourg, Strasbourg, France, 2018. [Google Scholar]
- Wesch, T.; Leroux, F.-R.; Colobert, F. Atropodiastereoselective C-H Olefination of Biphenyl p-Tolyl Sulfoxides with Acrylates. Adv. Synth. Catal. 2013, 355, 2139–2144. [Google Scholar] [CrossRef]
- Jerhaoui, S.; Chahdoura, F.; Rose, C.; Djukic, J.-P.; Wencel-Delord, J.; Colobert, F. Enantiopure Sulfinyl Aniline as a Removable and Recyclable Chiral Auxiliary for Asymmetric C(sp3)-H Bond Activation. Chem. Eur. J. 2016, 22, 17397–17406. [Google Scholar] [CrossRef]
- Jerhaoui, S.; Djukic, J.-P.; Wencel-Delord, J.; Colobert, F. Asymmetric, Nearly Barrierless C(sp3)-H Activation Promoted by Easily-Accessible N-Protected Aminosulfoxides as New Chiral Ligands. ACS Catal. 2019, 9, 2532–2542. [Google Scholar] [CrossRef]
- Martin, R.; Buchwald, S.-L. Palladium-Catalyzed Suzuki-Miyaura Cross-Coupline Reactions Employing Dialkylbiaryl Phosphine Ligands. Acc. Chem. Res. 2008, 41, 1461–1473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reyes, R.-L.; Iwai, T.; Maeda, S.; Sawamura, M. Iridium-catalyzed Asymmetric Borylation of Unactivated Methylene C(sp3)-H Bonds. J. Am. Chem. Soc. 2019, 141, 6817–6821. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.; Zhao, H.; Li, Y.; Gao, Q.; Ke, Z.; Xu, S. Chiral Bidentate Boryl Ligand Enabled Iridium-Catalyzed Asymmetric C(sp2)-H Borylation of Diarylmethylamines. J. Am. Chem. Soc. 2019, 141, 5334–5342. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, J.-Z.; Wei, Y.-T.; Yang, L.-Y.; Yang, D.-F.; Li, H.-L. Different Chiral Ligands Assisted Enantioselective C-H Functionalization with Transition-Metal Catalysts. Catalysts 2022, 12, 537. https://doi.org/10.3390/catal12050537
Lv J-Z, Wei Y-T, Yang L-Y, Yang D-F, Li H-L. Different Chiral Ligands Assisted Enantioselective C-H Functionalization with Transition-Metal Catalysts. Catalysts. 2022; 12(5):537. https://doi.org/10.3390/catal12050537
Chicago/Turabian StyleLv, Jian-Zhen, Yue-Ting Wei, Li-Yan Yang, Deng-Feng Yang, and Hong-Liang Li. 2022. "Different Chiral Ligands Assisted Enantioselective C-H Functionalization with Transition-Metal Catalysts" Catalysts 12, no. 5: 537. https://doi.org/10.3390/catal12050537
APA StyleLv, J.-Z., Wei, Y.-T., Yang, L.-Y., Yang, D.-F., & Li, H.-L. (2022). Different Chiral Ligands Assisted Enantioselective C-H Functionalization with Transition-Metal Catalysts. Catalysts, 12(5), 537. https://doi.org/10.3390/catal12050537