Direct Conversion of CO2 into Hydrocarbon Solar Fuels by a Synergistic Photothermal Catalysis
Abstract
:1. Introduction
2. Fundamentals of the Photothermal Catalytic CO2 Reduction Reaction
2.1. Photocatalytic CO2 Reduction
2.2. Thermocatalytic CO2 Reduction
2.3. Photothermal Catalytic CO2 Reduction
2.4. Thermal Classification of Photothermal Catalytic CO2 Reduction
2.5. Classification of Photothermal Catalytic CO2 Reduction
3. Basic Products of Photothermal Catalytic
3.1. CO
3.2. CH4
3.3. CH3OH
3.4. C2+
4. Photothermal Catalysts
4.1. Metal Oxides Photothermal Catalyst
4.2. Plasmonic-Metal Photothermal Catalyst
4.3. Perovskite Photothermal Catalyst
4.4. Other Photothermal Catalysts
5. Challenges and Strategies to Boost CO2 Photothermal Conversion
5.1. Enlarge and Enhance Light Absorption and Photothermal Conversion
5.2. Improving Carrier Separation and Migration Efficiency
5.2.1. Building Heterojunction
5.2.2. Doping
5.2.3. Core-Shell Structure
5.3. Photothermal Reactor
6. Conclusions and Outlook
- (1)
- Catalysts: Although various types of photothermal catalysts have been studied so far, poor light absorption conversion ability, low activity and low stability are still the biggest problems. Photothermal catalysts with high catalytic activity supported by noble metals have been extensively studied, but their wide application is limited by the high cost. It still recommends using low-cost and highly active materials. At the same time, the stability of photothermal catalysts also needs to be constantly improved, if a true sense of industrialization is to be achieved, low-cost, effective light absorption, high activity, high selectivity, and strong catalyst stability are essential.
- (2)
- Reactants: There are several applications for photothermal catalytic reduction of CO2 into hydrocarbon. Reducing agents are mainly H2, CH4 and H2O, which can also be divided into CO2 dry reforming, CO2 hydrogenation reaction and artificial photosynthesis. In hydrogenation and dry reforming, the advantage of reducing agents is that target products such as carbon CO, CH4 and CH3OH are easy to obtain. However, the reducing agent is water in artificial light synthesis. In the process of photothermal catalytic CO2 reduction, at first, H2O needs to be hydrolyzed in the valence band to provide a hydrogen source and then CO2 reduction reaction occurs in the conduction band, so the reaction difficulty is increased. H2O is inexhaustible clean energy and a good candidate for photocatalytic or photothermal catalytic CO2 reduction. If the reaction activity is greatly improved in the photothermal catalytic reduction of H2O with CO2, it will accelerate the realization of clean energy in the real sense.
- (3)
- Products: At present, photothermal catalytic reduction of CO2 has a high selectivity for low value-added single-carbon products, such as CO or CH4, but high value-added multi-carbon products are more valuable, such as alcohols or C2+ hydrocarbons. If more value-added products can be obtained by catalyst design or adjusting reaction selectivity, then carbon cycling using CO2 will be more valuable.
- (4)
- Mechanism: There are few studies on the mechanism for the photothermal catalytic reduction of CO2. In the intermediate process of reaction, the process and intermediate that is promoted by light and heat and the roles played in each intermediate process are all worthy of further studying.
- (5)
- Reactor: By considering the structure of the reactor, the materials, temperature resistance, strength, volume, type of light source, external heating configuration and the operation mode of the reaction, the reactor is designed to be easy to operate and effectively promote the reaction, which can effectively improve the efficiency of photothermal catalytic reduction of CO2 to hydrocarbons.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Calderone, L. What is the Future of Non-renewable Resources. AltEnergyMag, 23 July 2019. [Google Scholar]
- Kuo, G. Carbon Dioxide Emissions and Carbon Footprint. MAHB, 24 July 2018. [Google Scholar]
- Solomon, S. Climate Change 2007-The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC; Cambridge University Press: Cambridge, UK, 2007; Volume 4. [Google Scholar]
- Bui, M.; Adjiman, C.S.; Bardow, A.; Anthony, E.J.; Boston, A.; Brown, S.; Fennell, P.S.; Fuss, S.; Galindo, A.; Hackett, L.A.; et al. Carbon Capture and Storage (CCS): The Way Forward. Energy Environ. Sci. 2018, 11, 1062–1176. [Google Scholar] [CrossRef] [Green Version]
- Bagger, A.; Christensen, O.; Ivaništšev, V.; Rossmeisl, J. Catalytic CO2/CO Reduction: Gas, Aqueous, and Aprotic Phases. ACS Catal. 2022, 12, 2561–2568. [Google Scholar] [CrossRef]
- Chai, X.; Huang, H.-H.; Liu, H.; Ke, Z.; Yong, W.-W.; Zhang, M.-T.; Cheng, Y.-S.; Wei, X.-W.; Zhang, L.; Yuan, G. Highly Efficient and Selective Photocatalytic CO2 to CO Conversion in Aqueous Solution. Chem. Commun. 2020, 56, 3851–3854. [Google Scholar] [CrossRef] [PubMed]
- Tahir, M.; Amin, N.S. Indium-Doped TiO2 Nanoparticles for Photocatalytic CO2 Reduction with H2O Vapors to CH4. Appl. Catal. B Environ. 2015, 162, 98–109. [Google Scholar] [CrossRef]
- Phongamwong, T.; Chareonpanich, M.; Limtrakul, J. Role of Chlorophyll in Spirulina on Photocatalytic Activity of CO2 Reduction under Visible Light over Modified N-Doped TiO2 Photocatalysts. Appl. Catal. B Environ. 2015, 168, 114–124. [Google Scholar] [CrossRef]
- Hamdy, M.S.; Amrollahi, R.; Sinev, I.; Mei, B.; Mul, G. Strategies to Design Efficient Silica-Supported Photocatalysts for Reduction of CO2. J. Am. Chem. Soc. 2014, 136, 594–597. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef]
- Yin, Z.; Palmore, G.T.R.; Sun, S. Electrochemical Reduction of CO2 Catalyzed by Metal Nanocatalysts. Trends Chem. 2019, 1, 739–750. [Google Scholar] [CrossRef]
- Ren, D.; Deng, Y.; Handoko, A.D.; Chen, C.S.; Malkhandi, S.; Yeo, B.S. Selective Electrochemical Reduction of Carbon Dioxide to Ethylene and Ethanol on Copper(I) Oxide Catalysts. ACS Catal. 2015, 5, 2814–2821. [Google Scholar] [CrossRef]
- He, M.; Li, C.; Zhang, H.; Chang, X.; Chen, J.G.; Goddard, W.A.; Cheng, M.; Xu, B.; Lu, Q. Oxygen Induced Promotion of Electrochemical Reduction of CO2 via Co-Electrolysis. Nat. Commun. 2020, 11, 3844. [Google Scholar] [CrossRef]
- Kumar, B.; Llorente, M.; Froehlich, J.; Dang, T.; Sathrum, A.; Kubiak, C.P. Photochemical and Photoelectrochemical Reduction of CO2. Annu. Rev. Phys. Chem. 2012, 63, 541–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, L.; Cao, J.; Zhang, J.; Hao, Y.; Bi, K. Photoelectrochemical CO2 Reduction by Cu2O/Cu2S Hybrid Catalyst Immobilized in TiO2 Nanocavity Arrays. J. Mater. Sci. 2019, 54, 10379–10388. [Google Scholar] [CrossRef]
- Ikeda, S.; Tanaka, Y.; Kawaguchi, T.; Fujikawa, S.; Harada, T.; Takayama, T.; Iwase, A.; Kudo, A. Photoelectrochemical Reduction of CO2 to CO Using a CuGaS2 Thin-Film Photocathode Prepared by a Spray Pyrolysis Method. Chem. Lett. 2018, 47, 1424–1427. [Google Scholar] [CrossRef] [Green Version]
- Pawar, A.U.; Kim, C.W.; Nguyen-Le, M.-T.; Kang, Y.S. General Review on the Components and Parameters of Photoelectrochemical System for CO2 Reduction with in Situ Analysis. ACS Sustain. Chem. Eng. 2019, 7, 7431–7455. [Google Scholar] [CrossRef]
- Welte, M.; Barhoumi, R.; Zbinden, A.; Scheffe, J.R.; Steinfeld, A. Experimental Demonstration of the Thermochemical Reduction of Ceria in a Solar Aerosol Reactor. Ind. Eng. Chem. Res. 2016, 55, 10618–10625. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.-Y.; Ghoniem, A.F. Hydrogen-Assisted Carbon Dioxide Thermochemical Reduction on La0.9Ca0.1FeO3−δ Membranes: A Kinetics Study. ChemSusChem 2018, 11, 483–493. [Google Scholar] [CrossRef]
- Guene Lougou, B.; Shuai, Y.; Zhang, H.; Ahouannou, C.; Zhao, J.; Kounouhewa, B.B.; Tan, H. Thermochemical CO2 Reduction over NiFe2O4@alumina Filled Reactor Heated by High-Flux Solar Simulator. Energy 2020, 197, 117267. [Google Scholar] [CrossRef]
- Hare, B.J.; Maiti, D.; Ramani, S.; Ramos, A.E.; Bhethanabotla, V.R.; Kuhn, J.N. Thermochemical Conversion of Carbon Dioxide by Reverse Water-Gas Shift Chemical Looping Using Supported Perovskite Oxides. Catal. Today 2019, 323, 225–232. [Google Scholar] [CrossRef]
- Wang, L.; Liu, X.; Dang, Y.; Xie, H.; Zhao, Q.; Ye, L. Enhanced Solar Induced Photothermal Synergistic Catalytic CO2 Conversion by Photothermal Material Decorated TiO2. Solid State Sci. 2019, 89, 67–73. [Google Scholar] [CrossRef]
- Zhao, Z.; Doronkin, D.E.; Ye, Y.; Grunwaldt, J.-D.; Huang, Z.; Zhou, Y. Visible Light-Enhanced Photothermal CO2 Hydrogenation over Pt/Al2O3 Catalyst. Chin. J. Catal. 2020, 41, 286–293. [Google Scholar] [CrossRef] [Green Version]
- Cai, M.-J.; Li, C.-R.; He, L. Enhancing Photothermal CO2 Catalysis by Thermal Insulating Substrates. Rare Met. 2020, 39, 881–886. [Google Scholar] [CrossRef]
- Xu, C.; Huang, W.; Li, Z.; Deng, B.; Zhang, Y.; Ni, M.; Cen, K. Photothermal Coupling Factor Achieving CO2 Reduction Based on Palladium-Nanoparticle-Loaded TiO2. ACS Catal. 2018, 8, 6582–6593. [Google Scholar] [CrossRef]
- Li, D.; Huang, Y.; Li, S.; Wang, C.; Li, Y.; Zhang, X.; Liu, Y. Thermal Coupled Photoconductivity as a Tool to Understand the Photothermal Catalytic Reduction of CO2. Chin. J. Catal. 2020, 41, 154–160. [Google Scholar] [CrossRef]
- Xie, C.; Chen, C.; Yu, Y.; Su, J.; Li, Y.; Somorjai, G.A.; Yang, P. Tandem Catalysis for CO2 Hydrogenation to C2–C4 Hydrocarbons. Nano Lett. 2017, 17, 3798–3802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urbain, F.; Smirnov, V.; Becker, J.-P.; Lambertz, A.; Yang, F.; Ziegler, J.; Kaiser, B.; Jaegermann, W.; Rau, U.; Finger, F. Multijunction Si Photocathodes with Tunable Photovoltages from 2.0 V to 2.8 V for Light Induced Water Splitting. Energy Environ. Sci. 2016, 9, 145–154. [Google Scholar] [CrossRef] [Green Version]
- Kim, W.; Seok, T.; Choi, W. Nafion Layer-Enhanced Photosynthetic Conversion of CO2 into Hydrocarbons on TiO2 Nanoparticles. Energy Environ. Sci. 2012, 5, 6066–6070. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; An, X.; Park, K.H.; Khraisheh, M.; Tang, J. A Critical Review of CO2 Photoconversion: Catalysts and Reactors. Catal. Today 2014, 224, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Osterloh, F.E. Photocatalysis versus Photosynthesis: A Sensitivity Analysis of Devices for Solar Energy Conversion and Chemical Transformations. ACS Energy Lett. 2017, 2, 445–453. [Google Scholar] [CrossRef]
- He, M.; Sun, Y.; Han, B. Green Carbon Science: Scientific Basis for Integrating Carbon Resource Processing, Utilization, and Recycling. Angew. Chem. Int. Ed. 2013, 52, 9620–9633. [Google Scholar] [CrossRef]
- Wang, Z.; Song, H.; Liu, H.; Ye, J. Coupling of Solar Energy and Thermal Energy for Carbon Dioxide Reduction: Status and Prospects. Angew. Chem. Int. Ed. 2020, 59, 8016–8035. [Google Scholar] [CrossRef]
- Jia, J.; Wang, H.; Lu, Z.; O’Brien, P.G.; Ghoussoub, M.; Duchesne, P.; Zheng, Z.; Li, P.; Qiao, Q.; Wang, L.; et al. Photothermal Catalyst Engineering: Hydrogenation of Gaseous CO2 with High Activity and Tailored Selectivity. Adv. Sci. 2017, 4, 1700252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghoussoub, M.; Xia, M.; Duchesne, P.N.; Segal, D.; Ozin, G. Principles of Photothermal Gas-Phase Heterogeneous CO2 Catalysis. Energy Environ. Sci. 2019, 12, 1122–1142. [Google Scholar] [CrossRef]
- Ha, M.N.; Lu, G.; Liu, Z.; Wang, L.; Zhao, Z. 3DOM-LaSrCoFeO6−δ as a Highly Active Catalyst for the Thermal and Photothermal Reduction of CO2 with H2O to CH4. J. Mater. Chem. A 2016, 4, 13155–13165. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y.; Cheng, Y.; Liu, Z.; Guo, Q.; Ha, M.N.; Zhao, Z. Hydrogen-Treated Mesoporous WO3 as a Reducing Agent of CO2 to Fuels (CH4 and CH3OH) with Enhanced Photothermal Catalytic Performance. J. Mater. Chem. A 2016, 4, 5314–5322. [Google Scholar] [CrossRef]
- Xu, L.; Ha, M.N.; Guo, Q.; Wang, L.; Ren, Y.; Sha, N.; Zhao, Z. Photothermal Catalytic Activity of Combustion Synthesized LaCoxFe1−xO3 (0 ≤ x ≤ 1) Perovskite for CO2 Reduction with H2O to CH4 and CH3OH. RSC Adv. 2017, 7, 45949–45959. [Google Scholar] [CrossRef] [Green Version]
- Tian, J.; Ren, Y.; Liu, L.; Guo, Q.; Sha, N.; Zhao, Z. Photothermal Catalysis for CO2 Convert into C1–C3 Hydrocarbons by Proton Conductor BZCY532. Mater. Res. Express 2020, 7, 085504. [Google Scholar] [CrossRef]
- Zheng, D.; Wei, G.; Xu, L.; Guo, Q.; Hu, J.; Sha, N.; Zhao, Z. LaNixFe1−xO3 (0 ≤ x ≤ 1) as Photothermal Catalysts for Hydrocarbon Fuels Production from CO2 and H2O. J. Photochem. Photobiol. Chem. 2019, 377, 182–189. [Google Scholar] [CrossRef]
- Zhang, F.; Li, Y.-H.; Qi, M.-Y.; Yamada, Y.M.A.; Anpo, M.; Tang, Z.-R.; Xu, Y.-J. Photothermal Catalytic CO2 Reduction over Nanomaterials. Chem Catal. 2021, 1, 272–297. [Google Scholar] [CrossRef]
- Chang, X.; Wang, T.; Gong, J. CO2 Photo-Reduction: Insights into CO2 Activation and Reaction on Surfaces of Photocatalysts. Energy Environ. Sci. 2016, 9, 2177–2196. [Google Scholar] [CrossRef]
- Du, C.; Wang, X.; Chen, W.; Feng, S.; Wen, J.; Wu, Y.A. CO2 Transformation to Multicarbon Products by Photocatalysis and Electrocatalysis. Mater. Today Adv. 2020, 6, 100071. [Google Scholar] [CrossRef]
- Tang, S.; Sun, J.; Hong, H.; Liu, Q. Solar Fuel from Photo-Thermal Catalytic Reactions with Spectrum-Selectivity: A Review. Front. Energy 2017, 11, 437–451. [Google Scholar] [CrossRef]
- Fu, J.; Jiang, K.; Qiu, X.; Yu, J.; Liu, M. Product Selectivity of Photocatalytic CO2 Reduction Reactions. Mater. Today 2020, 32, 222–243. [Google Scholar] [CrossRef]
- Das, S.; Pérez-Ramírez, J.; Gong, J.; Dewangan, N.; Hidajat, K.; Gates, B.C.; Kawi, S. Core–Shell Structured Catalysts for Thermocatalytic, Photocatalytic, and Electrocatalytic Conversion of CO2. Chem. Soc. Rev. 2020, 49, 2937–3004. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.; Sun, J.; Li, D.H.; Wei, J.J. Review of Synergistic Photo-Thermo-Catalysis: Mechanisms, Materials and Applications. Int. J. Hydrogen Energy 2020, 45, 30288–30324. [Google Scholar] [CrossRef]
- Kho, E.T. A Review on Photo-Thermal Catalytic Conversion of Carbon Dioxide. Green Energy 2017, 2, 204–217. [Google Scholar] [CrossRef]
- Han, X.; Li, M.; Ma, Y.; Li, Y.; Ma, H.; Wang, C. Thermal Coupled Photocatalysis to Enhance CO2 Reduction Activities on Ag Loaded G-C3N4 Catalysts. Surf. Interfaces 2021, 23, 101006. [Google Scholar] [CrossRef]
- Zhu, J.; Shao, W.; Li, X.; Jiao, X.; Zhu, J.; Sun, Y.; Xie, Y. Asymmetric Triple-Atom Sites Confined in Ternary Oxide Enabling Selective CO2 Photothermal Reduction to Acetate. J. Am. Chem. Soc. 2021, 143, 18233–18241. [Google Scholar] [CrossRef]
- Petryayeva, E.; Krull, U.J. Localized Surface Plasmon Resonance: Nanostructures, Bioassays and Biosensing—A Review. Anal. Chim. Acta 2011, 706, 8–24. [Google Scholar] [CrossRef]
- Lu, C.; Li, X.; Wu, Q.; Li, J.; Wen, L.; Dai, Y.; Huang, B.; Li, B.; Lou, Z. Constructing Surface Plasmon Resonance on Bi2WO6 to Boost High-Selective CO2 Reduction for Methane. ACS Nano 2021, 15, 3529–3539. [Google Scholar] [CrossRef]
- Jian, Z.; Hong, L.; Wang, H. Photothermal Catalysis for CO2 Conversion. Chin. Chem. Lett. 2022, in press. [Google Scholar]
- Zou, J.; Si, Z.; Cao, Y.; Ran, R.; Wu, X.; Weng, D. Localized Surface Plasmon Resonance Assisted Photothermal Catalysis of CO and Toluene Oxidation over Pd–CeO2 Catalyst under Visible Light Irradiation. J. Phys. Chem. C 2016, 120, 29116–29125. [Google Scholar] [CrossRef]
- Song, C.; Wang, Z.; Yin, Z.; Xiao, D.; Ma, D. Principles and Applications of Photothermal Catalysis. Chem. Catal. 2022, 2, 52–83. [Google Scholar] [CrossRef]
- Liu, H.; Dao, T.D.; Liu, L.; Meng, X.; Nagao, T.; Ye, J. Light Assisted CO2 Reduction with Methane over Group VIII Metals: Universality of Metal Localized Surface Plasmon Resonance in Reactant Activation. Appl. Catal. B Environ. 2017, 209, 183–189. [Google Scholar] [CrossRef]
- Ning, S.; Xu, H.; Qi, Y.; Song, L.; Zhang, Q.; Ouyang, S.; Ye, J. Microstructure Induced Thermodynamic and Kinetic Modulation to Enhance CO2 Photothermal Reduction: A Case of Atomic-Scale Dispersed Co–N Species Anchored Co@C Hybrid. ACS Catal. 2020, 10, 4726–4736. [Google Scholar] [CrossRef]
- Wu, K.; Chen, J.; McBride, J.R.; Lian, T. Efficient Hot-Electron Transfer by a Plasmon-Induced Interfacial Charge-Transfer Transition. Science 2015, 349, 632–635. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Jiang, R.; Li, Y.; Zhou, J.; Ma, Q.; Shen, S.; Liu, M. Plasma-Assisted Photocatalysis of CH4 and CO2 into Ethylene. ACS Sustain. Chem. Eng. 2019, 7, 11455–11463. [Google Scholar] [CrossRef]
- Bai, Y.; Zhao, J.; Feng, S.; Liang, X.; Wang, C. Light-Driven Thermocatalytic CO2 Reduction over Surface-Passivated β-Mo2C Nanowires: Enhanced Catalytic Stability by Light. Chem. Commun. 2019, 55, 4651–4654. [Google Scholar] [CrossRef]
- Bian, H.; Li, D.; Wang, S.; Yan, J.; Liu, S. 2D-C3N4 Encapsulated Perovskite Nanocrystals for Efficient Photo-Assisted Thermocatalytic CO2 Reduction. Chem. Sci. 2022, 13, 1335–1341. [Google Scholar] [CrossRef]
- Sun, M.; Zhao, B.; Chen, F.; Liu, C.; Lu, S.; Yu, Y.; Zhang, B. Thermally-Assisted Photocatalytic CO2 Reduction to Fuels. Chem. Eng. J. 2021, 408, 127280. [Google Scholar] [CrossRef]
- Yu, F.; Wang, C.; Ma, H.; Song, M.; Li, D.; Li, Y.; Li, S.; Zhang, X.; Liu, Y. Revisiting Pt/TiO2 Photocatalysts for Thermally Assisted Photocatalytic Reduction of CO2. Nanoscale 2020, 12, 7000–7010. [Google Scholar] [CrossRef]
- Han, R.; Chen, L.; Xing, B.; Guo, Q.; Tian, J.; Sha, N.; Zhao, Z. Pr3+-Doped La1−xPrxMn0.6Ni0.4O3−δ as Efficient Artificial Photosynthesis Catalysts for Solar Methanol. Catal. Commun. 2022, 165, 106440. [Google Scholar] [CrossRef]
- Tu, W.; Zhou, Y.; Zou, Z. Photocatalytic Conversion of CO2 into Renewable Hydrocarbon Fuels: State-of-the-Art Accomplishment, Challenges, and Prospects. Adv. Mater. 2014, 26, 4607–4626. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Liang, D.; Wang, Y.; Li, D.; Zhang, J.; Wu, L.; Feng, M.; Yi, F.; Xu, L.; Lei, L.; et al. Caged Circular SiRNAs for Photomodulation of Gene Expression in Cells and Mice. Chem. Sci. 2018, 9, 44–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pang, R.; Teramura, K.; Morishita, M.; Asakura, H.; Hosokawa, S.; Tanaka, T. Enhanced CO Evolution for Photocatalytic Conversion of CO2 by H2O over Ca Modified Ga2O3. Commun. Chem. 2020, 3, 137. [Google Scholar] [CrossRef]
- Bai, Y.; Yang, P.; Wang, L.; Yang, B.; Xie, H.; Zhou, Y.; Ye, L. Ultrathin Bi4O5Br2 Nanosheets for Selective Photocatalytic CO2 Conversion into CO. Chem. Eng. J. 2019, 360, 473–482. [Google Scholar] [CrossRef]
- Pang, R.; Teramura, K.; Asakura, H.; Hosokawa, S.; Tanaka, T. Role of Bicarbonate Ions in Aqueous Solution as a Carbon Source for Photocatalytic Conversion of CO 2 into CO. ACS Appl. Energy Mater. 2019, 2, 5397–5405. [Google Scholar] [CrossRef]
- Ulmer, U.; Dingle, T.; Duchesne, P.N.; Morris, R.H.; Tavasoli, A.; Wood, T.; Ozin, G.A. Fundamentals and Applications of Photocatalytic CO2 Methanation. Nat. Commun. 2019, 10, 3169. [Google Scholar] [CrossRef] [Green Version]
- Habisreutinger, S.N.; Schmidt-Mende, L.; Stolarczyk, J.K. Photocatalytic Reduction of CO2 on TiO2 and Other Semiconductors. Angew. Chem. Int. Ed. 2013, 52, 7372–7408. [Google Scholar] [CrossRef]
- Subrahmanyam, M. A Screening for the Photo Reduction of Carbon Dioxide Supported on Metal Oxide Catalysts for C1–C3 Selectivity. Appl. Catal. B Environ. 1999, 23, 169–174. [Google Scholar] [CrossRef]
- Tan, S.S.; Zou, L.; Hu, E. Kinetic Modelling for Photosynthesis of Hydrogen and Methane through Catalytic Reduction of Carbon Dioxide with Water Vapour. Catal. Today 2008, 131, 125–129. [Google Scholar] [CrossRef]
- Liu, D.; Xu, Y.; Sun, M.; Huang, Y.; Yu, Y.; Zhang, B. Photothermally Assisted Photocatalytic Conversion of CO2–H2O into Fuels over a WN–WO3 Z-Scheme Heterostructure. J. Mater. Chem. A 2020, 8, 1077–1083. [Google Scholar] [CrossRef]
- Mateo, D.; Morlanes, N.; Maity, P.; Shterk, G.; Mohammed, O.F.; Gascon, J. Efficient Visible-Light Driven Photothermal Conversion of CO2 to Methane by Nickel Nanoparticles Supported on Barium Titanate. Adv. Funct. Mater. 2021, 31, 2008244. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, B.; Meng, L.; He, S.; Yuan, R.; Hou, Y.; Ding, Z.; Lin, H.; Zhang, Z.; Wang, X.; et al. Plasmonic Control of Solar-Driven CO2 Conversion at the Metal/ZnO Interfaces. Appl. Catal. B Environ. 2019, 256, 117823. [Google Scholar] [CrossRef]
- Wang, Y.; Godin, R.; Durrant, J.R.; Tang, J. Efficient Hole Trapping in Carbon Dot/Oxygen-Modified Carbon Nitride Heterojunction Photocatalysts for Enhanced Methanol Production from CO2 under Neutral Conditions. Angew. Chem. Int. Ed. 2021, 60, 20811–20816. [Google Scholar] [CrossRef]
- Ye, J.; Liu, C.; Mei, D.; Ge, Q. Methanol Synthesis from CO2 Hydrogenation over a Pd4/In2O3 Model Catalyst: A Combined DFT and Kinetic Study. J. Catal. 2014, 317, 44–53. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wang, Y.; Gao, M.; Shen, J.; Pu, X.; Zhang, Z.; Lin, H.; Wang, X. BiVO4/Bi4Ti3O12 Heterojunction Enabling Efficient Photocatalytic Reduction of CO2 with H2O to CH3OH and CO. Appl. Catal. B Environ. 2020, 270, 118876. [Google Scholar] [CrossRef]
- Porosoff, M.D.; Yan, B.; Chen, J.G. Catalytic Reduction of CO2 by H2 for Synthesis of CO, Methanol and Hydrocarbons: Challenges and Opportunities. Energy Environ. Sci. 2016, 9, 62–73. [Google Scholar] [CrossRef]
- Yamashita, H.; Fujii, Y.; Ichihashi, Y.; Zhang, S.G.; Ikeue, K.; Park, D.R.; Koyano, K.; Tatsumi, T.; Anpo, M. Selective Formation of CH3OH in the Photocatalytic Reduction of CO2 with H2O on Titanium Oxides Highly Dispersed within Zeolites and Mesoporous Molecular Sieves. Catal. Today 1998, 45, 221–227. [Google Scholar] [CrossRef]
- He, Z.-H.; Jiang, C.-S.; Wang, K.; Wang, Z.-Y.; Li, N.; Wang, W.-T.; Liu, Z.-T. Photothermal CO2 Hydrogenation to Methanol over a CoO/Co/TiO2 Catalyst in Aqueous Media under Atmospheric Pressure. Catal. Today 2020, 356, 579–588. [Google Scholar] [CrossRef]
- Wu, X.; Li, Y.; Zhang, G.; Chen, H.; Li, J.; Wang, K.; Pan, Y.; Zhao, Y.; Sun, Y.; Xie, Y. Photocatalytic CO2 Conversion of M0.33WO3 Directly from the Air with High Selectivity: Insight into Full Spectrum-Induced Reaction Mechanism. J. Am. Chem. Soc. 2019, 141, 5267–5274. [Google Scholar] [CrossRef]
- Xie, B.; Wong, R.J.; Tan, T.H.; Higham, M.; Gibson, E.K.; Decarolis, D.; Callison, J.; Aguey-Zinsou, K.-F.; Bowker, M.; Catlow, C.R.A.; et al. Synergistic Ultraviolet and Visible Light Photo-Activation Enables Intensified Low-Temperature Methanol Synthesis over Copper/Zinc Oxide/Alumina. Nat. Commun. 2020, 11, 1615. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Kong, G.; Meng, Y.; Tian, J.; Zhang, L.; Wan, S.; Lin, J.; Wang, Y. Direct Coupling of Thermo- and Photocatalysis for Conversion of CO2–H2O into Fuels. ChemSusChem 2017, 10, 4709–4714. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Li, J.; Zhang, R.; Han, C.; Chen, Y.; Zhou, Y.; Liu, W.; Wong, P.K.; Ye, L. Solar-Energy-Driven Photothermal Catalytic C–C Coupling from CO2 Reduction over WO3−x. Chin. J. Catal. 2022, 43, 1230–1237. [Google Scholar] [CrossRef]
- Li, Y.; Wen, M.; Wang, Y.; Tian, G.; Wang, C.; Zhao, J. Plasmonic Hot Electrons from Oxygen Vacancies for Infrared Light-Driven Catalytic CO2 Reduction on Bi2O3−x. Angew. Chem. Int. Ed. 2021, 60, 910–916. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, Q.; Zhu, Y.; Xu, D. High Efficiency Reduction of CO2 to CO and CH4 via Photothermal Synergistic Catalysis of Lead-Free Perovskite Cs3Sb2I9. Appl. Catal. B Environ. 2021, 294, 120236. [Google Scholar] [CrossRef]
- Wang, R.; Zou, Y.; Hong, S.; Xu, M.; Ling, L. High-performance Pt0.01Fe0.05-g-C3N4 Catalyst for Photothermal Catalytic CO2 Reduction. Acta Chim. Sin. 2021, 79, 932. [Google Scholar] [CrossRef]
- Li, Y.; Wang, C.; Song, M.; Li, D.; Zhang, X.; Liu, Y. TiO2−x/CoOx Photocatalyst Sparkles in Photothermocatalytic Reduction of CO2 with H2O Steam. Appl. Catal. B Environ. 2019, 243, 760–770. [Google Scholar] [CrossRef]
- Novoa-Cid, M.; Baldovi, H.G. Study of the Photothermal Catalytic Mechanism of CO2 Reduction to CH4 by Ruthenium Nanoparticles Supported on Titanate Nanotubes. Nanomaterials 2020, 10, 2212. [Google Scholar] [CrossRef]
- Li, D.; Chen, Y.; Abanades, S.; Zhang, Z. Enhanced Activity of TiO2 by Concentrating Light for Photoreduction of CO2 with H2O to CH4. Catal. Commun. 2018, 113, 6–9. [Google Scholar] [CrossRef]
- Yu, S.; Wilson, A.J.; Heo, J.; Jain, P.K. Plasmonic Control of Multi-Electron Transfer and C–C Coupling in Visible-Light-Driven CO2 Reduction on Au Nanoparticles. Nano Lett. 2018, 18, 2189–2194. [Google Scholar] [CrossRef]
- Sorcar, S.; Thompson, J.; Hwang, Y.; Park, Y.H.; Majima, T.; Grimes, C.A.; Durrant, J.R.; In, S.-I. High-Rate Solar-Light Photoconversion of CO2 to Fuel: Controllable Transformation from C1 to C2 Products. Energy Environ. Sci. 2018, 11, 3183–3193. [Google Scholar] [CrossRef]
- Yu, S.; Jain, P.K. Plasmonic Photosynthesis of C1–C3 Hydrocarbons from Carbon Dioxide Assisted by an Ionic Liquid. Nat. Commun. 2019, 10, 2022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, H.; Ou, H.-H.; Colussi, A.J.; Hoffmann, M.R. Artificial Photosynthesis of C1–C3 Hydrocarbons from Water and CO2 on Titanate Nanotubes Decorated with Nanoparticle Elemental Copper and CdS Quantum Dots. J. Phys. Chem. A 2015, 119, 4658–4666. [Google Scholar] [CrossRef] [PubMed]
- Ijaz, S.; Ehsan, M.F.; Ashiq, M.N.; He, T. Synthesis of a Bi2S3 /CeO2 Nanocatalyst and Its Visible Light-Driven Conversion of CO2 into CH3OH and CH4. Catal. Sci. Technol. 2015, 5, 5208–5215. [Google Scholar] [CrossRef]
- Ning, W.; Wang, T.; Chen, H.; Yang, X.; Jin, Y. The Effect of Fe2O3 Crystal Phases on CO2 Hydrogenation. PLoS ONE 2017, 12, e0182955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, P.; Liu, L.; An, W.; Wang, H.; Guo, H.; Liang, Y.; Cui, W. Ultrathin Porous G-C3N4 Nanosheets Modified with AuCu Alloy Nanoparticles and C-C Coupling Photothermal Catalytic Reduction of CO to Ethanol. Appl. Catal. B Environ. 2020, 266, 118618. [Google Scholar] [CrossRef]
- Li, P.; Liu, L.; An, W.; Wang, H.; Cui, W. Efficient Photothermal Catalytic CO2 Reduction to CH3CH2OH over Cu2O/g-C3N4 Assisted by Ionic Liquids. Appl. Surf. Sci. 2021, 565, 150448. [Google Scholar] [CrossRef]
- Védrine, J.C. Importance, Features and Uses of Metal Oxide Catalysts in Heterogeneous Catalysis. Chin. J. Catal. 2019, 40, 1627–1636. [Google Scholar] [CrossRef]
- Khdary, N.H.; Alayyar, A.S.; Alsarhan, L.M.; Alshihri, S.; Mokhtar, M. Metal Oxides as Catalyst/Supporter for CO2 Capture and Conversion, Review. Catalysts 2022, 12, 300. [Google Scholar] [CrossRef]
- Chen, X.; Chen, Y.; Song, C.; Ji, P.; Wang, N.; Wang, W.; Cui, L. Recent Advances in Supported Metal Catalysts and Oxide Catalysts for the Reverse Water-Gas Shift Reaction. Front. Chem. 2020, 8, 709. [Google Scholar] [CrossRef]
- Liu, Y. Recent Advances in Anion-Doped Metal Oxides for Catalytic Applications. J. Mater. Chem. A 2019, 7, 7280–7300. [Google Scholar] [CrossRef]
- Chen, S.; Wang, H.; Kang, Z.; Jin, S.; Zhang, X.; Zheng, X.; Qi, Z.; Zhu, J.; Pan, B.; Xie, Y. Oxygen Vacancy Associated Single-Electron Transfer for Photofixation of CO2 to Long-Chain Chemicals. Nat. Commun. 2019, 10, 788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, Z.; Ning, S.; Tong, Y.; Chen, X.; Hu, H.; Liu, L.; Ye, J.; Wang, D. Selective Photothermal Reduction of CO2 to CO over Ni-Nanoparticle/N-Doped CeO2 Nanocomposite Catalysts. ACS Appl. Nano Mater. 2021, 4, 10485–10494. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, L.; Huang, W.; Xu, C.; Zhang, Y. Photothermal Catalysis for Selective CO2 Reduction on the Modified Anatase TiO2 (101) Surface. ACS Appl. Energy Mater. 2021, 4, 7702–7709. [Google Scholar] [CrossRef]
- Huo, S.; Weng, Z.; Wu, Z.; Zhong, Y.; Wu, Y.; Fang, J.; Wang, H. Coupled Metal/Oxide Catalysts with Tunable Product Selectivity for Electrocatalytic CO 2 Reduction. ACS Appl. Mater. Interfaces 2017, 9, 28519–28526. [Google Scholar] [CrossRef]
- Li, Y.; Walsh, A.G.; Li, D.; Do, D.; Ma, H.; Wang, C.; Zhang, P.; Zhang, X. W-Doped TiO2 for Photothermocatalytic CO2 Reduction. Nanoscale 2020, 12, 17245–17252. [Google Scholar] [CrossRef]
- Wang, L.; Dong, Y.; Yan, T.; Hu, Z.; Jelle, A.A.; Meira, D.M.; Duchesne, P.N.; Loh, J.Y.Y.; Qiu, C.; Storey, E.E.; et al. Black Indium Oxide a Photothermal CO2 Hydrogenation Catalyst. Nat. Commun. 2020, 11, 2432. [Google Scholar] [CrossRef]
- Hu, B.; Guo, Q.; Wang, K.; Wang, X. Enhanced Photocatalytic Activity of Porous In2O3 for Reduction of CO2 with H2O. J. Mater. Sci. Mater. Electron. 2019, 30, 7950–7962. [Google Scholar] [CrossRef]
- Xu, M.; Hu, X.; Wang, S.; Yu, J.; Zhu, D.; Wang, J. Photothermal Effect Promoting CO2 Conversion over Composite Photocatalyst with High Graphene Content. J. Catal. 2019, 377, 652–661. [Google Scholar] [CrossRef]
- Wu, D.; Deng, K.; Hu, B.; Lu, Q.; Liu, G.; Hong, X. Plasmon-Assisted Photothermal Catalysis of Low-Pressure CO2 Hydrogenation to Methanol over Pd/ZnO Catalyst. ChemCatChem 2019, 11, 1598–1601. [Google Scholar] [CrossRef]
- Mateo, D.; Albero, J.; García, H. Graphene Supported NiO/Ni Nanoparticles as Efficient Photocatalyst for Gas Phase CO2 Reduction with Hydrogen. Appl. Catal. B Environ. 2018, 224, 563–571. [Google Scholar] [CrossRef]
- Tan, X.; Wu, S.; Li, Y.; Zhang, Q.; Hu, Q.; Wu, J.; Zhang, A.; Zhang, Y. Highly Efficient Photothermocatalytic CO2 Reduction in Ni/Mg-Doped Al2O3 with High Fuel Production Rate, Large Light-to-Fuel Efficiency, and Good Durability. Energy Environ. Mater. 2021, 2, 12193. [Google Scholar]
- Zhang, Z.; Gao, Z.; Liu, H.; Abanades, S.; Lu, H. High Photothermally Active Fe2O3 Film for CO2 Photoreduction with H2O Driven by Solar Light. ACS Appl. Energy Mater. 2019, 2, 8376–8380. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, Q.; Shi, R.; Waterhouse, G.I.N.; Zhang, X.; Wu, L.-Z.; Tung, C.-H.; Zhang, T. FeO–CeO2 Nanocomposites: An Efficient and Highly Selective Catalyst System for Photothermal CO2 Reduction to CO. NPG Asia Mater. 2020, 12, 5. [Google Scholar] [CrossRef] [Green Version]
- Vega-Mendoza, M.S.; Lievano-Hipolito, E.; Torres-Martínez, L.M. Design and Fabrication of Photocatalytic Coatings with α-β-Bi2O3 and Recycled-Fly Ash for Environmental Remediation and Solar Fuel Generation. Ceram. Int. 2021, 47, 26907–26918. [Google Scholar] [CrossRef]
- Wei, L.; Huang, G.; Zhang, Y. Dependence of the Intrinsic Phase Structure of Bi2O3 Catalysts on Photocatalytic CO2 Reduction. Catal. Sci. Technol. 2021, 11, 2021–2025. [Google Scholar] [CrossRef]
- Li, J.; Ye, Y.; Ye, L.; Su, F.; Ma, Z.; Huang, J.; Xie, H.; Doronkin, D.E.; Zimina, A.; Grunwaldt, J.-D.; et al. Sunlight Induced Photo Thermal Synergistic Catalytic CO2 Conversion via Localized Surface Plasmon Resonance of MoO3−x. J. Mater. Chem. A 2019, 7, 2821–2830. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, J.A.; Torres, J.A.; Gonçalves, R.V.; Ribeiro, C.; Nogueira, F.G.E.; Ruotolo, L.A.M. Photocatalytic CO2 Reduction over Nb2O5/Basic Bismuth Nitrate Nanocomposites. Mater. Res. Bull. 2021, 133, 111073. [Google Scholar] [CrossRef]
- Novello, P.; Varanasi, C.V.; Liu, J. Effects of Light on Catalytic Activities and Lifetime of Plasmonic Au Catalysts in the CO Oxidation Reaction. ACS Catal. 2019, 9, 578–586. [Google Scholar] [CrossRef]
- Li, B.; Gu, T.; Ming, T.; Wang, J.; Wang, P.; Wang, J.; Yu, J.C. (Gold Core)@(Ceria Shell) Nanostructures for Plasmon-Enhanced Catalytic Reactions under Visible Light. ACS Nano 2014, 8, 8152–8162. [Google Scholar] [CrossRef]
- Zhang, X.; Li, X.; Reish, M.E.; Zhang, D.; Su, N.Q.; Gutiérrez, Y.; Moreno, F.; Yang, W.; Everitt, H.O.; Liu, J. Plasmon-Enhanced Catalysis: Distinguishing Thermal and Nonthermal Effects. Nano Lett. 2018, 18, 1714–1723. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Everitt, H.O.; Liu, J. Confirming Nonthermal Plasmonic Effects Enhance CO2 Methanation on Rh/TiO2 Catalysts. Nano Res. 2019, 12, 1906–1911. [Google Scholar] [CrossRef]
- Zhang, H.; Itoi, T.; Konishi, T.; Izumi, Y. Dual Photocatalytic Roles of Light: Charge Separation at the Band Gap and Heat via Localized Surface Plasmon Resonance To Convert CO2 into CO over Silver–Zirconium Oxide. J. Am. Chem. Soc. 2019, 141, 6292–6301. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Wang, L.; Wang, K.; Khan, M.U.; Wang, M.; Li, H.; Zeng, J. Integration of Photothermal Effect and Heat Insulation to Efficiently Reduce Reaction Temperature of CO2 Hydrogenation. Small 2017, 13, 1602583. [Google Scholar] [CrossRef]
- Wang, C.; Ranasingha, O.; Natesakhawat, S.; Ohodnicki, P.R.; Andio, M.; Lewis, J.P.; Matranga, C. Visible Light Plasmonic Heating of Au–ZnO for the Catalytic Reduction of CO2. Nanoscale 2013, 5, 6968. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Fang, S.; Xie, S.; Zheng, Y.; Hu, Y.H. Thermo-Photo Catalytic CO2 Hydrogenation over Ru/TiO2. J. Mater. Chem. A 2020, 8, 7390–7394. [Google Scholar] [CrossRef]
- Ravindranathan Thampi, K.; John, K.; Michael, G. Methanation and photo-methanation of carbon dioxide at room temperature and atmospheric pressure. Nature 1987, 327, 506–508. [Google Scholar] [CrossRef]
- O’Brien, P.G.; Sandhel, A.; Wood, T.E.; Jelle, A.A.; Hoch, L.B.; Perovic, D.D.; Mims, C.A.; Ozin, G.A. Photomethanation of Gaseous CO2 over Ru/Silicon Nanowire Catalysts with Visible and Near-Infrared Photons. Adv. Sci. 2014, 1, 1400001. [Google Scholar] [CrossRef]
- Gu, M.; Liu, D.; Ding, T.; Liu, X.; Chen, T.; Shen, X.; Yao, T. Plasmon-Assisted Photocatalytic CO2 Reduction on Au Decorated ZrO2 Catalysts. Dalton Trans. 2021, 50, 6076–6082. [Google Scholar] [CrossRef]
- Humayun, M.; Ullah, H.; Shu, L.; Ao, X.; Tahir, A.A.; Wang, C.; Luo, W. Plasmon Assisted Highly Efficient Visible Light Catalytic CO2 Reduction Over the Noble Metal Decorated Sr-Incorporated g-C3N4. Nano-Micro Lett. 2021, 13, 209. [Google Scholar] [CrossRef]
- Dilla, M.; Pougin, A.; Strunk, J. Evaluation of the Plasmonic Effect of Au and Ag on Ti-Based Photocatalysts in the Reduction of CO2 to CH4. J. Energy Chem. 2017, 26, 277–283. [Google Scholar] [CrossRef]
- Jia, J.; O’Brien, P.G.; He, L.; Qiao, Q.; Fei, T.; Reyes, L.M.; Burrow, T.E.; Dong, Y.; Liao, K.; Varela, M.; et al. Visible and Near-Infrared Photothermal Catalyzed Hydrogenation of Gaseous CO2 over Nanostructured Pd@Nb2 O5. Adv. Sci. 2016, 3, 1600189. [Google Scholar] [CrossRef] [PubMed]
- Ge, H.; Kuwahara, Y.; Kusu, K.; Yamashita, H. Plasmon-Induced Catalytic CO2 Hydrogenation by a Nano-Sheet Pt/HxMoO3−y Hybrid with Abundant Surface Oxygen Vacancies. J. Mater. Chem. A 2021, 9, 13898–13907. [Google Scholar] [CrossRef]
- Grote, R.; Habets, R.; Rohlfs, J.; Sastre, F.; Meulendijks, N.; Xu, M.; Verheijen, M.A.; Elen, K.; Hardy, A.; Van Bael, M.K.; et al. Collective Photothermal Effect of Al2O3-supported Spheroidal Plasmonic Ru Nanoparticle Catalysts in the Sunlight-powered Sabatier Reaction. ChemCatChem 2020, 12, 5618–5622. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, A.; Krishnan, V. Perovskite Oxide Based Materials for Energy and Environment-Oriented Photocatalysis. ACS Catal. 2020, 10, 10253–10315. [Google Scholar] [CrossRef]
- Hwang, J.; Rao, R.R.; Giordano, L.; Katayama, Y.; Yu, Y.; Shao-Horn, Y. Perovskites in Catalysis and Electrocatalysis. Science 2017, 358, 751–756. [Google Scholar] [CrossRef] [Green Version]
- Voorhoeve, R.J.H.; Johnson, D.W.; Pemeika, J.P.; Gallagher, P.K. Perovskite Oxides: Meterials Science in Catalysis. Science 1977, 195, 827–833. [Google Scholar] [CrossRef]
- Tanaka, H.; Misono, M. Advances in Designing Perovskite Catalysts. Curr. Opin. Solid State Mater. Sci. 2001, 5, 381–387. [Google Scholar] [CrossRef]
- Mateo, D.; Albero, J.; García, H. Titanium-Perovskite-Supported RuO2 Nanoparticles for Photocatalytic CO2 Methanation. Joule 2019, 3, 1949–1962. [Google Scholar] [CrossRef]
- Zangeneh, N.P.; Sharifnia, S.; Karamian, E. Modification of Photocatalytic Property of BaTiO3 Perovskite Structure by Fe2O3 Nanoparticles for CO2 Reduction in Gas Phase. Environ. Sci. Pollut. Res. 2020, 27, 5912–5921. [Google Scholar] [CrossRef]
- Qin, J.; Lin, L.; Wang, X. A Perovskite Oxide LaCoO3 Cocatalyst for Efficient Photocatalytic Reduction of CO2 with Visible Light. Chem. Commun. 2018, 54, 2272–2275. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Itanze, D.S.; Aragon, A.G.; Ma, X.; Li, H.; Ucer, K.B.; Hewitt, C.; Carroll, D.L.; Williams, R.T.; Qiu, Y.; et al. Synthesis of Lead-Free Cs3Sb2Br9 Perovskite Alternative Nanocrystals with Enhanced Photocatalytic CO2 Reduction Activity. Nanoscale 2020, 12, 2987–2991. [Google Scholar] [CrossRef] [PubMed]
- Shyamal, S.; Dutta, S.K.; Das, T.; Sen, S.; Chakraborty, S.; Pradhan, N. Facets and Defects in Perovskite Nanocrystals for Photocatalytic CO2 Reduction. J. Phys. Chem. Lett. 2020, 11, 3608–3614. [Google Scholar] [CrossRef] [PubMed]
- Han, C.; Zhu, X.; Martin, J.S.; Lin, Y.; Spears, S.; Yan, Y. Recent Progress in Engineering Metal Halide Perovskites for Efficient Visible-Light-Driven Photocatalysis. ChemSusChem 2020, 13, 4005–4025. [Google Scholar] [CrossRef]
- Shyamal, S.; Dutta, S.K.; Pradhan, N. Doping Iron in CsPbBr3 Perovskite Nanocrystals for Efficient and Product Selective CO2 Reduction. J. Phys. Chem. Lett. 2019, 10, 7965–7969. [Google Scholar] [CrossRef]
- Xu, Y.-F.; Lee, M.; Jun, Y.; Ozin, G.A. Perovskite, the Chameleon CO2 Photocatalyst. Cell Rep. Phys. Sci. 2021, 2, 100300. [Google Scholar] [CrossRef]
- Shi, R.; Waterhouse, G.I.N.; Zhang, T. Recent Progress in Photocatalytic CO2 Reduction Over Perovskite Oxides. Sol. RRL 2017, 1, 1700126. [Google Scholar] [CrossRef]
- Wei, G.; Zheng, D.; Xu, L.; Guo, Q.; Hu, J.; Sha, N.; Zhao, Z. Photothermal Catalytic Activity and Mechanism of LaNixCo1−xO3 (0 ≤ x ≤ 1) Perovskites for CO2 Reduction to CH4 and CH3OH with H2O. Mater. Res. Express 2019, 6, 086221. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, L.; Deng, B.; Jin, J.; Xu, C.; Zhang, Y. Visible Light-Responding Perovskite Oxide Catalysts for Photo-Thermochemical CO2 Reduction. Catal. Commun. 2020, 138, 105955. [Google Scholar] [CrossRef]
- Xie, K.; Umezawa, N.; Zhang, N.; Reunchan, P.; Zhang, Y.; Ye, J. Self-Doped SrTiO3−δ Photocatalyst with Enhanced Activity for Artificial Photosynthesis under Visible Light. Energy Environ. Sci. 2011, 4, 4211. [Google Scholar] [CrossRef]
- Kim, D.H.; Park, J.L.; Park, E.J.; Kim, Y.D.; Uhm, S. Dopant Effect of Barium Zirconate-Based Perovskite-Type Catalysts for the Intermediate-Temperature Reverse Water Gas Shift Reaction. ACS Catal. 2014, 4, 3117–3122. [Google Scholar] [CrossRef]
- Fresno, F.; Jana, P.; Reñones, P.; Coronado, J.M.; Serrano, D.P.; de la Peña O’Shea, V.A. CO2 Reduction over NaNbO3 and NaTaO3 Perovskite Photocatalysts. Photochem. Photobiol. Sci. 2017, 16, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Jeong, Y.D.; You, I.; Byeong, S.K.; Sun, M.P.; Misook, K. Preparation of basalt fiber@perovskite PbTiO3 core–shell composites and their effects on CH4 production from CO2 photoreduction. Ceram. Int. 2016, 42, 5942–5951. [Google Scholar]
- Chen, X.; Wang, J.; Huang, C.; Zhang, S.; Zhang, H.; Li, Z.; Zou, Z. Barium Zirconate: A New Photocatalyst for Converting CO2 into Hydrocarbons under UV Irradiation. Catal. Sci. Technol. 2015, 5, 1758–1763. [Google Scholar] [CrossRef]
- Zhou, H.; Guo, J.; Li, P.; Fan, T.; Zhang, D.; Ye, J. Leaf-Architectured 3D Hierarchical Artificial Photosynthetic System of Perovskite Titanates Towards CO2 Photoreduction Into Hydrocarbon Fuels. Sci. Rep. 2013, 3, 1667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Huang, C.; Chen, X.; Zhang, H.; Li, Z.; Zou, Z. Photocatalytic CO2 Reduction of BaCeO3 with 4f Configuration Electrons. Appl. Surf. Sci. 2015, 358, 463–467. [Google Scholar] [CrossRef]
- Kuriki, R.; Sekizawa, K.; Ishitani, O.; Maeda, K. Visible-Light-Driven CO2 Reduction with Carbon Nitride: Enhancing the Activity of Ruthenium Catalysts. Angew. Chem. Int. Ed. 2015, 54, 2406–2409. [Google Scholar] [CrossRef]
- Su, X.; Yang, X.-F.; Huang, Y.; Liu, B.; Zhang, T. Single-Atom Catalysis toward Efficient CO2 Conversion to CO and Formate Products. Acc. Chem. Res. 2019, 52, 656–664. [Google Scholar] [CrossRef]
- Wang, I.-W.; Kutteri, D.A.; Gao, B.; Tian, H.; Hu, J. Methane Pyrolysis for Carbon Nanotubes and COx-Free H2 over Transition-Metal Catalysts. Energy Fuels 2019, 33, 197–205. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhao, S.; Johannessen, B.; Veder, J.; Saunders, M.; Rowles, M.R.; Cheng, M.; Liu, C.; Chisholm, M.F.; Marco, R.; et al. Atomically Dispersed Transition Metals on Carbon Nanotubes with Ultrahigh Loading for Selective Electrochemical Carbon Dioxide Reduction. Adv. Mater. 2018, 30, 1706287. [Google Scholar] [CrossRef]
- Levinson, R.; Berdahl, P.; Akbari, H. Solar Spectral Optical Properties of Pigments—Part I: Model for Deriving Scattering and Absorption Coefficients from Transmittance and Reflectance Measurements. Sol. Energy Mater. Sol. Cells. 2005, 89, 319–349. [Google Scholar] [CrossRef]
- Abdullah, H.; Khan, M.M.R.; Ong, H.R.; Yaakob, Z. Modified TiO2 Photocatalyst for CO2 Photocatalytic Reduction: An Overview. J. CO2 Util. 2017, 22, 15–32. [Google Scholar] [CrossRef]
- Mateo, D.; Morlanes, N.; Maity, P.; Shterk, G.; Mohammed, O.F.; Gascon, J. Photothermal Catalysis: Efficient Visible-Light Driven Photothermal Conversion of CO2 to Methane by Nickel Nanoparticles Supported on Barium Titanate. Adv. Funct. Mater. 2021, 31, 2170053. [Google Scholar] [CrossRef]
- Qi, Y.; Song, L.; Ouyang, S.; Liang, X.; Ning, S.; Zhang, Q.; Ye, J. Photoinduced Defect Engineering: Enhanced Photothermal Catalytic Performance of 2D Black In2O3−x Nanosheets with Bifunctional Oxygen Vacancies. Adv. Mater. 2020, 32, 1903915. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Cao, S.; Wu, Y.; Liang, F.; Sun, Y.; Lin, Z.; Sun, L. Simultaneously Efficient Light Absorption and Charge Transport of Phosphate and Oxygen-Vacancy Confined in Bismuth Tungstate Atomic Layers Triggering Robust Solar CO2 Reduction. Nano Energy 2017, 32, 359–366. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.; Tatsuma, T. Mechanisms and Applications of Plasmon-Induced Charge Separation at TiO2 Films Loaded with Gold Nanoparticles. J. Am. Chem. Soc. 2005, 127, 7632–7637. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, J.; Huang, Z.; Guan, X.; Zong, S.; Cheng, C.; Zheng, B.; Guo, L. Synchronous Construction of CoS2 In-Situ Loading and S Doping for g-C3N4: Enhanced Photocatalytic H2-Evolution Activity and Mechanism Insight. Chem. Eng. J. 2020, 401, 126135. [Google Scholar] [CrossRef]
- Khalid, N.R.; Ahmed, E.; Niaz, N.A.; Nabi, G.; Ahmad, M.; Tahir, M.B.; Rafique, M.; Rizwan, M.; Khan, Y. Highly Visible Light Responsive Metal Loaded N/TiO2 Nanoparticles for Photocatalytic Conversion of CO2 into Methane. Ceram. Int. 2017, 43, 6771–6777. [Google Scholar] [CrossRef]
- Karamian, E.; Sharifnia, S. Enhanced Visible Light Photocatalytic Activity of BiFeO3-ZnO p-n Heterojunction for CO2 Reduction. Mater. Sci. Eng. B 2018, 238, 142–148. [Google Scholar] [CrossRef]
- Mu, Y.-F.; Zhang, C.; Zhang, M.-R.; Zhang, W.; Zhang, M.; Lu, T.-B. Direct Z-Scheme Heterojunction of Ligand-Free FAPbBr3/α-Fe2O3 for Boosting Photocatalysis of CO2 Reduction Coupled with Water Oxidation. ACS Appl. Mater. Interfaces 2021, 13, 22314–22322. [Google Scholar] [CrossRef]
- Wei, L.; Yu, C.; Zhang, Q.; Liu, H.; Wang, Y. TiO2-Based Heterojunction Photocatalysts for Photocatalytic Reduction of CO2 into Solar Fuels. J. Mater. Chem. A 2018, 6, 22411–22436. [Google Scholar] [CrossRef]
- Huang, L.; Li, B.; Su, B.; Xiong, Z.; Zhang, C.; Hou, Y.; Ding, Z.; Wang, S. Fabrication of Hierarchical Co3O4@CdIn2S4 p–n Heterojunction Photocatalysts for Improved CO2 Reduction with Visible Light. J. Mater. Chem. A 2020, 8, 7177–7183. [Google Scholar] [CrossRef]
- Yin, H.Y.; Zheng, Y.F.; Song, X.C. Synthesis and Enhanced Visible Light Photocatalytic CO2 Reduction of BiPO4–BiOBrxI1−xp–n Heterojunctions with Adjustable Energy Band. RSC Adv. 2019, 9, 11005–11012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bi, Y.; Zong, L.; Li, C.; Li, Q.; Yang, J. Photoreduction of CO2 on TiO2/SrTiO3 Heterojunction Network Film. Nanoscale Res. Lett. 2015, 10, 345. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Zhang, Z.; Jiang, X.; Sun, R.; Xie, M.; Han, W. Direct Z-Scheme Sn-In2O3/In2S3 Heterojunction Nanostructures for Enhanced Photocatalytic CO2 Reduction Activity. J. Mater. Chem. C 2021, 9, 3987–3997. [Google Scholar] [CrossRef]
- Ijaz, S.; Ehsan, M.F.; Ashiq, M.N.; Karamat, N.; He, T. Preparation of CdS@CeO2 Core/Shell Composite for Photocatalytic Reduction of CO2 under Visible-Light Irradiation. Appl. Surf. Sci. 2016, 390, 550–559. [Google Scholar] [CrossRef]
- Pougin, A.; Dodekatos, G.; Dilla, M.; Tüysüz, H.; Strunk, J. Au@TiO2 Core-Shell Composites for the Photocatalytic Reduction of CO2. Chem. Eur. J. 2018, 24, 12416–12425. [Google Scholar] [CrossRef]
- Tu, W.; Zhou, Y.; Li, H.; Li, P.; Zou, Z. Au@TiO2 Yolk–Shell Hollow Spheres for Plasmon-Induced Photocatalytic Reduction of CO2 to Solar Fuel via a Local Electromagnetic Field. Nanoscale 2015, 7, 14232–14236. [Google Scholar] [CrossRef]
- Fan, W.K.; Tahir, M. Recent Developments in Photothermal Reactors with Understanding on the Role of Light/Heat for CO2 Hydrogenation to Fuels: A Review. Chem. Eng. J. 2022, 427, 131617. [Google Scholar] [CrossRef]
- Pérez, S.; Aragón, J.J.; Peciña, I.; Garcia-Suarez, E.J. Enhanced CO2 Methanation by New Microstructured Reactor Concept and Design. Top. Catal. 2019, 62, 518–523. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.E.; Kaminer, Y.; Hong, T.; Schein, P.; Liu, T.; Hanrath, T.; Erickson, D. HI-Light: A Glass-Waveguide-Based “Shell-and-Tube” Photothermal Reactor Platform for Converting CO2 to Fuels. iScience 2020, 23, 101856. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Xing, X.; Yang, G.; Tong, T.; Wang, Z.M.; Bao, J. Understanding the Generation of Long-Chain Hydrocarbons from CO2 and Water Using Cobalt Nanostructures and Light. J. Catal. 2020, 390, 206–212. [Google Scholar] [CrossRef]
- Li, Y.; Hao, J.; Song, H.; Zhang, F.; Bai, X.; Meng, X.; Zhang, H.; Wang, S.; Hu, Y.; Ye, J. Selective Light Absorber-Assisted Single Nickel Atom Catalysts for Ambient Sunlight-Driven CO2 Methanation. Nat. Commun. 2019, 10, 2359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, C.; Hyeon, S.; Lee, J.; Kim, W.D.; Lee, D.C.; Kim, J.; Lee, H. Energy-Efficient CO2 Hydrogenation with Fast Response Using Photoexcitation of CO2 Adsorbed on Metal Catalysts. Nat. Commun. 2018, 9, 3027. [Google Scholar] [CrossRef] [Green Version]
- Bhatta, S.; Nagassou, D.; Mohsenian, S.; Trelles, J.P. Photo-Thermochemical Decomposition of Carbon-Dioxide in a Direct Solar Receiver-Reactor. Sol. Energy 2019, 178, 201–214. [Google Scholar] [CrossRef]
Catalyst | Reactant | Reaction Conditions | Products | Yield/Distribution/Selectivity | Ref |
---|---|---|---|---|---|
Bi2O3−x | CO2 and H2 | 420 nm LED light 200 °C | CO | 16.15 μmol·g−1·h−1 | [87] |
Pd-TiO2 | CO2 | Hg lamp 500 W 500 °C | CO | 11.05 μmol·g−1·h−1 | [25] |
Cs3Sb2I9 | CO2 and H2O | 200 mW cm−2 Xenon lamp Visible light 235 °C | CO CH4 (less) | 95.7 μmol·g−1·h−1 | [88] |
Pt0.01Fe0.05-g-C3N4 | CO2 and H2 | 300 W Xe lamp 360 °C | CO | 7.36 mmol·h−1·gcat−1 | [89] |
Oxygen vacancies TiO2 | CO2 and H2 | UV light 120 °C | CO | 22.5 ppm | [26] |
TiO2−x/CoOx | CO2 and H2O steam | 150 W UV lamp 120 °C | CH4 CO | 16.464 μmol·g−1·h−1 16.275 μmol·g−1·h−1 | [90] |
Ru/TiNT nanotubes | CO2 and H2 | 150 mW/cm2 simulated sunlight 210 °C | CH4 | 12.4 mmol·gcat−1·h−1 | [91] |
TiO2 nanotube | CO2 and H2O | 300 W Xenon lamp | CH4 | 20.67 μmol·g−1·h−1 | [92] |
Au NP colloid in 10% (v/v) aqueous isopropyl alcohol solution | CO2 and H2O | Visible light 50 °C | CH4 C2H6 | 6.8 NP−1 5.6 NP−1 | [93] |
Pt-sensitized graphene-wrapped blue-colored titania | CO2 and H2O | Solar spectrum (AM 1.5 G) illumination | CH4 C2H6 | 259 μmol·g−1 77 μmol·g−1 | [94] |
Au NPs | CO2 and H2O (ionic liquid medium 5%) | UV-Vis extinction | CH4 C2H4 C2H2 C3H6 C3H8 | 4.53 NP−1·h−1 1.10 NP−1·h−1 0.99 NP−1·h−1 0.93 NP−1·h−1 0.56 NP−1·h−1 | [95] |
ex-Ti-oxide/Y-zeolite (1.1 wt% as TiO2) | CO2 with H2O | UV irradiation 53 °C | CH4 CH3OH | 7.25 μmol·g−1-TiO2·h−1 4.89 μmol·g−1-TiO2·h−1 | [81] |
Pt-loaded ex-Ti-oxide/Y-zeolite | 12.25 μmol·g−1-TiO2·h−1 1.38 μmol·g−1-TiO2·h−1 | ||||
Nf/Pd-TiO2 | CO2 with H2O | UV irradiated | CH4 C2H6 | 11.5 μmol 10.2 μmol | [29] |
CdS/(Cu-NaxH2-xTi3O7) | CO2 with H2O | 450 W Xe lamp 25 °C | CH4 C2H6 C3H8 C2H4 C3H6 | 28 μL·g−1·h−1 17 μL·g−1·h−1 10 μL·g−1·h−1 2 (×10) μL·g−1·h−1 8 (×10) μL·g−1·h−1 | [96] |
CoO/Co/TiO2 | CO2 and H2O | 300 W Xe lamp 120 °C | CH3OH | 39.6 μmol·gcat−1·h−1 | [82] |
BiVO4/Bi4Ti3O12 | CO2 and H2O | 300W Xe lamp 298 K | CH3OH CO | 16. 6μmol·g−1·h−1 13.29 μmol·g−1·h−1 | [79] |
Bi2S3/CeO2 | CO2 and H2O | Visible light 15 °C | CH3OH CH4 | 1346.8 μmol·g−1 15.84 μmol·g−1 | [97] |
CeO2-Pt@mSiO2-Co | CO2 and H2 (H2/CO2 = 3) | 250 °C | CH4 C2-C4 | 40% 60% | [27] |
α-Fe2O3 impregnated with Zn | CO2 and H2 | 230 °C | CO CH4 C2-C4 C5+ | 38.1 mol % 13.1 mol % 17.7 C mol % 31.1 mol % | [98] |
γ-Fe2O3 impregnated with K | 27.0 mol % 11.0 mol % 21.1 mol % 40.9 mol % | ||||
α-Fe2O3 impregnated with Cu | 23.4 mol % 10.1 mol % 19.5 mol % 47.0 mol % | ||||
BaZr0.5Ce0.3Y0.2O3 | CO2 and H2O | UV light 350 °C | CH4 C2H6 C3H8 | 39.13 umol·g−1 8.64 umol·g−1 3.22 umol·g−1 | [39] |
Ba(Zr0.5Ce0.3Y0.2)0.05Co0.05O3 | 266.08 umol·g−1 122.69 umol·g−1 21.57 umol·g−1 | ||||
Ba(Zr0.5Ce0.3Y0.2)0.05Ni0.05O3 | 219.13 umol·g−1 82.95 umol·g−1 12.56 umol·g−1 | ||||
AuCu/g-C3N4 | CO2 and H2O | 300 W Xenon lamp (λ > 420 nm) Vis 120°C | CH3CH2OH | 0.89 mmol·g−1·h−1 | [99] |
Cu2O/g-C3N4 | CO2 and H2O (with ionic liquids) | 300 W Xenon lamp (λ > 420 nm) Vis 100°C | CH3CH2OH | 0.71mmol⋅g−1⋅h−1 | [100] |
Promoter | Catalyst | Reaction Conditions | Products | Ref |
---|---|---|---|---|
In2O3 | In2O3−x/ In2O3 | Stainless steel batch reactor 300 W Xe lamp (Local temperature 261 °C) | CO (1874.62 μmol·h−1·m−2) CH3OH (1.48 μmol h−1·m−2) | [110] |
1/1-In2O3 | Visible light irradiation 200 °C | H2 (5.32 µmol·gcat·h−1) CO (8.25 µmol·gcat−1·h−1) CH4 (27.19 µmol·gcat·h) | [111] | |
TiO2 | CoO/Co/TiO2 | 300 W Xe lamp 120 °C | CH3OH (39.6 µmol·gcat·h) | [82] |
TiO2-graphene | 300 W Xe lamp | CH4 (26.7 μmol·g−1·h−1) CO (5.2 μmol·g−1·h−1) | [112] | |
2% CuS/TiO2 | a 300 W xenon lamp 138 °C | CO (25.97 μmol·g−1·h−1) | [22] | |
Pt/TiO2−x | Xe lamp (150 W) 120 °C | CH4 (0.3412 μmol·h−1) | [63] | |
ZnO | Pd/ZnO | Light irradiation 250 °C | CH3OH (3.8 mmol·g−1·h−1) CO (3.6 mmol·g−1·h−1) | [113] |
NiO | NiO/Ni-G | UV-Vis light from a 300 W Xe lamp 200 °C | CH4 (642 µmol·gNi−1·h−1) | [114] |
Al2O3 | Ni/Mg-Al2O3 | 500 W Xe lamp 450 °C | H2 (69.71 mmol·min−1·g−1) CO (74.57 mmol·min−1·g−1) | [115] |
Fe2O3 | Fe2O3 film | Solar light 500 °C | CH4 (1470.7 µmol·gcat−1) C2H4 (736.2 µmol·gcat−1) C2H6 (277.2 µmol·gcat−1) | [116] |
FeO-CeO2 | FeCe-300 | Xe lamp 419 °C | CO (19.61 mmol·h−1·gcat−1) | [117] |
Bi2O3 | α/β-Bi2O3 | Visible light | HCOOH (1932 μmol·g−1) CH3OH (6 μmol·g−1) | [118] |
γ-Bi2O3 | Xe lamp 300 mW cm−2 | CO (48.10 μmol·h−1·g−1) | [119] | |
MoO3 | MoO3−x | UV-Vis-IR 160 °C | CH4 (2.08 μmol·g−1·h−1) CO (10.3 μmol·g−1·h−1) | [120] |
Nb2O5 | Pd@Nb2O5 | 300 W Xe lamp 470 °C (local temperature) | CH4 (0.11 μmol·gPd−1·h−1) CO (0.75 mol·gPd−1·h−1) | [34] |
BBN/Nb2O5 | CO (2.8 μmol·g−1·h−1) C2H4 (0.1 μmol·g−1·h−1) | [121] |
Catalyst | Reactants | Reaction Conditions | Products | Yield | Ref |
---|---|---|---|---|---|
Ag (5.0wt%) ZrO2 | CO2 and H2 | UV−visible light 119 °C | CO | 0.57 μmol·h−1·gcat−1 | [126] |
CO2 and H2O | 0.0031 μmol·h−1·gcat−1 | ||||
Au-Ru/TiO2 | CO2 and H2O | Hg lamp 85 °C | CH4 | 27.1 μmol·g−1·h−1 | [85] |
Au&Pt@ZIF | CO2 and H2 | Xe lamp 150 °C | CH3OH | 9.1 mmol | [127] |
Au-ZnO | CO2 and H2 | Visible light 600 °C | CO | 4.22 mmol·g−1·h−1 | [128] |
Ru/TiO2 | CO2 and H2 | 1.5 G sunlight 300 °C | CH4 | 69.49 mmol·gcat−1·h−1 | [129] |
Ru/RuOx/TiO2 | CO2 and H2 | Simulated sunlight 80 mW cm−2 46 °C | CH4 | 49 mmol·gcat−1·h−1 | [130] |
Ru/Si nanowire | CO2 and H2 | Xe lamp simulated sunlight (14.5 suns) irradiation 150 °C | CH4 | 0.8 mmol·g−1·h−1 | [131] |
Au/ZrO2 | CO2 and H2O | Visible light Room temperature | CO CH4 | 25.6 μmol·g−1·h−1 5.1 μmol·g−1·h−1 | [132] |
Pt/0.15Sr-C3N4 | CO2 and H2O | Visible light | CH4 CO | 48.55 μmol·h−1·g−1 74.54 μmol·h−1·g−1 | [133] |
Au/TiO2 | CO2 and H2O | UV and visible light 278K | CH4 | 36 ppm | [134] |
Ag/TiO2 | CH4 | 11 ppm | |||
Pd@Nb2O5 | CO2 and H2 | 300 W Xe lamp at 25 kW m−2 160 °C | CO | 4.9 mmol·gcat−1·h−1 | [135] |
Pt/HxMoO3-y(Sheet) | CO2 and H2 | Visible light 200 °C | CO | 120 mmol | [136] |
Ru/Al2O3 | CO2 and H2 | 6.2 suns 220 °C | CH4 | 5.09 mol gRu−1·h−1 | [137] |
Catalyst | Reactants | Reaction Conditions | Products | Yield or Selectivity | Ref |
---|---|---|---|---|---|
LaCo0.6Fe0.4O3 | CO2 and H2O | Visible light 350 °C | CH4 CH3OH | 437.28 μmol·g−1 13.75 μmol·g−1 | [38] |
LaNi0.6Fe0.4O3 | CO2 and H2O | Visible light 350 °C | CH4 CH3OH | 471.39 μmol·g−1 15.50 μmol·g−1 | [40] |
LaSrCoFeO6−δ | CO2 and H2O | Visible light 350 °C | CH4 | 351.32 μmol·g−1 | [36] |
3DOM-LaSrCoFeO6−δ | 557.88 μmol·g−1 | ||||
LaNi0.4Co0.6O3 | CO2 and H2O | Visible light 350 °C | CH4 CH3OH | 678.5 μmol·g−1 20.83 μmol·g−1 | [151] |
RuO2/SrTiO3 | CO2 and H2 | UV-Vis Xe lamp 150 °C | CH4 | 14.6 mmol·h−1·g−1 | [142] |
SrTiO3 | CO2 | Hg lamp 500 W 500 °C | CO | 1.04 μmol·g−1·h−1 | [152] |
1.5Au-SrTiO3 | 7.28 μmol·g−1·h−1 | ||||
self-doped SrTiO3 | CO2 and H2O | Visible light | CH4 | 0.25 mmol m−2cata h−1 | [153] |
BaZr0.8Y0.16Zn0.04O3 | CO2 and H2 | 600 °C | CO | 0.97 | [154] |
NaNbO3 | CO2 and H2O | UV fluorescent lamps 50 °C | CO H2 CH4 CH3OH | 75.50 μmol·gcat−1 26.35 μmol·gcat−1 1.65 μmol·gcat−1 3.36 μmol·gcat−1 | [155] |
NaTaO3 | CO H2 CH4 CH3OH | 74.51 μmol·gcat−1 16.45 μmol·gcat−1 2.35 μmol·gcat−1 3.26 μmol·gcat−1 | |||
BF@PbTiO3 | CO2 and H2O | Hg lamp UV 303 K | CH4 | 290 μmol·gcat−1·L−1 | [156] |
Ag-BaZrO3 | CO2 and H2O | 300W Xe lamp UV light | CH4 | 0.57 μmol·g−1·h−1 | [157] |
Au-CaTiO3 | CO2 and H2O | UV light | CH4 | 0.029 μmol·g−1·h−1 | [158] |
Ag-BaCeO3 | CO2 and H2O | 300-W Xe lamp UV light | CH4 | 0.55 μmol·g−1·h−1 | [159] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, J.; Han, R.; Guo, Q.; Zhao, Z.; Sha, N. Direct Conversion of CO2 into Hydrocarbon Solar Fuels by a Synergistic Photothermal Catalysis. Catalysts 2022, 12, 612. https://doi.org/10.3390/catal12060612
Tian J, Han R, Guo Q, Zhao Z, Sha N. Direct Conversion of CO2 into Hydrocarbon Solar Fuels by a Synergistic Photothermal Catalysis. Catalysts. 2022; 12(6):612. https://doi.org/10.3390/catal12060612
Chicago/Turabian StyleTian, Jindan, Ru Han, Qiangsheng Guo, Zhe Zhao, and Na Sha. 2022. "Direct Conversion of CO2 into Hydrocarbon Solar Fuels by a Synergistic Photothermal Catalysis" Catalysts 12, no. 6: 612. https://doi.org/10.3390/catal12060612
APA StyleTian, J., Han, R., Guo, Q., Zhao, Z., & Sha, N. (2022). Direct Conversion of CO2 into Hydrocarbon Solar Fuels by a Synergistic Photothermal Catalysis. Catalysts, 12(6), 612. https://doi.org/10.3390/catal12060612