Emissions of Euro 6 Mono- and Bi-Fuel Gas Vehicles
Abstract
:1. Introduction
2. Results and Discussion
2.1. CO2
2.2. NOx
2.3. CO
2.4. THC and NMHC
2.5. Particle Number (PN)
2.6. Ammonia (NH3)
3. Materials and Methods
3.1. Vehicles
3.2. Fuels
3.3. Instrumentation
3.4. Test Cycles
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Environment Agency. The First and Last Mile: The Key to Sustainable Urban Transport: Transport and Environment Report 2019; Publications Office of the European Union: Luxembourg, 2020. [Google Scholar]
- Millinger, M.; Meisel, K.; Budzinski, M.; Thrän, D. Relative greenhouse gas abatement cost competitiveness of biofuels in Germany. Energies 2018, 11, 615. [Google Scholar] [CrossRef] [Green Version]
- Orecchini, F.; Santiangeli, A.; Zuccari, F. Biomethane use for automobiles towards a CO2-neutral energy system. Clean Energy 2021, 5, 124–140. [Google Scholar] [CrossRef]
- Cucchiella, F.; D’Adamo, I.; Gastaldi, M. Sustainable Italian cities: The added value of biomethane from organic waste. Appl. Sci. 2019, 9, 2221. [Google Scholar] [CrossRef] [Green Version]
- Cignini, F.; Genovese, A.; Ortenzi, F.; Valentini, S.; Caprioli, A. Performance and emissions comparison between biomethane and natural gas fuel in passenger vehicles. E3S Web Conf. 2020, 197, 08019. [Google Scholar] [CrossRef]
- Bae, C.; Kim, J. Alternative fuels for internal combustion engines. Proc. Combust. Inst. 2017, 36, 3389–3413. [Google Scholar] [CrossRef]
- ICCT European Vehicle Market Statistics. Pocketbook 2020/2021. International Council on Clean Transportation Europe, Berlin, Germany, 2021. Available online: http://eupocketbook.theicct.org (accessed on 6 June 2022).
- Acosta, S. City Buses Going Nowhere: Scientists Warn That Investing in Gas Today Is a Mistake. Available online: https://www.eldiario.es/ballenablanca/crisis_climatica/city-buses-going-nowhere-scientists-warn-that-investing-in-gas-today-is-mistake_130_8941988.html (accessed on 6 June 2022).
- Milojević, S.; Pesic, R. Benefit and Restrictions Related to the Application of Natural Gas as Engine Fuel for City Buses. In Proceedings of the 13th International Conference on Clean Energy, Istanbul, Turkey, 8–12 June 2014. [Google Scholar]
- Hall, J.; Bassett, M.; Hibberd, B.; Streng, S. Heavily downsized demonstrator engine optimised for CNG operation. SAE Int. J. Engines 2016, 9, 2250–2261. [Google Scholar] [CrossRef]
- Hagos, D.A.; Ahlgren, E.O. Well-to-wheel assessment of natural gas vehicles and their fuel supply infrastructures—Perspectives on gas in transport in Denmark. Transp. Res. Part D Transp. Environ. 2018, 65, 14–35. [Google Scholar] [CrossRef]
- Yang, C.; Li, W.; Yin, J.; Shen, Y. Port Fuel Injection of CNG for Downsized 1-Liter 3-Cylinder Turbocharged Engine with High Efficiency; Technical Paper no. 2017-01–2275; SAE International: Warrendale, PA, USA, 2017. [Google Scholar] [CrossRef]
- Bieker, G. A Global Comparison of the Life-Cycle Greenhouse Gas Emissions of Combustion Engine and Electric Passenger Cars; International Council on Clean Transportation Europe: Berlin, Germany, 2021. [Google Scholar]
- Chen, H.; He, J.; Zhong, X. Engine combustion and emission fuelled with natural gas: A review. J. Energy Inst. 2019, 92, 1123–1136. [Google Scholar] [CrossRef]
- Huang, X.; Wang, Y.; Xing, Z.; Du, K. Emission factors of air pollutants from CNG-gasoline bi-fuel vehicles: Part II. CO, HC and NOx. Sci. Total Environ. 2016, 565, 698–705. [Google Scholar] [CrossRef]
- Biernat, K.; Samson-Bręk, I.; Chłopek, Z.; Owczuk, M.; Matuszewska, A. Assessment of the environmental impact of using methane fuels to supply internal combustion engines. Energies 2021, 14, 3356. [Google Scholar] [CrossRef]
- Zhu, H.; Mc Caffery, C.; Yang, J.; Li, C.; Karavalakis, G.; Johnson, K.C.; Durbin, T.D. Characterizing emission rates of regulated and unregulated pollutants from two ultra-low NOx CNG heavy-duty vehicles. Fuel 2020, 277, 118192. [Google Scholar] [CrossRef]
- Karavalakis, G.; Hajbabaei, M.; Durbin, T.D.; Johnson, K.C.; Zheng, Z.; Miller, W.J. The effect of natural gas composition on the regulated emissions, gaseous toxic pollutants, and ultrafine particle number emissions from a refuse hauler vehicle. Energy 2013, 50, 280–291. [Google Scholar] [CrossRef]
- Bielaczyc, P.; Szczotka, A.; Woodburn, J. Regulated and unregulated exhaust emissions from CNG fueled vehicles in light of euro 6 regulations and the new WLTP/GTR 15 test procedure. SAE Int. J. Engines 2015, 8, 1300–1312. [Google Scholar] [CrossRef]
- Żółtowski, A.; Gis, W. Ammonia emissions in SI engines fueled with LPG. Energies 2021, 14, 691. [Google Scholar] [CrossRef]
- Elser, M.; El-Haddad, I.; Maasikmets, M.; Bozzetti, C.; Wolf, R.; Ciarelli, G.; Slowik, J.G.; Richter, R.; Teinemaa, E.; Hüglin, C.; et al. High contributions of vehicular emissions to ammonia in three european cities derived from mobile measurements. Atmos. Environ. 2018, 175, 210–220. [Google Scholar] [CrossRef]
- Xie, C.; Toops, T.; Lance, M.; Qu, J.; Viola, M.; Lewis, S.; Leonard, D.; Hagaman, E. Impact of lubricant additives on the physicochemical properties and activity of three-way catalysts. Catalysts 2016, 6, 54. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Dimopoulos Eggenschwiler, P.; Franken, T.; Agote-Arán, M.; Ferri, D.; Kröcher, O. Investigation on the role of Pd, Pt, Rh in methane abatement for heavy duty applications. Catalysts 2022, 12, 373. [Google Scholar] [CrossRef]
- Kokka, A.; Ramantani, T.; Panagiotopoulou, P. Effect of operating conditions on the performance of Rh/TiO2 catalyst for the reaction of LPG steam reforming. Catalysts 2021, 11, 374. [Google Scholar] [CrossRef]
- Kontses, A.; Triantafyllopoulos, G.; Ntziachristos, L.; Samaras, Z. Particle number (PN) emissions from gasoline, diesel, LPG, CNG and hybrid-electric light-duty vehicles under real-world driving conditions. Atmos. Environ. 2020, 222, 117126. [Google Scholar] [CrossRef]
- Toumasatos, Z.; Kontses, A.; Doulgeris, S.; Samaras, Z.; Ntziachristos, L. Particle emissions measurements on CNG vehicles focusing on Sub-23nm. Aerosol Sci. Technol. 2021, 55, 182–193. [Google Scholar] [CrossRef]
- Samaras, Z.C.; Andersson, J.; Bergmann, A.; Hausberger, S.; Toumasatos, Z.; Keskinen, J.; Haisch, C.; Kontses, A.; Ntziachristos, L.D.; Landl, L.; et al. Measuring Automotive Exhaust Particles Down to 10 nm; Technical Paper no 2020-01–2209; SAE International: Warrendale, PA, USA, 2020. [Google Scholar] [CrossRef]
- Giechaskiel, B. Solid particle number emission factors of euro VI heavy-duty vehicles on the road and in the laboratory. Int. J. Environ. Res. Public Health 2018, 15, 304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alanen, J.; Saukko, E.; Lehtoranta, K.; Murtonen, T.; Timonen, H.; Hillamo, R.; Karjalainen, P.; Kuuluvainen, H.; Harra, J.; Keskinen, J.; et al. The formation and physical properties of the particle emissions from a natural gas engine. Fuel 2015, 162, 155–161. [Google Scholar] [CrossRef]
- Alanen, J.; Simonen, P.; Saarikoski, S.; Timonen, H.; Kangasniemi, O.; Saukko, E.; Hillamo, R.; Lehtoranta, K.; Murtonen, T.; Vesala, H.; et al. Comparison of primary and secondary particle formation from natural gas engine exhaust and of their volatility characteristics. Atmos. Chem. Phys. 2017, 17, 8739–8755. [Google Scholar] [CrossRef] [Green Version]
- Lehtoranta, K.; Murtonen, T.; Vesala, H.; Koponen, P.; Alanen, J.; Simonen, P.; Rönkkö, T.; Timonen, H.; Saarikoski, S.; Maunula, T.; et al. Natural gas engine emission reduction by catalysts. Emiss. Control Sci. Technol. 2017, 3, 142–152. [Google Scholar] [CrossRef]
- Catapano, F.; di Iorio, S.; Sementa, P.; Vaglieco, B.M. Particle Formation and Emissions in An Optical Small Displacement SI Engine Dual Fueled with CNG DI and Gasoline PFI; Technical Paper no. 2017-24–0092; SAE International: Warrendale, PA, USA, 2017. [Google Scholar] [CrossRef]
- Yao, Z.; Cao, X.; Shen, X.; Zhang, Y.; Wang, X.; He, K. On-road emission characteristics of CNG-fueled bi-fuel taxis. Atmos. Environ. 2014, 94, 198–204. [Google Scholar] [CrossRef]
- Lejda, K.; Jaworski, A.; Mądziel, M.; Balawender, K.; Ustrzycki, A.; Savostin-Kosiak, D. Assessment of petrol and natural gas vehicle carbon oxides emissions in the laboratory and on-road tests. Energies 2021, 14, 1631. [Google Scholar] [CrossRef]
- Ghaffarpasand, O.; Talaie, M.R.; Ahmadikia, H.; TalaieKhozani, A.; Shalamzari, M.D.; Majidi, S. On-road performance and emission characteristics of CNG-gasoline bi-fuel taxis/private cars at the roadside environment. Atmos. Pollut. Res. 2020, 11, 1743–1753. [Google Scholar] [CrossRef]
- Meccariello, G.; della Ragione, L.; Prati, M.V.; Costagliola, M.A.; Saccoccia, V. Real time emissive behaviour of a bi-fuel euro 4 SI Car in Naples urban area. SAE Int. J. Fuels Lubr. 2013, 6, 959–967. [Google Scholar] [CrossRef]
- Šarkan, B.; Jaśkiewicz, M.; Kubiak, P.; Tarnapowicz, D.; Loman, M. Exhaust emissions measurement of a vehicle with retrofitted LPG system. Energies 2022, 15, 1184. [Google Scholar] [CrossRef]
- Adam, T.W.; Astorga, C.; Clairotte, M.; Duane, M.; Elsasser, M.; Krasenbrink, A.; Larsen, B.R.; Manfredi, U.; Martini, G.; Montero, L.; et al. Chemical analysis and ozone formation potential of exhaust from dual-fuel (liquefied petroleum gas/gasoline) light duty vehicles. Atmos. Environ. 2011, 45, 2842–2848. [Google Scholar] [CrossRef]
- Pielecha, J.; Merkisz, J.; Jasiński, R.; Gis, W. Real Driving Emissions Testing of Vehicles Powered by Compressed Natural Gas; Technical Paper no. 2015-01–2022; SAE International: Warrendale, PA, USA, 2015. [Google Scholar] [CrossRef]
- Bielaczyc, P.; Woodburn, J.; Szczotka, A. An assessment of regulated emissions and CO2 emissions from a european light-duty CNG-fueled vehicle in the context of euro 6 emissions regulations. Appl. Energy 2014, 117, 134–141. [Google Scholar] [CrossRef]
- Bielaczyc, P.; Szczotka, A.; Woodburn, J. A Comparison of exhaust emissions from vehicles fuelled with petrol, LPG and CNG. IOP Conf. Ser. Mater. Sci. Eng. 2016, 148, 012060. [Google Scholar] [CrossRef] [Green Version]
- Rašić, D.; Rodman Oprešnik, S.; Seljak, T.; Vihar, R.; Baškovič, U.Ž.; Wechtersbach, T.; Katrašnik, T. RDE-based assessment of a factory bi-fuel CNG/gasoline light-duty vehicle. Atmos. Environ. 2017, 167, 523–541. [Google Scholar] [CrossRef]
- Dimaratos, A.; Toumasatos, Z.; Doulgeris, S.; Triantafyllopoulos, G.; Kontses, A.; Samaras, Z. Assessment of CO2 and NOx emissions of one diesel and one bi-fuel gasoline/CNG euro 6 vehicles during real-world driving and laboratory testing. Front. Mech. Eng. 2019, 5, 62. [Google Scholar] [CrossRef] [Green Version]
- Jaworski, A.; Lejda, K.; Lubas, J.; Mądziel, M. Comparison of exhaust emission from euro 3 and euro 6 motor vehicles fueled with petrol and LPG based on real driving conditions. Combust. Engines 2019, 178, 106–111. [Google Scholar] [CrossRef]
- Dimopoulos Eggenschwiler, P.; Schreiber, D.; Schröter, K. Characterization of the emission of particles larger than 10 nm in the exhaust of modern gasoline and CNG light duty vehicles. Fuel 2021, 291, 120074. [Google Scholar] [CrossRef]
- Lähde, T.; Giechaskiel, B. Particle number emissions of gasoline, compressed natural gas (CNG) and liquefied petroleum gas (LPG) fueled vehicles at different ambient temperatures. Atmosphere 2021, 12, 893. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Lähde, T.; Gandi, S.; Keller, S.; Kreutziger, P.; Mamakos, A. Assessment of 10-nm particle number (PN) portable emissions measurement systems (PEMS) for future regulations. Int. J. Environ. Res. Public Health 2020, 17, 3878. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Mamakos, A.; Woodburn, J.; Szczotka, A.; Bielaczyc, P. Evaluation of a 10 nm particle number portable emissions measurement system (PEMS). Sensors 2019, 19, 5531. [Google Scholar] [CrossRef] [Green Version]
- Vojtíšek-Lom, M.; Beránek, V.; Klír, V.; Jindra, P.; Pechout, M.; Voříšek, T. On-road and laboratory emissions of NO, NO2, NH3, N2O and CH4 from late-model EU light utility vehicles: Comparison of diesel and CNG. Sci. Total Environ. 2018, 616–617, 774–784. [Google Scholar] [CrossRef]
- Pavlovic, J.; Marotta, A.; Ciuffo, B.; Serra, S.; Fontaras, G.; Anagnostopoulos, K.; Tsiakmakis, S.; Arcidiacono, V.; Hausberger, S.; Silberholz, G. Correction of test cycle tolerances: Evaluating the impact on CO2 results. Transp. Res. Procedia 2016, 14, 3099–3108. [Google Scholar] [CrossRef]
- Tsiakmakis, S.; Fontaras, G.; Ciuffo, B.; Samaras, Z. A simulation-based methodology for quantifying european passenger car fleet CO2 emissions. Appl. Energy 2017, 199, 447–465. [Google Scholar] [CrossRef]
- Pavlovic, J.; Ciuffo, B.; Fontaras, G.; Valverde, V.; Marotta, A. How much difference in type-approval CO2 emissions from passenger cars in europe can be expected from changing to the new test procedure (NEDC vs. WLTP)? Transp. Res. Part A Policy Pract. 2018, 111, 136–147. [Google Scholar] [CrossRef]
- Kakaee, A.-H.; Paykani, A.; Ghajar, M. The influence of fuel composition on the combustion and emission characteristics of natural gas fueled engines. Renew. Sustain. Energy Rev. 2014, 38, 64–78. [Google Scholar] [CrossRef]
- Karavalakis, G.; Durbin, T.D.; Villela, M.; Miller, J.W. Air pollutant emissions of light-duty vehicles operating on various natural gas compositions. J. Nat. Gas Sci. Eng. 2012, 4, 8–16. [Google Scholar] [CrossRef]
- Chatzipanagi, A.; Pavlovic, J.; Ktistakis, M.A.; Komnos, D.; Fontaras, G. Evolution of European light-duty vehicle CO2 Emissions based on recent certification datasets. Transp. Res. Part D Transp. Environ. 2022, 107, 103287. [Google Scholar] [CrossRef]
- Suarez-Bertoa, R.; Astorga, C. Impact of cold temperature on euro 6 passenger car emissions. Environ. Pollut. 2018, 234, 318–329. [Google Scholar] [CrossRef]
- Clairotte, M.; Valverde, V.; Bonnel, P.; Giechaskiel, P.; Carriero, M.; Otura, M.; Fontaras, G.; Suarez Bertoa, R.; Martini, G.; Krasenbrink, A.; et al. Joint Research Centre 2019 Light-Duty Vehicles Emissions Testing: Contribution to the EU Market Surveillance: Testing Protocols and Vehicle Emissions Performance; Publications Office of the European Union: Luxembourg, 2020; ISBN 978-92-76-26951-9. [Google Scholar]
- Jahirul, M.I.; Masjuki, H.H.; Saidur, R.; Kalam, M.A.; Jayed, M.H.; Wazed, M.A. Comparative engine performance and emission analysis of CNG and gasoline in a retrofitted car engine. Appl. Therm. Eng. 2010, 30, 2219–2226. [Google Scholar] [CrossRef]
- Ristovski, Z.D.; Jayaratne, E.R.; Morawska, L.; Ayoko, G.A.; Lim, M. Particle and carbon dioxide emissions from passenger vehicles operating on unleaded petrol and LPG fuel. Sci. Total Environ. 2005, 345, 93–98. [Google Scholar] [CrossRef] [Green Version]
- Aakko-Saksa, P.; Koponen, P.; Roslund, P.; Laurikko, J.; Nylund, N.-O.; Karjalainen, P.; Rönkkö, T.; Timonen, H. Comprehensive emission characterisation of exhaust from alternative fuelled cars. Atmos. Environ. 2020, 236, 117643. [Google Scholar] [CrossRef]
- Dimaratos, A.; Toumasatos, Z.; Triantafyllopoulos, G.; Kontses, A.; Samaras, Z. Real-world gaseous and particle emissions of a bi-fuel gasoline/CNG euro 6 passenger car. Transp. Res. Part D Transp. Environ. 2020, 82, 102307. [Google Scholar] [CrossRef]
- Carter, W.P.L. Development of ozone reactivity scales for volatile organic compounds. Air Waste 1994, 44, 881–899. [Google Scholar] [CrossRef] [Green Version]
- Intergovernmental Panel on Climate Change. Climate Change 2007: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Ed.; Cambridge University Press: Cambridge, NY, USA, 2007; ISBN 978-0-521-88009-1. [Google Scholar]
- Clairotte, M.; Suarez-Bertoa, R.; Zardini, A.A.; Giechaskiel, B.; Pavlovic, J.; Valverde, V.; Ciuffo, B.; Astorga, C. Exhaust emission factors of greenhouse gases (GHGs) from European road vehicles. Environ. Sci. Eur. 2020, 32, 125. [Google Scholar] [CrossRef]
- Raj, B.A. Methane emission control. Johns. Matthey Technol. Rev. 2016, 60, 228–235. [Google Scholar] [CrossRef]
- Huang, C.; Shan, W.; Lian, Z.; Zhang, Y.; He, H. Recent advances in three-way catalysts of natural gas vehicles. Catal. Sci. Technol. 2020, 10, 6407–6419. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Melas, A.; Martini, G.; Dilara, P. Overview of vehicle exhaust particle number regulations. Processes 2021, 9, 2216. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Bonnel, P.; Perujo, A.; Dilara, P. Solid particle number (SPN) portable emissions measurement systems (PEMS) in the European legislation: A review. Int. J. Environ. Res. Public Health 2019, 16, 4819. [Google Scholar] [CrossRef] [Green Version]
- Melaika, M.; Etikyala, S.; Dahlander, P. Particulates from a CNG DI SI Engine during Warm-Up; Technical Paper no. 2021-01–0630; SAE International: Warrendale, PA, USA, 2021. [Google Scholar]
- Karavalakis, G.; Hajbabaei, M.; Jiang, Y.; Yang, J.; Johnson, K.C.; Cocker, D.R.; Durbin, T.D. Regulated, greenhouse gas, and particulate emissions from lean-burn and stoichiometric natural gas heavy-duty vehicles on different fuel compositions. Fuel 2016, 175, 146–156. [Google Scholar] [CrossRef] [Green Version]
- Suarez-Bertoa, R.; Pechout, M.; Vojtíšek, M.; Astorga, C. Regulated and non-regulated emissions from euro 6 diesel, gasoline and CNG vehicles under real-world driving conditions. Atmosphere 2020, 11, 204. [Google Scholar] [CrossRef] [Green Version]
- Borsari, V.; de Assunção, J.V. Ammonia Emissions from a light-duty vehicle. Transp. Res. Part D Transp. Environ. 2017, 51, 53–61. [Google Scholar] [CrossRef]
- Bielaczyc, P.; Szczotka, A.; Swiatek, A.; Woodburn, J. A comparison of ammonia emission factors from light-duty vehicles operating on gasoline, liquefied petroleum gas (LPG) and compressed natural gas (CNG). SAE Int. J. Fuels Lubr. 2012, 5, 751–759. [Google Scholar] [CrossRef]
- Farren, N.J.; Davison, J.; Rose, R.A.; Wagner, R.L.; Carslaw, D.C. Underestimated ammonia emissions from road vehicles. Environ. Sci. Technol. 2020, 54, 15689–15697. [Google Scholar] [CrossRef] [PubMed]
- Suarez-Bertoa, R.; Astorga, C. Isocyanic acid and ammonia in vehicle emissions. Transp. Res. Part D Transp. Environ. 2016, 49, 259–270. [Google Scholar] [CrossRef]
- Suarez-Bertoa, R.; Mendoza-Villafuerte, P.; Riccobono, F.; Vojtisek, M.; Pechout, M.; Perujo, A.; Astorga, C. On-road measurement of NH3 emissions from gasoline and diesel passenger cars during real world driving conditions. Atmos. Environ. 2017, 166, 488–497. [Google Scholar] [CrossRef]
- Abualqumboz, M.S.; Martin, R.S.; Thomas, J. On-road tailpipe characterization of exhaust ammonia emissions from in-use light-duty gasoline motor vehicles. Atmos. Pollut. Res. 2022, 13, 101449. [Google Scholar] [CrossRef]
- Wang, C.; Tan, J.; Harle, G.; Gong, H.; Xia, W.; Zheng, T.; Yang, D.; Ge, Y.; Zhao, Y. Ammonia formation over Pd/Rh three-way catalysts during lean-to-rich fluctuations: The effect of the catalyst aging, exhaust temperature, lambda, and duration in rich conditions. Environ. Sci. Technol. 2019, 53, 12621–12628. [Google Scholar] [CrossRef]
- Czerwinski, J.; Heeb, N.; Zimmerli, Y.; Forss, A.-M.; Hilfiker, T.; Bach, C. Unregulated emissions with TWC, gasoline & CNG. SAE Int. J. Engines 2010, 3, 1099–1112. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Li, M.; Shao, S.; Li, G. Ammonia emissions of a natural gas engine at the stoichiometric operation with TWC. Appl. Therm. Eng. 2018, 130, 1363–1372. [Google Scholar] [CrossRef]
- Selleri, T.; Melas, A.; Bonnel, P.; Suarez-Bertoa, R. NH3 and CO emissions from fifteen euro 6d and euro 6d-TEMP gasoline-fuelled vehicles. Catalysts 2022, 12, 245. [Google Scholar] [CrossRef]
- Liu, Y.; Ge, Y.; Tan, J.; Wang, H.; Ding, Y. Research on ammonia emissions characteristics from light-duty gasoline vehicles. J. Environ. Sci. 2021, 106, 182–193. [Google Scholar] [CrossRef]
- Clairotte, M.; Adam, T.W.; Zardini, A.A.; Manfredi, U.; Martini, G.; Krasenbrink, A.; Vicet, A.; Tournié, E.; Astorga, C. Effects of low temperature on the cold start gaseous emissions from light duty vehicles fuelled by ethanol-blended gasoline. Appl. Energy 2013, 102, 44–54. [Google Scholar] [CrossRef]
- De Meij, A.; Astorga, C.; Thunis, P.; Crippa, M.; Guizzardi, D.; Pisoni, E.; Valverde, V.; Suarez-Bertoa, R.; Oreggioni, G.D.; Mahiques, O.; et al. Modelling the impact of the introduction of the EURO 6d-TEMP/6d regulation for light-duty vehicles on EU air quality. Appl. Sci. 2022, 12, 4257. [Google Scholar] [CrossRef]
- GasOn Horizon 2020 EU Research and Innovation Programme, under Grant Agreement No. 65281. 2019. Available online: http://www.gason.eu (accessed on 6 June 2022).
- Chala, G.; Abd Aziz, A.; Hagos, F. Natural gas engine technologies: Challenges and energy sustainability issue. Energies 2018, 11, 2934. [Google Scholar] [CrossRef] [Green Version]
- Giuliano, M.; Valsania, M.C.; Ticali, P.; Sartoretti, E.; Morandi, S.; Bensaid, S.; Ricchiardi, G.; Sgroi, M. Characterization of the evolution of noble metal particles in a commercial three-way catalyst: Correlation between real and simulated ageing. Catalysts 2021, 11, 247. [Google Scholar] [CrossRef]
- Kanerva, T.; Honkanen, M.; Kolli, T.; Heikkinen, O.; Kallinen, K.; Saarinen, T.; Lahtinen, J.; Olsson, E.; Keiski, R.L.; Vippola, M. Microstructural characteristics of vehicle-aged heavy-duty diesel oxidation catalyst and natural gas three-way catalyst. Catalysts 2019, 9, 137. [Google Scholar] [CrossRef] [Green Version]
- Nakayama, H.; Nagata, M.; Abe, H.; Shimizu, Y. In situ TEM study of Rh particle sintering for three-way catalysts in high temperatures. Catalysts 2020, 11, 19. [Google Scholar] [CrossRef]
- Zheng, Q.; Farrauto, R.; Deeba, M. Part II: Oxidative thermal aging of Pd/Al2O3 and Pd/CexOy-ZrO2 in automotive three way catalysts: The effects of fuel shutoff and attempted fuel rich regeneration. Catalysts 2015, 5, 1797–1814. [Google Scholar] [CrossRef] [Green Version]
- Morganti, K.J.; Foong, T.M.; Brear, M.J.; da Silva, G.; Yang, Y.; Dryer, F.L. The research and motor octane numbers of liquefied petroleum gas (LPG). Fuel 2013, 108, 797–811. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Cresnoverh, M.; Jörgl, H.; Bergmann, A. Calibration and accuracy of a particle number measurement system. Meas. Sci. Technol. 2010, 21, 045102. [Google Scholar] [CrossRef]
- Amanatidis, S.; Ntziachristos, L.; Giechaskiel, B.; Katsaounis, D.; Samaras, Z.; Bergmann, A. Evaluation of an oxidation catalyst (“catalytic stripper”) in eliminating volatile material from combustion aerosol. J. Aerosol Sci. 2013, 57, 144–155. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Clairotte, M. Fourier Transform Infrared (FTIR) spectroscopy for measurements of vehicle exhaust emissions: A review. Appl. Sci. 2021, 11, 7416. [Google Scholar] [CrossRef]
- Varella, R.; Giechaskiel, B.; Sousa, L.; Duarte, G. Comparison of portable emissions measurement systems (PEMS) with laboratory grade equipment. Appl. Sci. 2018, 8, 1633. [Google Scholar] [CrossRef] [Green Version]
- Clairotte, M.; Valverde, V.; Bonnel, P.; Giechaskiel, P.; Carriero, M.; Otura, M.; Fontaras, G.; Pavlovic, J.; Martini, G.; Krasenbrink, A. Joint Research Centre 2017 Light-Duty Vehicles Emissions Testing Contribution to the EU Market Surveillance: Testing Protocols and Vehicle Emissions Performance; Publications Office of the European Union: Luxembourg, 2018; ISBN 978-92-79-90600-8. [Google Scholar]
- Valverde, V.; Clairotte, M.; Bonnel, P.; Giechaskiel, P.; Carriero, M.; Otura, M.; Gruening, C.; Fontaras, G.; Pavlovic, J.; Martini, G.; et al. Joint Research Centre 2018 Light-Duty Vehicles Emissions Testing: Contribution to the EU Market Surveillance: Testing Protocols and Vehicle Emissions Performance; Publications Office of the European Union: Luxembourg, 2019; ISBN 978-92-76-12333-0. [Google Scholar]
- Bonnel, P.; Clairotte, M.; Cotogno, G.; Gruening, R.; Loos, R.; Manara, D.; Melas, A.; Selleri, T.; Tutuianu, M.; Valverde, V.; et al. European Market Surveillance of Motor Vehicles: Results of the 2020 2021 European Commission Vehicle Emissions Testing Programme; Publications Office of the European Union: Luxembourg, 2022. [Google Scholar]
- Suarez-Bertoa, R.; Valverde-Morales, V.; Clairotte, M.; Pavlovic, J.; Giechaskiel, B.; Franco, V.; Kregar, Z.; Astorga-LLorens, C. On-road emissions of passenger cars beyond the boundary conditions of the real-driving emissions test. Environ. Res. 2019, 176, 108572. [Google Scholar] [CrossRef] [PubMed]
- Giechaskiel, B.; Lähde, T.; Drossinos, Y. Regulating particle number measurements from the tailpipe of light-duty vehicles: The next step? Environ. Res. 2019, 172, 1–9. [Google Scholar] [CrossRef] [PubMed]
Test | Bi-LPG #1 | Bi-LPG #2 | Bi-CNG #1 | CNG #1 | CNG #2 | CNG #3 | CNG #4 | CNG #5 |
---|---|---|---|---|---|---|---|---|
Gas | 150 | 118 | 112 | 110 | 117 | 115 | 128 | 283 |
Declared | −9.9% 1 | 14.9% | −1.8% | −4.2% | −18% | - | - | −17.4% 1 |
Low temp. | - | 8.6% | 6.0% | - | 5.2% | - | - | 9.1% |
RDE complete | 11.3% | 14.1% | 13.7% | - | - | 3.5% | 15.6% | −11.0% |
Gasoline | 167 | 137 | 146 | 142 | 142 | - | - | 306 |
Declared | −12.4% | 7.7% | 2.3% | - | - | - | - | - |
Low temp. | - | 5.3% | 4.9% | - | 5.7% | - | - | - |
RDE complete | 19.2% | 4.4% | 12.5% | - | - | - | - | −8.3% |
Gas vs. Gasoline | −10.1% | −14.0% | −23.1% | −22.7% | −17.7% | - | - | −7.5% |
Test | Bi-LPG #1 | Bi-LPG #2 | Bi-CNG #1 | CNG #1 | CNG #2 | CNG #3 | CNG #4 | CNG #5 |
---|---|---|---|---|---|---|---|---|
Gas fuel | ||||||||
WLTC cold | 42 | 13 | 44 | 17 | 18 | 53 | 35 | 122 |
WLTC hot | 2 | 2 | 23 | 6 | 9 | - | - | 129 |
Low temp. | - | 83 | 269 | - | 27 | - | - | 231 |
Gasoline | ||||||||
WLTC cold | 42 | 14 | 56 | 11 | 11 | - | - | 994 |
WLTC hot | 3 | 2 | 30 | 0 | 0 | - | - | - |
Low temp. | - | 77 | 248 | - | 30 | - | - | - |
Test | Bi-LPG #1 | Bi-LPG #2 | Bi-CNG #1 | CNG #1 | CNG #2 | CNG #3 | CNG #4 | CNG #5 |
---|---|---|---|---|---|---|---|---|
Gas fuel | ||||||||
WLTC cold | 38 | 12 | 21 | 0 | 0 | 11 | 5 | 43 |
WLTC hot | 1 | 1 | 1 | 0 | 0 | - | - | 26 |
Low temp. | - | 78 | 160 | - | 0 | - | - | 131 |
Gasoline | ||||||||
WLTC cold | 38 | 13 | 51 | 10 | 10 | - | - | - |
WLTC hot | 2 | 1 | 26 | 0 | 0 | - | - | - |
Low temp. | - | 72 | 185 | - | 27 | - | - | - |
Test | Bi-LPG #1 | Bi-LPG #2 | Bi-CNG #1 | CNG #1 | CNG #2 | CNG #3 | CNG #4 | CNG #5 |
---|---|---|---|---|---|---|---|---|
Gas fuel | ||||||||
WLTC cold | - | 13 mg/km (21 ppm) | 20 mg/km (10 ppm) | - | - | 25 mg/km (44 ppm) | 137 mg/km (119 ppm) | 41 mg/km (31 ppm) |
Low temp. | - | 13 mg/km (29 ppm) | 43 mg/km (18 ppm) | - | - | - | - | 52 mg/km (46 ppm) |
E5 fuel | ||||||||
WLTC cold | - | 7 mg/km (12 ppm) | 16 mg/km (10 ppm) | - | - | - | - | - |
Low temp. | - | 11 mg/km (26 ppm) | - | - | - | - | - | - |
Specif. | Bi-LPG #1 | Bi-LPG #2 | Bi-CNG #1 | CNG #1 | CNG #2 | CNG #3 | CNG #4 | CNG #5 |
---|---|---|---|---|---|---|---|---|
OEM | Fiat | Fiat | Fiat | Seat | Skoda | Fiat | Ford | Fiat |
Model | Tipo | Panda | Panda | Arona | Octavia | 500L | C max | Ducato |
Class | M1 | M1 | M1 | M1 | M1 | M1 | M1 | N1-III |
JRC Code | FT060 | FT070 | FT071 | ST008 | SA004 | FT062 | FD011 | FT061 |
Fuel type | LPG/E5 | LPG/E10 | CNG/E10 | CNG | CNG | CNG | CNG | CNG |
Injection | PFI/PFI | PFI/PFI | PFI/PFI | PFI | DI | DI | DI | PFI |
ATS | TWC | TWC | TWC | TWC | TWC | TWC | TWC | TWC |
Model year | 2017 | 2018 | 2018 | 2020 | 2019 | 2019 | 2019 | 2018 |
Euro | 6b | 6d-Temp | 6d-Temp | 6d-Temp | 6d-Temp | Proto | Proto | 6b |
Odometer | 15493 | 3003 | 4253 | 2800 | 1223 | n/a | n/a | 707 |
Engine (cm3) | 1368 | 124 | 875 | 999 | 1498 | 999 | 999 | 2999 |
Power (kW) | 88 | 51 | 62.5 | 66 | 96 | 88 | 110 | 100 |
CO2 (decl.) | 135/146 | 135/147 | 110/149 | 105 | 96 | - | - | 234 |
Specif. | Bi-LPG #1 | Bi-LPG #2 | Bi-CNG #1 | CNG #1 | CNG #2 | CNG #3 | CNG #4 | CNG #5 |
---|---|---|---|---|---|---|---|---|
TM (kg) | 1530 | 1136 | 1249 | 1429 | 1535 | 1579 | 1828 | 2726 |
f0 (N) | 136.8 | 71.1 | 78.3 | 95.0 | 131.1 | 147.4 | 179.2 | 230.8 |
f1 (N/(km/h)) | 0.26 | 0.55 | 0.55 | 0.51 | 0.13 | 0.21 | 0.70 | 0.22 |
f2 (N/(km/h)2) | 0.034 | 0.033 | 0.037 | 0.038 | 0.037 | 0.037 | 0.040 | 0.093 |
Low Temp. | No | −6.5 °C | −5.6 °C | No | −3.6 °C | No | No | −6.1 °C |
Cold 23 °C | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Hot 23 °C | Yes | Yes | Yes | Yes | Yes | No | No | Yes |
RDE | Yes | Yes | Yes | No | No | Yes | Yes | Yes |
10 nm | No | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
NH3 | No | Yes | Yes | No | No | Yes | Yes | Yes |
RDE temp. | 23–28 °C | 14–19 °C | 7–12 °C | No | No | 25–33 °C | 1–12 °C | 21–25 °C |
RDE route | RDE1, RDE2 | RDE1 | RDE1 | No | No | RDE2 | RDE2 | RDE1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giechaskiel, B.; Lähde, T.; Clairotte, M.; Suarez-Bertoa, R.; Valverde, V.; Melas, A.D.; Selleri, T.; Bonnel, P. Emissions of Euro 6 Mono- and Bi-Fuel Gas Vehicles. Catalysts 2022, 12, 651. https://doi.org/10.3390/catal12060651
Giechaskiel B, Lähde T, Clairotte M, Suarez-Bertoa R, Valverde V, Melas AD, Selleri T, Bonnel P. Emissions of Euro 6 Mono- and Bi-Fuel Gas Vehicles. Catalysts. 2022; 12(6):651. https://doi.org/10.3390/catal12060651
Chicago/Turabian StyleGiechaskiel, Barouch, Tero Lähde, Michaël Clairotte, Ricardo Suarez-Bertoa, Victor Valverde, Anastasios D. Melas, Tommaso Selleri, and Pierre Bonnel. 2022. "Emissions of Euro 6 Mono- and Bi-Fuel Gas Vehicles" Catalysts 12, no. 6: 651. https://doi.org/10.3390/catal12060651
APA StyleGiechaskiel, B., Lähde, T., Clairotte, M., Suarez-Bertoa, R., Valverde, V., Melas, A. D., Selleri, T., & Bonnel, P. (2022). Emissions of Euro 6 Mono- and Bi-Fuel Gas Vehicles. Catalysts, 12(6), 651. https://doi.org/10.3390/catal12060651