An Efficient Electrocatalyst (PtCo/C) for the Oxygen Reduction Reaction
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Characterization
2.2. Electrochemical Studies
3. Experimental Materials and Methods
3.1. Raw Chemicals
3.2. Preparation Methods
3.3. Characterization
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kwon, J.; Choi, P.; Jo, S.; Oh, H.; Cho, K.; Lee, Y.-K.; Kim, S.; Eom, K. Identification of electrode degradation by carbon corrosion in polymer electrolyte membrane fuel cells using the distribution of relaxation time analysis. Electrochim. Acta 2022, 414, 140219. [Google Scholar] [CrossRef]
- Choi, S.R.; Lim, M.; Kim, D.Y.; An, W.Y.; Lee, S.W.; Choi, S.; Bae, S.J.; Yim, S.-D.; Park, J.-Y. Life prediction of membrane electrode assembly through load and potential cycling accelerated degradation testing in polymer electrolyte membrane fuel cells. Int. J. Hydrog. Energy 2022, 47, 17379–17392. [Google Scholar] [CrossRef]
- Chen, K.; Badji, A.; Laghrouche, S.; Djerdir, A. Polymer electrolyte membrane fuel cells degradation prediction using multi-kernel relevance vector regression and whale optimization algorithm. Appl. Energy 2022, 318, 119099. [Google Scholar] [CrossRef]
- Kim, J.; Kwon, O.; Yoo, H.; Choi, H.; Cha, H.; Kim, H.; Jeong, S.; Shin, M.; Im, D.; Jeong, Y.; et al. High-performance polymer electrolyte membrane fuel cells with nanoporous carbon nanotube layer in low humidity condition. J. Power Sources 2022, 537, 231416. [Google Scholar] [CrossRef]
- Le, T.D.; van Dao, D.; Adilbish, G.; Yu, Y.-T. Electrophoretic deposition of carbon-supported octahedral Pt–Ni alloy nanoparticle catalysts for cathode in polymer electrolyte membrane fuel cells. Int. J. Hydrog. Energy 2022, 47, 1833–1844. [Google Scholar] [CrossRef]
- Braaten, J.P.; Kariuki, N.N.; Myers, D.J.; Blackburn, S.; Brown, G.; Park, A.; Litster, S. Integration of a high oxygen permeability ionomer into polymer electrolyte membrane fuel cell cathodes for high efficiency and power density. J. Power Sources 2022, 522, 230821. [Google Scholar] [CrossRef]
- Kiani, M.; Tian, X.Q.; Zhang, W. Non-precious metal electrocatalysts design for oxygen reduction reaction in polymer electrolyte membrane fuel cells: Recent advances, challenges and future perspectives. Coord. Chem. Rev. 2021, 441, 213954. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Y.; Liu, L.; Li, M.; Lv, W.; Zhao, X.; Huang, F. One-pot synthesis of Pd@PtNi core-shell nanoflowers supported on the multi-walled carbon nanotubes with boosting activity toward oxygen reduction in alkaline electrolyte. J. Power Sources 2017, 365, 26–33. [Google Scholar] [CrossRef]
- Liu, J.; Jiao, M.; Luhua, J.; Barkholtz, H.M.; Lin, Z.; Wang, Y.; Jiang, L.; Wu, Z.; Liu, D.-J.; Zhuang, L.; et al. High performance platinum single atom electrocatalyst for oxygen reduction reaction. Nat. Commun. 2017, 8, 15938. [Google Scholar] [CrossRef] [Green Version]
- Lafforgue, C.; Chatenet, M.; Dubau, L.; Dekel, D.R. Accelerated stress test of Pt/C nanoparticles in an interface with an anion-exchange membrane—an identical-location transmission electron microscopy study. ACS Catal. 2018, 8, 1278–1286. [Google Scholar] [CrossRef]
- Dai, S.; Chou, J.-P.; Wang, K.-W.; Hsu, Y.-Y.; Hu, A.; Pan, X.; Chen, T. Platinum-trimer decorated cobalt-palladium core-shell nanocatalyst with promising performance for oxygen reduction reaction. Nat. Commun. 2019, 10, 440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhuang, Y.; Chou, J.P.; Chen, H.Y.T.; Hsu, Y.Y.; Hu, C.W.; Hu, A.; Chen, T.Y. Atomic scale Pt decoration promises oxygen reductionproperties of Co@Pd nanocatalysts in alkaline electrolytes for 310k redox cycles. Sustain. Energy Fuels. 2018, 2, 946–957. [Google Scholar] [CrossRef]
- Huang, X.; Zhao, Z.; Cao, L.; Chen, Y.; Zhu, E.; Lin, Z.; Huang, Y. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 2015, 348, 1230–1234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiciński, W.; Dyjak, S.; Tokarz, W. Carbon gel-derived Fe–N–C electrocatalysts for hydrogen-air polymer electrolyte fuel cells. J. Power Sources 2021, 513, 230537. [Google Scholar] [CrossRef]
- Pimperl, N.; Bevilacqua, N.; Schmid, M.A.; Torres, P.A.L.; El-Sayed, H.A.; Zeis, R.; Zeyer, K.P. Nitrogen-functionalized carbon-supported Pt catalysts implemented in high-temperature polymer electrolyte membrane fuel cell. J. Power Sources 2021, 507, 229971. [Google Scholar] [CrossRef]
- Loukrakpam, R.; Shan, S.; Petkov, V.; Yang, L.; Luo, J.; Zhong, C.J. Atomic Ordering Enhanced Electrocatalytic Activity of Nanoalloys for Oxygen Reduction Reaction. J. Phys. Chem. C 2013, 117, 20715–20721. [Google Scholar] [CrossRef]
- Jayasayee, K.; van Veen, J.; Manivasagam, T.; Celebi, S.; Hensen, E.; de Bruijn, F. Oxygen reduction reaction (ORR) activity and durability of carbon supported PtM (Co, Ni, Cu) alloys: Influence of particle size and non-noble metals. Appl. Catal. B 2012, 111, 515–526. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, N.; Fang, B.; Li, H.; Xiaotao, B.T.; Wang, H. A highly effiffifficient PtCo/C electrocatalyst for the oxygen reduction reaction. RSC Adv. 2015, 5, 56570. [Google Scholar] [CrossRef]
- Song, S.; Wang, Y.; Shen, P.K. Pulse-microwave assisted polyol synthesis of highly dispersed high loading Pt/C electrocatalyst for oxygen reduction reaction. J. Power Sources 2007, 170, 46–49. [Google Scholar] [CrossRef]
- Garcia-Gortes, J.M.; Perez-Ramirez, J.; Illan-Gomez, M.J.; de Salinas-Martinez, D. Activation by sintering of Pt-beta catalysts in deNOx HC-SCR. Structure–activity relationships. Catal. Commun. 2003, 4, 165–170. [Google Scholar] [CrossRef]
Sample | Crystallite Size (nm) a | Particle Size (nm) b | Pt:Co (Real Atomic Ratio) c |
---|---|---|---|
Commercial Pt/C | 4.3 | 4.1 ± 0.5 | / |
Prepared PtCo/C | 4.6 | 4.8 ± 0.5 | 3:1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, B.; Luo, X.; Zheng, Z.; Tang, R.; Zhang, Q.; Gholizadeh, M.; Wang, C.; Tan, Z. An Efficient Electrocatalyst (PtCo/C) for the Oxygen Reduction Reaction. Catalysts 2022, 12, 794. https://doi.org/10.3390/catal12070794
Hou B, Luo X, Zheng Z, Tang R, Zhang Q, Gholizadeh M, Wang C, Tan Z. An Efficient Electrocatalyst (PtCo/C) for the Oxygen Reduction Reaction. Catalysts. 2022; 12(7):794. https://doi.org/10.3390/catal12070794
Chicago/Turabian StyleHou, Bingxue, Xinlei Luo, Ziheng Zheng, Rui Tang, Qi Zhang, Mortaza Gholizadeh, Chengcheng Wang, and Zanxiong Tan. 2022. "An Efficient Electrocatalyst (PtCo/C) for the Oxygen Reduction Reaction" Catalysts 12, no. 7: 794. https://doi.org/10.3390/catal12070794
APA StyleHou, B., Luo, X., Zheng, Z., Tang, R., Zhang, Q., Gholizadeh, M., Wang, C., & Tan, Z. (2022). An Efficient Electrocatalyst (PtCo/C) for the Oxygen Reduction Reaction. Catalysts, 12(7), 794. https://doi.org/10.3390/catal12070794