F−@d4r, a New Type of Acidic Catalytic Site in Zeolite
Abstract
:1. Introduction
2. Results
2.1. Characterization of Catalysts
2.2. Catalytic Performance
3. Materials and Methods
3.1. Synthesis of Zeolites
3.2. Catalytic Study
3.3. Determination of F− Contents
3.4. Zeolites Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Flanigen, E.M.; Patton, R.L. Silica polymorph and process for preparing same. U.S. Patent 4,073,865A, 14 February 1978. [Google Scholar]
- Camblor, M.A.; Villaescusa, L.A.; Díaz-Cabañas, M.J. Synthesis of all-silica and high-silica molecular sieves in fluoride media. Top. Catal. 1999, 9, 59–76. [Google Scholar] [CrossRef] [Green Version]
- Camblor, M.A.; Barrett, P.A.; Díaz-Cabañas, M.A.-J.; Villaescusa, L.A.; Puche, M.; Boix, T.; Pérez, E.; Koller, H. High silica zeolites with three-dimensional systems of large pore channels. Micropor. Mesopor. Mater. 2001, 48, 11–22. [Google Scholar] [CrossRef]
- Qiu, S.; Yu, J.; Zhu, G.; Terasaki, O.; Nozue, Y.; Pang, W.; Xu, R. Strategies for the synthesis of large zeolite single crystals. Micropor. Mesopor. Mater. 1998, 21, 245–251. [Google Scholar] [CrossRef]
- Koller, H.; Lobo, R.F.; Burkett, S.L.; Davis, M.E. SiO−.···HOSi Hydrogen Bonds in As-Synthesized High-Silica Zeolites. J. Phys. Chem. 1995, 99, 12588–12596. [Google Scholar] [CrossRef]
- Camblor, M.A.; Corma, A.; Valencia, S. Spontaneous nucleation and growth of pure silica zeolite-β free of connectivity defects. Chem. Commun. 1996, 20, 2365–2366. [Google Scholar] [CrossRef]
- Corma, A.; Navarro, M.T.; Rey, F.; Rius, J.; Valencia, S. Pure Polymorph C of Zeolite Beta Synthesized by Using Framework Isomorphous Substitution as a Structure-Directing Mechanism. Angew. Chem. Int. Ed. 2001, 40, 2277–2280. [Google Scholar] [CrossRef]
- Jiang, J.; Jorda, J.L.; Diaz-Cabanas, M.J.; Yu, J.; Corma, A. The Synthesis of an Extra-Large-Pore Zeolite with Double Three-Ring Building Units and a Low Framework Density. Angew. Chem. Int. Ed. 2010, 49, 4986–4988. [Google Scholar] [CrossRef]
- Jiang, J.; Jorda, J.L.; Yu, J.; Baumes, L.A.; Mugnaioli, E.; Diaz-Cabanas, M.J.; Kolb, U.; Corma, A. Synthesis and Structure Determination of the Hierarchical Meso-Microporous Zeolite ITQ-43. Science 2011, 333, 1131. [Google Scholar] [CrossRef]
- Wen, J.L.; Zhang, J.H.; Jiang, J.X. Extra-large Pore Zeolites: A Ten-year Updated Review. Chem. J. Chin. Univ. 2021, 42, 101–116. [Google Scholar]
- Camblor, M.A.; Corma, A.; Lightfoot, P.; Villaescusa, L.A.; Wright, P.A. Synthesis and Structure of ITQ-3, the First Pure Silica Polymorph with a Two-Dimensional System of Straight Eight-Ring Channels. Angew. Chem. Int. Ed. 1997, 36, 2659–2661. [Google Scholar] [CrossRef]
- Cantín, A.; Corma, A.; Leiva, S.; Rey, F.; Rius, J.; Valencia, S. Synthesis and Structure of the Bidimensional Zeolite ITQ-32 with Small and Large Pores. J. Am. Chem. Soc. 2005, 127, 11560–11561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, C.; Liu, X.N.; Nie, C.Y.; Chen, L.; Tian, P.; Xu, H.Y.; Guo, P.; Liu, Z.M. Applications of X-ray and Electron Crystallography in Structural Investigations of Zeolites. Chem. J. Chin. Univ. 2021, 42, 188–200. [Google Scholar]
- Corma, A.; Puche, M.; Rey, F.; Sankar, G.; Teat, S.J. A Zeolite Structure (ITQ-13) with Three Sets of Medium-Pore Crossing Channels Formed by9- and 10-Rings. Angew. Chem. Int. Ed. 2003, 42, 1156–1159. [Google Scholar] [CrossRef]
- Villaescusa, L.A.; Barrett, P.A.; Camblor, M.A. Calcination of Octadecasil: Fluoride Removal and Symmetry of the Pure SiO2 Host. Chem. Mater. 1998, 10, 3966–3973. [Google Scholar] [CrossRef]
- Liu, X.; Ravon, U.; Tuel, A. Evidence for F−/SiO− Anion Exchange in the Framework of As-Synthesized All-Silica Zeolites. Angew. Chem. Int. Ed. 2011, 50, 5900–5903. [Google Scholar] [CrossRef]
- Barrett, P.A.; Boix, T.; Puche, M.; Olson, D.H.; Jordan, E.; Koller, H.; Camblor, M.A. ITQ-12: A new microporous silica polymorph potentially useful for light hydrocarbon separations. Chem. Commun. 2003, 17, 2114–2115. [Google Scholar] [CrossRef] [Green Version]
- Goesten, M.G.; Hoffmann, R.; Bickelhaupt, F.M.; Hensen, E.J.M. Eight-coordinate fluoride in a silicate double-four-ring. Proc. Natl. Acad. Sci. USA 2017, 114, 828. [Google Scholar] [CrossRef] [Green Version]
- McCusker, C.B. Database of Zeolite Structures. Available online: http://www.iza-structure.org/databases/ (accessed on 20 May 2021).
- Huang, Q.; Chen, N.; Wen, M.; Liang, W.; Li, R.; Zhao, Y.; Zeng, Z.; Zhang, C.; Jiang, J. Seed-assisted direct synthesis of aluminosilicate form of ITQ-58 zeolite. Micropor. Mesopor. Mater. 2021, 326, 111362. [Google Scholar] [CrossRef]
- Neto, B.A.D.; Rocha, R.O.; Rodrigues, M.O. Catalytic Approaches to Multicomponent Reactions: A Critical Review and Perspectives on the Roles of Catalysis. Molecules 2022, 27, 132. [Google Scholar] [CrossRef]
- Huang, Q.; Chen, N.; Liu, L.; Arias, K.S.; Iborra, S.; Yi, X.; Ma, C.; Liang, W.; Zheng, A.; Zhang, C.; et al. Direct synthesis of the organic and Ge free Al containing BOG zeolite (ITQ-47) and its application for transformation of biomass derived molecules. Chem. Sci. 2020, 11, 12103–12108. [Google Scholar] [CrossRef]
- Baerlocher, C.; Xie, D.; McCusker, L.B.; Hwang, S.-J.; Chan, I.Y.; Ong, K.; Burton, A.W.; Zones, S.I. Ordered silicon vacancies in the framework structure of the zeolite catalyst SSZ-74. Nat. Mater. 2008, 7, 631. [Google Scholar] [CrossRef] [PubMed]
- Qin, Z.X.; Melinte, G.; Gilson, J.P.; Jaber, M.; Bozhilov, K.; Boullay, P.; Mintova, S.; Ersen, O.; Valtchev, V. The Mosaic Structure of Zeolite Crystals. Angew. Chem. Int. Ed. 2016, 55, 15049–15052. [Google Scholar] [CrossRef] [PubMed]
- Přech, J.; Bozhilov, K.N.; El Fallah, J.; Barrier, N.; Valtchev, V. Fluoride etching opens the structure and strengthens the active sites of the layered ZSM-5 zeolite. Micropor. Mesopor. Mater. 2019, 280, 297–305. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Liang, W.; Wang, Y.; Tong, Y.; Li, Z.; Liang, Y.; Liu, X.; Jiang, J. F−@d4r, a New Type of Acidic Catalytic Site in Zeolite. Catalysts 2022, 12, 809. https://doi.org/10.3390/catal12080809
Zhao Y, Liang W, Wang Y, Tong Y, Li Z, Liang Y, Liu X, Jiang J. F−@d4r, a New Type of Acidic Catalytic Site in Zeolite. Catalysts. 2022; 12(8):809. https://doi.org/10.3390/catal12080809
Chicago/Turabian StyleZhao, Yukai, Weichi Liang, Yihan Wang, Yan Tong, Zhanhong Li, Yuqian Liang, Xiaolong Liu, and Jiuxing Jiang. 2022. "F−@d4r, a New Type of Acidic Catalytic Site in Zeolite" Catalysts 12, no. 8: 809. https://doi.org/10.3390/catal12080809
APA StyleZhao, Y., Liang, W., Wang, Y., Tong, Y., Li, Z., Liang, Y., Liu, X., & Jiang, J. (2022). F−@d4r, a New Type of Acidic Catalytic Site in Zeolite. Catalysts, 12(8), 809. https://doi.org/10.3390/catal12080809