Photocatalytic Oxidative Desulfurization of Thiophene by Exploiting a Mesoporous V2O5-ZnO Nanocomposite as an Effective Photocatalyst
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the Manufactured Materials
2.2. Photocatalytic Performance Assessment
3. Experimental
3.1. Materials
3.2. Construction of Mesoporous V2O5-ZnO Nanostructured Materials
3.3. Characterization of the Manufactured Materials
3.4. Photocatalytic Performance Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, C.; Ji, H.; Chen, C.; Ma, W.; Zhao, J. Desulfurization of thiophenes in oils into H2SO4 using molecular oxygen. Appl. Catal. B Environ. 2018, 235, 207–213. [Google Scholar] [CrossRef]
- Lin, F.; Jiang, Z.; Tang, N.; Zhang, C.; Chen, Z.; Liu, T.; Dong, B. Photocatalytic oxidation of thiophene on RuO2/SO42−-TiO2: Insights for cocatalyst and solid-acid. Appl. Catal. B Environ. 2016, 188, 253–258. [Google Scholar] [CrossRef]
- Colon, G.; Hidalgo, M.C.; Munuera, G.; Ferino, I.; Cutrufello, M.G.; Navío, J.A. Structural and surface approach to the enhanced photocatalytic activity of sulfated TiO2 photocatalyst. Appl. Catal. B Environ. 2006, 63, 45–59. [Google Scholar] [CrossRef]
- Altass, H.M.; Morad, M.; Khder, A.S.; Manna, M.A.; Jassas, R.S.; Alsimare, A.A.; Ahmed, S.A.; Salama, R.S. Enhanced Catalytic Activity for CO Oxidation by Highly Active Pd Nanoparticles Supported on Reduced Graphene Oxide/Copper Metal-Organic Framework. J. Taiwan Inst. Chem. Eng. 2021, 128, 194–208. [Google Scholar] [CrossRef]
- Liu, C.; Mao, S.; Shi, M.; Wang, F.; Xia, M.; Chen, Q.; Ju, X. Peroxymonosulfate activation through 2D/2D Z-scheme CoAl-LDH/BiOBr photocatalyst under visible light for ciprofloxacin degradation. J. Hazard. Mater. 2021, 420, 126613. [Google Scholar] [CrossRef]
- El-Hakam, S.A.; Shorifi, F.T.A.L.; Salama, R.S.; Gamal, S.; AboEl-Yazeed, W.S.; Ibrahim, A.A.; Ahmed, A.I. Application of nanostructured mesoporous silica/bismuth vanadate composite catalysts for the degradation of methylene blue and brilliant green. J. Mater. Res. Technol. 2022, 18, 1963–1976. [Google Scholar] [CrossRef]
- Alshorifi, F.T.; Alswat, A.A.; Mannaa, M.A.; Alotaibi, M.T.; El-Bahy, S.M.; Salama, R.S. Facile and Green Synthesis of Silver Quantum Dots Immobilized onto a Polymeric CTS–PEO Blend for the Photocatalytic Degradation of p-Nitrophenol. ACS Omega 2021, 6, 30432–30441. [Google Scholar] [CrossRef]
- Liu, C.; Mao, S.; Wang, H.; Wu, Y.; Wang, F.; Xia, M.; Chen, Q. Peroxymonosulfate-assisted for facilitating photocatalytic degradation performance of 2D/2D WO3/BiOBr S-scheme heterojunction. Chem. Eng. J. 2022, 430, 132806. [Google Scholar] [CrossRef]
- Altass, H.M.; Khder, A.S.; Ahmed, S.A.; Morad, M.; Alsabei, A.A.; Jassas, R.S.; Althagafy, K.; Ahmed, A.I.; Salama, R.S. Highly efficient, recyclable cerium-phosphate solid acid catalysts for the synthesis of tetrahydrocarbazole derivatives by Borsche-Drechsel cyclization. React. Kinet. Mech. Catal. 2021, 134, 143–161. [Google Scholar] [CrossRef]
- Li, X.; Yang, X.; Zhou, F.; Zhang, J.; Yang, H.; Wang, Y.; Zhao, Y.; Yuan, X.; Ju, J.; Hu, S. Construction of novel amphiphilic [Bmin]3PMo12O40/g-C3N4 heterojunction catalyst with outstanding photocatalytic oxidative desulfurization performance under visible light. J. Taiwan Inst. Chem. Eng. 2019, 100, 210–219. [Google Scholar] [CrossRef]
- Zhang, X.; Song, H.; Sun, C.; Chen, C.; Han, F.; Li, X. Photocatalytic oxidative desulfurization and denitrogenation of fuels over sodium doped graphitic carbon nitride nanosheets under visible light irradiation. Mater. Chem. Phys. 2019, 226, 34–43. [Google Scholar] [CrossRef]
- Djouambi, N.; Bougheloum, C.; Messalhi, A.; Bououdina, M.; Banerjee, A.; Chakraborty, S.; Ahuja, R. New Concept on Photocatalytic Degradation of Thiophene Derivatives: Experimental and DFT Studies. J. Phys. Chem. C 2018, 122, 15646–15651. [Google Scholar] [CrossRef]
- Yu, S.Y.; Waku, T.; Iglesia, E. Catalytic desulfurization of thiophene on H-ZSM5 using alkanes as co-reactants. Appl. Catal. A Gen. 2003, 242, 111–121. [Google Scholar] [CrossRef]
- Nemeth, L.; Bare, S.R.; Rathbun, W.; Gatter, M.; Low, J. Oxidative desulfurization of sulfur compounds: Oxidation of thiophene and derivatives with hydrogen peroxide using Ti-Beta catalyst. Stud. Surf. Sci. Catal. 2008, 174, 1017–1020. [Google Scholar]
- Mello, P.D.A.; Duarte, F.A.; Nunes, M.A.G.; Alencar, M.S.; Moreira, E.M.; Korn, M.; Dressler, V.L.; Flores, É.M.M. Ultrasound-assisted oxidative process for sulfur removal from petroleum product feedstock. Ultrason. Sonochem. 2009, 16, 732–736. [Google Scholar] [CrossRef] [PubMed]
- Jose, N.; Sengupta, S.; Basu, J.K. Optimization of oxidative desulfurization of thiophene using Cu/titanium silicate-1 by box-behnken design. Fuel 2011, 90, 626–632. [Google Scholar] [CrossRef]
- Shawky, A.; Albukhari, S.M.; Amin, M.S.; Zaki, Z.I. Mesoporous V2O5/g-C3N4 nanocomposites for promoted mercury (II) ions reduction under visible light. J. Inorg. Organomet. Polym. Mater. 2021, 31, 4209–4221. [Google Scholar] [CrossRef]
- El-Yazeed, W.S.A.; El-Hakam, S.A.; Salama, R.S.; Ibrahim, A.A.; Ahmed, A.I. Ag-PMA supported on MCM-41: Surface Acidity and Catalytic Activity. J. Sol-Gel Sci. Technol. 2022, 102, 387–399. [Google Scholar] [CrossRef]
- Mohamed, R.M.; McKinney, D.; Kadi, M.W.; Mkhalid, I.A.; Sigmund, W. Platinum/zinc oxide nanoparticles: Enhanced photocatalysts degrade malachite green dye under visible light conditions. Ceram. Int. 2016, 42, 9375–9381. [Google Scholar] [CrossRef]
- Mohamed, R.M.; Harraz, F.A.; Mkhalid, I.A. Hydrothermal synthesis of size-controllable Yttrium Orthovanadate (YVO4) nanoparticles and its application in photocatalytic degradation of direct blue dye. J. Alloys Compd. 2012, 532, 55–60. [Google Scholar] [CrossRef]
- Mohamed, R.M.; Mkhalid, I.A. Visible light photocatalytic degradation of cyanide using Au-TiO2/multi-walled carbon nanotube nanocomposites. J. Ind. Eng. Chem. 2015, 22, 390–395. [Google Scholar] [CrossRef]
- Kadi, M.W.; McKinney, D.; Mohamed, R.M.; Mkhalid, I.A.; Sigmund, W. Fluorine doped zinc oxide nanowires: Enhanced photocatalysts degrade malachite green dye under visible light conditions. Ceram. Int. 2016, 42, 4672–4678. [Google Scholar] [CrossRef]
- Sobahi, T.R.; Amin, M.S. Synthesis of ZnO/ZnFe2O4/Pt nanoparticles heterojunction photocatalysts with superior photocatalytic activity. Ceram. Inter. 2020, 46, 3558–3564. [Google Scholar] [CrossRef]
- Kadi, M.W.; Mohamed, R.M.; Ismail, A.A.; Bahnemann, D.W. Soft and hard templates assisted synthesis mesoporous CuO/g-C3N4 heterostructures for highly enhanced and accelerated Hg (II) photoreduction under visible light. J. Colloid Interface Sci. 2020, 580, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Ismail, A.A.; Ibrahim, I.A.; Mohamed, R.M. Sol-gel synthesis of vanadia–silica for photocatalytic degradation of cyanide. Appl. Catal. B Environ. 2003, 45, 161–166. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, Y.; He, S.; Zhang, J.; Xu, X.; Yang, Y.; Nosheen, F.; Saleem, F.; He, W.; Wang, X. Hierarchical Zn/Ni-MOF-2 nanosheet-assembled hollow nanocubes for multicomponent catalytic reactions. Angew. Chem. Int. Ed. 2014, 53, 12517–12521. [Google Scholar]
- Mohamed, R.M.; Ismail, A.A.; Kadi, M.W.; Alresheedi, A.S.; Mkhalid, I.A. Photocatalytic performance mesoporous Nd2O3 modified ZnO nanoparticles with enhanced degradation of tetracycline. Catal. Today 2021, 380, 259–267. [Google Scholar] [CrossRef]
- Mohamed, R.M.; Mkhalid, I.A.; Alhaddad, M.; Basaleh, A.; Alzahrani, K.A.; Ismail, A.A. Construction of hierarchical ZnS@ZnO secured from metal-organic framework-ZnS@ZIF-8 for enhanced photoreduction of CO2. J. Taiwan Inst. Chem. Eng. 2021, 127, 208–219. [Google Scholar] [CrossRef]
- Rao, N.; Sivasankar, B.; Sadasivam, V. Kinetic study on the photocatalytic degradation of salicylic acid using ZnO catalyst. J. Hazard Mater. 2009, 166, 1357–1361. [Google Scholar]
- Wu, W.Y.; Ting, J.M.; Huang, P.J. Electrospun ZnO nanowires as gas sensors for ethanol detection. Nanoscale Res. Lett. 2009, 4, 513–517. [Google Scholar] [CrossRef]
- Lee, K.S.; Park, C.W.; Kim, J.D. Electrochemical properties and characterization of various ZnO structures using a precipitation method. Colloids Surf. Physicochem. Eng. Asp. 2017, 512, 87–92. [Google Scholar] [CrossRef]
- Maiti, U.N.; Ahmed, S.F.; Mitra, M.K.; Chattopadhyay, K.K. Novel low-temperature synthesis of ZnO nanostructures and its efficient field emission property. Mater. Res. Bull. 2009, 44, 134–139. [Google Scholar] [CrossRef]
- Baruah, S.; Dutta, J. pH-dependent growth of zinc oxide nanorods. J. Cryst. Growth 2009, 311, 2549–2554. [Google Scholar] [CrossRef]
- Zhou, L.; Han, Z.; Li, G.; Zhao, Z. Journal of Physics and Chemistry of Solids Template-free synthesis and photocatalytic activity of hierarchical hollow ZnO microspheres composed of radially aligned nanorods. J. Phys. Chem. Solid. 2021, 148, 109719. [Google Scholar] [CrossRef]
- Lee, S.K.; Kim, A.; Kim, S.W. Control of ZnO shape using sonochemical synthetic method and its photocatalytic activity. Nanosci. Nanotechnol. Lett. 2017, 9, 969–974. [Google Scholar] [CrossRef]
- Abinaya, C.; Prasankumar, T.; Jose, S.P.; Anitha, K.; Ekstrum, C.; Pearce, J.M.; Mayandi, J. Synthetic method dependent physicochemical properties and electrochemical performance of Ni-doped ZnO. Chem. Sel. 2017, 2, 9014–9023. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, M.; Wang, Q.; Li, L. Efficient and sustainable photocatalytic degradation of dye in wastewater with porous and recyclable wood foam@V2O5 photocatalysts. J. Clean. Prod. 2022, 332, 130054. [Google Scholar] [CrossRef]
- Singh, J.; Singh, R.C. Structural, optical, dielectric and transport properties of ball mill synthesized ZnO–V2O5 nano-composites. J. Mol. Struct. 2020, 1215, 128261. [Google Scholar] [CrossRef]
- Zeleke, M.A.; Kuo, D.-H. Synthesis and application of V2O5-CeO2 nanocomposite catalyst for enhanced degradation of methylene blue under visible light illumination. Chemosphere 2019, 235, 935–944. [Google Scholar] [CrossRef]
- Reddy, C.V.; Reddy, I.N.; Koutavarapu, R.; Reddy, K.R.; Saleh, T.A.; Aminabhavi, T.M.; Shim, J. Novel edge-capped ZrO2 nanoparticles onto V2O5 nanowires for efficient photosensitized reduction of chromium (Cr (VI)), photoelectrochemical solar water splitting, and electrochemical energy storage applications. Chem. Eng. J. 2022, 430, 132988. [Google Scholar] [CrossRef]
- Chai, S.; Shuangde, L.; Weiman, L.; Qinzhong, Z.; Dongdong, W.; Yunfa, C. Fabrication of high loading V2O5/TiO2 catalysts derived from metal-organic framework with excellent activity for chlorobenzene decomposition. Appl. Surf. Sci. 2022, 572, 151511. [Google Scholar] [CrossRef]
- Lyu, L.-M.; Huang, M.H. Investigation of relative stability of different facets of Ag2O nanocrystals through face-selective etching. J. Phys. Chem. C 2011, 115, 17768–17773. [Google Scholar] [CrossRef]
- Kadi, M.W.; Mohamed, R.M.; Ismail, A.A.; Bahnemann, D.W. Decoration of g-C3N4 nanosheets by mesoporous CoFe2O4 nanoparticles for promoting visible-light photocatalytic Hg (II) reduction. Colloids Surf. A Physicochem. Eng. Asp. 2020, 603, 125206. [Google Scholar] [CrossRef]
- Kadi, M.W.; Mohamed, R.M.; Ismail, A.A.; Bahnemann, D.W. Performance of mesoporous α-Fe2O3/g-C3N4 heterojunction for photoreduction of Hg (II) under visible light illumination. Ceram. Int. 2020, 46, 23098–23106. [Google Scholar] [CrossRef]
- Ma, M.; Ji, F.; Du, X.; Liu, S.; Liang, C.; Xiong, L. V2O5@ TiO2 composite as cathode material for lithium-ion storage with excellent performance. J. Solid State Electrochem. 2020, 24, 2419–2425. [Google Scholar] [CrossRef]
- Yan, C.; Liu, L. Sn-doped V2O5 nanoparticles as catalyst for fast removal of ammonia in air via PEC and PEC-MFC. Chem. Eng. J. 2020, 392, 123738. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, S.K.; Sharma, G.; Naushad, M.; Stadler, F.J. CeO2/g-C3N4/V2O5 ternary nano hetero-structures decorated with CQDs for enhanced photo-reduction capabilities under different light sources: Dual, Z.-scheme mechanism. J. Alloys Compd. 2020, 838, 155692. [Google Scholar] [CrossRef]
- Liu, B.; Yin, D.; Zhao, F.; Khaing, K.K.; Chen, T.; Wu, C.; Deng, L.; Li, L.; Huang, K.; Zhang, Y. Construction of a Novel Z-scheme Heterojunction with Molecular Grafted Carbon Nitride Nanosheets and V2O5 for Highly Efficient Photocatalysis. J. Phys. Chem. C 2019, 123, 4193–4203. [Google Scholar] [CrossRef]
- Lee, M.; Balasingam, S.K.; Jeong, H.Y.; Hong, W.G.; Lee, H.-B.; Kim, B.H.; Jun, Y. One-step hydrothermal synthesis of graphene decorated V2O5 nanobelts for enhanced electrochemical energy storage. Sci. Rep. 2015, 5, 8151. [Google Scholar] [CrossRef]
- Shawky, A.; Albukhari, S.M. Design of Ag3VO/ZnO nanocrystals as visible-light-active photocatalyst for efficient and rapid oxidation of ciprofloxacin antibiotic waste. J. Taiwan Inst. Chem. Eng. 2022, 133, 104268. [Google Scholar] [CrossRef]
- Shawky, A.; Alshaikh, H. Cobalt ferrite-modified sol-gel synthesized ZnO nanoplatelets for fast and bearable visible light remediation of ciprofloxacin in water. Environ. Res. 2022, 205, 112462. [Google Scholar] [CrossRef]
- Mohamed, R.M.; Shawky, A. Visible-light-driven hydrogen production over ZIF-8 derived Co3O4/ZnO S-scheme based p-n heterojunctions. Opt. Mater. 2022, 124, 112012. [Google Scholar] [CrossRef]
- Biesinger, M.C.; Lau, L.W.M.; Gerson, A.R.; Smart, R.S.C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V., Cu and Zn. Appl. Surf. Sci. 2010, 257, 887–888. [Google Scholar] [CrossRef]
- Tauc, J.; Grigorovici, R.; Vancu, A. Optical Properties and Electronic Structure of Amorphous Germanium. Phys. Status Solidi 1966, 15, 627. [Google Scholar] [CrossRef]
- Sarkar, D.; Ghosh, C.K.; Mukherjee, S.; Chattopadhyay, K.K. Three dimensional Ag2O/TiO2 Type-II (p-n) nanoheterojunctions for superior photocatalytic Activity. ACS Appl. Mater. Interfaces 2013, 5, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Hellsing, B.; Zhdanov, V.P. The island model of a Langmuir-Hinshelwood reaction. Chem. Phys. Lett. 1988, 147, 613–618. [Google Scholar] [CrossRef]
- Zhao, D.; Zhang, J.; Wang, J.; Liang, W.; Li, H. Photocatalytic oxidation desulfurization of diesel oil using Ti-containing zeolite. Petrol. Sci. Technol. 2009, 27, 1–11. [Google Scholar] [CrossRef]
- Shawky, A.; Alhaddad, M.; Al-Namshah, K.S.; Mohamed, R.M.; Awwad, N.S. Synthesis of Pt-decorated CaTiO3 nanocrystals for efficient photoconversion of nitrobenzene to aniline under visible light. J. Mol. Liq. 2020, 304, 112704. [Google Scholar] [CrossRef]
- Mohamed, R.M.; Shawky, A. CNT supported Mn-doped ZnO nanoparticles: Simple synthesis and improved photocatalytic activity for degradation of malachite green dye under visible light. Appl. Nanosci. 2018, 8, 1179–1188. [Google Scholar] [CrossRef]
- Alsaggaf, W.T.; Shawky, A.; Mahmoud, M.H.H. S-scheme CuO/ZnO p-n heterojunctions for endorsed photocatalytic reduction of mercuric ions under visible light. Inorg. Chem. Commun. 2022, 143, 109778. [Google Scholar] [CrossRef]
- Lin, F.; Wang, D.; Jiang, Z.; Ma, Y.; Li, J.; Li, R.; Li, C. Photocatalytic oxidation of thiophene on BiVO4 with dual co-catalysts Pt and RuO2 under visible light irradiation using molecular oxygen as oxidant. Energy Environ. Sci. 2012, 5, 6400. [Google Scholar] [CrossRef]
- Liu, C.; Mao, S.; Shi, M.; Hong, X.; Wang, D.; Wang, F.; Xia, M.; Chen, Q. Enhanced photocatalytic degradation performance of BiVO4/BiOBr through combining Fermi level alteration and oxygen defect engineering. Chem. Eng. J. 2022, 449, 137757. [Google Scholar] [CrossRef]
- Kadi, M.W.; El-Hout, S.I.; Shawky, A.; Mohamed, R.M. Enhanced mercuric ions reduction over mesoporous S-scheme LaFeO3/ZnO p-n heterojunction photocatalysts. J. Taiwan Inst. Chem. Eng. 2022, 138, 104476. [Google Scholar] [CrossRef]
- Kolanu, S.; Fite, S.; Chen, Q.-C.; Lee, W.; Churchil, D.G.; Gross, Z.; Zhan, X. Clean Ar–Me conversion to Ar-aldehyde with the aid of carefully designed metallocorrole photocatalysts. Photochem. Photobiol. Sci. 2020, 19, 996–1000. [Google Scholar]
Samples | SBET m2 g−1 | Bandgap, eV | k, min−1 | R2 | r, µmolL−1 min−1 |
---|---|---|---|---|---|
ZnO | 145 | 3.21 | 5.4 × 10−4 | 0.990 | 3.877 |
1.0 % V2O5-ZnO | 130 | 3.02 | 0.00248 | 0.992 | 17.684 |
2.0% V2O5-ZnO | 124 | 2.95 | 0.00801 | 0.994 | 57.119 |
3.0% V2O5-ZnO | 119 | 2.90 | 0.0166 | 0.994 | 118.374 |
4.0% V2O5-ZnO | 118 | 2.89 | 0.0173 | 0.992 | 123.366 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhaddad, M.; Shawky, A.; Zaki, Z.I. Photocatalytic Oxidative Desulfurization of Thiophene by Exploiting a Mesoporous V2O5-ZnO Nanocomposite as an Effective Photocatalyst. Catalysts 2022, 12, 933. https://doi.org/10.3390/catal12090933
Alhaddad M, Shawky A, Zaki ZI. Photocatalytic Oxidative Desulfurization of Thiophene by Exploiting a Mesoporous V2O5-ZnO Nanocomposite as an Effective Photocatalyst. Catalysts. 2022; 12(9):933. https://doi.org/10.3390/catal12090933
Chicago/Turabian StyleAlhaddad, Maha, Ahmed Shawky, and Zaki I. Zaki. 2022. "Photocatalytic Oxidative Desulfurization of Thiophene by Exploiting a Mesoporous V2O5-ZnO Nanocomposite as an Effective Photocatalyst" Catalysts 12, no. 9: 933. https://doi.org/10.3390/catal12090933
APA StyleAlhaddad, M., Shawky, A., & Zaki, Z. I. (2022). Photocatalytic Oxidative Desulfurization of Thiophene by Exploiting a Mesoporous V2O5-ZnO Nanocomposite as an Effective Photocatalyst. Catalysts, 12(9), 933. https://doi.org/10.3390/catal12090933