Evaluation of Porous Honeycomb-Shaped CuO/CeO2 Catalyst in Vapour Phase Glycerol Reforming for Sustainable Hydrogen Production
Abstract
:1. Introduction
2. Results
2.1. Textual and Physicochemical Properties of the Catalyst
2.2. Dual-Criteria Joint Optimisation Approach
2.2.1. Mathematical Regression Model
2.2.2. Parametric Analysis
Effect of Cu Loading on CuO/CeO2 Catalyst (wt.%)
Effect of Reaction Temperature (K)
Effect of Weight Hourly Space Velocity (h−1)
Effect of Glycerol Concentration (wt.%)
2.2.3. Post Confirmation Run Analysis
2.3. Energy Analysis via IAMD Approach
3. Materials and Methods
3.1. Samples and Catalyst Preparation
3.2. Catalyst Characterisation
3.3. Vapour Phase Catalytic Glycerol Reforming
3.4. Optimisation Study
3.5. Energy Analysis
4. Conclusions
- (a)
- A small crystalline size of CeO2 in the range of 6.89–7.41 nm was observed in PXRD, which is much lower compared with other synthesis methods, suggesting that the prepared impregnation-vacuum drying synthesis method is feasible to be adopted to a large-scale process.
- (b)
- No Cu agglomeration was observed in the catalyst even at high Cu loading, suggesting that the Cu elements were homogeneously dispersed throughout the CeO2 support.
- (c)
- From the experimental work, the highest glycerol conversion (94%) and H2 production (81 vol.%) can be obtained under the reaction conditions of the amount of Cu species loading (10 wt.%), reaction temperature (823 K), WHSV (2hr−1) and glycerol concentration (15 wt.%).
- (d)
- The predicted optimised condition with the lowest standard deviation (reaction condition: Cu loading = 7.3 wt%, reaction temperature = 719.7 K, WHSV = 1.99 hr−1 and glycerol concentration 7.05 vol%) was deduced from the RSM CCD model, suggesting that this model can be applied in a large bench-scale study for benchmarking purposes.
- (e)
- Principal component analysis (PCA) can be performed as a future work to identify the main correlations between the domain factors that enhance the H2 production.
- (f)
- Under the optimum condition, the HENS analysis shows that the VPCGR plant (scale: 100 kg hr−1) requires 111.3 MJ/h and −14.7 MJ/h for heat and cooling utilities, respectively; this result can be set as a reference for scale-up purposes.
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Corral-Montoya, F.; Telias, M.; Malz, N. Unveiling the political economy of fossil fuel extractivism in Colombia: Tracing the processes of phase-in, entrenchment, and lock-in. Energy Res. Soc. Sci. 2022, 88, 102377. [Google Scholar] [CrossRef]
- Liu, W.; Zuo, H.; Wang, J.; Xue, Q.; Ren, B.; Yang, F. The production and application of hydrogen in steel industry. Int. J. Hydrogen Energy 2021, 46, 10548. [Google Scholar] [CrossRef]
- Mehrpooya, M.; Habibi, R. A review on hydrogen production thermochemical water-splitting cycles. J. Clean. Prod. 2020, 275, 123836. [Google Scholar] [CrossRef]
- Habib, M.A.; Harale, A.; Paglieri, S.; Alrashed, F.S.; Al-Sayoud, A.; Rao, M.V.; Nemitallah, M.A.; Hossain, S.; Hussien, M.; Ali, A.; et al. Palladium-Alloy Membrane Reactors for Fuel Reforming and Hydrogen Production: A Review. Energy Fuels 2021, 35, 5558. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, S.-X.; Yao, R.; Wu, Y.-H.; Qiu, J.-S. Progress and prospects of hydrogen production: Opportunities and challenges. J. Electron. Sci. Technol. 2021, 19, 100080. [Google Scholar] [CrossRef]
- Kalamaras, C.M.; Efstathiou, A.M. Hydrogen Production Technologies: Current State and Future Developments. Conf. Pap. Energy 2013, 2013, 690627. [Google Scholar] [CrossRef]
- Noussan, M.; Raimondi, P.P.; Scita, R.; Hafner, M. The Role of Green and Blue Hydrogen in the Energy Transition—A Technological and Geopolitical Perspective. Sustainability 2021, 13, 298. [Google Scholar] [CrossRef]
- Megía, P.J.; Vizcaíno, A.J.; Calles, J.A.; Carrero, A. Hydrogen Production Technologies: From Fossil Fuels toward Renewable Sources. A Mini Review. Energy Fuels 2021, 35, 16403. [Google Scholar] [CrossRef]
- Chun Minh, A.L.; Samudrala, S.P.; Bhattacharya, S. Valorisation of glycerol through catalytic hydrogenolysis routes for sustainable production of value-added C3 chemicals: Current and future trends. Sustain. Energy Fuels 2022, 6, 596–639. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, Y.; Jin, Y.; Liu, J.; Qin, X.; Liu, W.; Guo, L. Highly efficient fermentation of glycerol and 1,3-propanediol using a novel starch as feedstock. Food Biosci. 2022, 46, 101521. [Google Scholar] [CrossRef]
- Xu, W.; Liu, Z.; Johnston-Peck, A.C.; Senanayake, S.D.; Zhou, G.; Stacchiola, D.; Stach, E.A.; Rodriguez, J.A. Steam Reforming of Ethanol on Ni/CeO2: Reaction Pathway and Interaction between Ni and the CeO2 Support. ACS Catal. 2013, 3, 975. [Google Scholar] [CrossRef]
- Ye, R.; Xiao, S.; Lai, Q.; Wang, D.; Huang, Y.; Feng, G.; Zhang, R.; Wang, T. Advances in Enhancing the Stability of Cu-Based Catalysts for Methanol Reforming. Catalysts 2022, 12, 747. [Google Scholar] [CrossRef]
- Bepari, S.; Kuila, D. Steam reforming of methanol, ethanol and glycerol over nickel-based catalysts-A review. Int. J. Hydrogen Energy 2020, 45, 18090. [Google Scholar] [CrossRef]
- Macedo, M.S.; Soria, M.A.; Madeira, L.M. Process intensification for hydrogen production through glycerol steam reforming. Renew. Sustain. Energy Rev. 2021, 146, 111151. [Google Scholar] [CrossRef]
- Dehghanpoor-Gharashah, A.; Rezaei, M.; Meshkani, F. Preparation and improvement of the mesoporous nanostructured nickel catalysts supported on magnesium aluminate for syngas production by glycerol dry reforming. Int. J. Hydrogen Energy 2021, 46, 22454. [Google Scholar] [CrossRef]
- IEA. The Future of Hydrogen, IEA, Paris. 2019. Available online: https://www.iea.org/reports/the-future-of-hydrogen (accessed on 10 March 2022).
- IEA. International Energy Agency. 2021. Available online: https://www.iea.org/fuels-and-technologies/bioenergy (accessed on 3 September 2020).
- Loy, A.C.M.; Yusup, S.; Lam, M.K.; Chin, B.L.F.; Shahbaz, M.; Yamamoto, A.; Acda, M.N. The effect of industrial waste coal bottom ash as catalyst in catalytic pyrolysis of rice husk for syngas production. Energy Convers. Manag. 2018, 165, 541. [Google Scholar] [CrossRef]
- Qingli, X.; Zhengdong, Z.; Kai, H.; Shanzhi, X.; Chuang, M.; Chenge, C.; Huan, Y.; Yang, Y.; Yongjie, Y. Ni supported on MgO modified attapulgite as catalysts for hydrogen production from glycerol steam reforming. Int. J. Hydrogen Energy 2021, 46, 27380. [Google Scholar] [CrossRef]
- Rocha, D.H.D.; de Souza, T.A.Z.; Coronado, C.J.R.; Silveira, J.L.; Silva, R.J. Exergoenvironmental analysis of hydrogen production through glycerol steam reforming. Int. J. Hydrogen Energy 2021, 46, 1385. [Google Scholar] [CrossRef]
- Roslan, N.A.; Abidin, S.Z.; Ideris, A.; Vo, D.-V.N. A review on glycerol reforming processes over Ni-based catalyst for hydrogen and syngas productions. Int. J. Hydrogen Energy 2020, 45, 18466. [Google Scholar] [CrossRef]
- Moogi, S.; Nakka, L.; Potharaju, S.S.P.; Ahmed, A.; Farooq, A.; Jung, S.-C.; Rhee, G.H.; Park, Y.-K. Copper promoted Co/MgO: A stable and efficient catalyst for glycerol steam reforming. Int. J. Hydrogen Energy 2021, 46, 18073. [Google Scholar] [CrossRef]
- Polychronopoulou, K.; Dabbawala, A.A.; Sajjad, M.; Singh, N.; Anjum, D.H.; Baker, M.A.; Charisiou, N.D.; Goula, M.A. Hydrogen production via steam reforming of glycerol over Ce-La-Cu-O ternary oxide catalyst: An experimental and DFT study. Appl. Surf. Sci. 2022, 586, 152798. [Google Scholar] [CrossRef]
- Menezes, J.P.d.S.Q.; Duarte, K.R.; Manfro, R.L.; Souza, M.M.V.M. Effect of niobia addition on cobalt catalysts supported on alumina for glycerol steam reforming. Renew. Energy 2020, 148, 864. [Google Scholar] [CrossRef]
- Reynoso, A.J.; Ayastuy, J.L.; Iriarte-Velasco, U.; Gutiérrez-Ortiz, M.A. Cobalt aluminate spinel-derived catalysts for glycerol aqueous phase reforming. Appl. Catal. B Environ. 2018, 239, 86. [Google Scholar] [CrossRef]
- Reynoso, A.J.; Ayastuy, J.L.; Iriarte-Velasco, U.; Gutiérrez-Ortiz, M.A. Aqueous-phase reforming of glycerol over Pt-Co catalyst: Effect of process variables. J. Environ. Chem. Eng. 2022, 10, 107402. [Google Scholar] [CrossRef]
- Reynoso, A.J.; Iriarte-Velasco, U.; Gutiérrez-Ortiz, M.A.; Ayastuy, J.L. Highly stable Pt/CoAl2O4 catalysts in Aqueous-Phase Reforming of glycerol. Catal. Today 2021, 367, 278. [Google Scholar] [CrossRef]
- Ozden, M.; Say, Z.; Kocak, Y.; Ercan, K.E.; Jalal, A.; Ozensoy, E.; Avci, A.K. A highly active and stable Ru catalyst for syngas production via glycerol dry reforming: Unraveling the interplay between support material and the active sites. Appl. Catal. A Gen. 2022, 636, 118577. [Google Scholar] [CrossRef]
- Roslan, N.A.; Zainal Abidin, S.; Osazuwa, O.U.; Chin, S.Y.; Taufiq-Yap, Y.H. Enhanced syngas production from glycerol dry reforming over Ru promoted -Ni catalyst supported on extracted Al2O3. Fuel 2022, 314, 123050. [Google Scholar] [CrossRef]
- Chimentão, R.J.; Hirunsit, P.; Torres, C.S.; Ordoño, M.B.; Urakawa, A.; Fierro, J.L.G.; Ruiz, D. Selective dehydration of glycerol on copper based catalysts. Catal. Today 2021, 367, 58. [Google Scholar] [CrossRef]
- Ay, S.; Ozdemir, M.; Melikoglu, M. Effects of metal promotion on the performance, catalytic activity, selectivity and deactivation rates of Cu/ZnO/Al2O3 catalysts for methanol synthesis. Chem. Eng. Res. Des. 2021, 175, 146. [Google Scholar] [CrossRef]
- Qing, S.; Hou, X.; Li, L.; Feng, G.; Wang, X.; Gao, Z.; Fan, W. Deactivation feature of Cu/SiO2 catalyst in methanol decomposition. Int. J. Hydrogen Energy 2019, 44, 16667. [Google Scholar] [CrossRef]
- Zheng, L.; Li, X.; Du, W.; Shi, D.; Ning, W.; Lu, X.; Hou, Z. Metal-organic framework derived Cu/ZnO catalysts for continuous hydrogenolysis of glycerol. Appl. Catal. B Environ. 2017, 203, 146. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, G.; Liu, H.; Shu, Q.; Zhang, Q. Improved charge transfer and morphology on Ti-modified Cu/γ-Al2O3/Al catalyst enhance the activity for methanol steam reforming. Int. J. Hydrogen Energy 2022, 47, 18294. [Google Scholar] [CrossRef]
- Wu, K.; Dou, B.; Zhang, H.; Liu, D.; Chen, H.; Xu, Y. Aqueous phase reforming of biodiesel byproduct glycerol over mesoporous Ni-Cu/CeO2 for renewable hydrogen production. Fuel 2022, 308, 122014. [Google Scholar] [CrossRef]
- Smith, L.R.; Sainna, M.A.; Douthwaite, M.; Davies, T.E.; Dummer, N.F.; Willock, D.J.; Knight, D.W.; Catlow, C.R.A.; Taylor, S.H.; Hutchings, G.J. Gas Phase Glycerol Valorization over Ceria Nanostructures with Well-Defined Morphologies. ACS Catal. 2021, 11, 4893. [Google Scholar] [CrossRef]
- Nawaz, A.; Kumar, P. Optimization of process parameters of Lagerstroemia speciosa seed hull pyrolysis using a combined approach of Response Surface Methodology (RSM) and Artificial Neural Network (ANN) for renewable fuel production. Bioresour. Technol. Rep. 2022, 18, 101110. [Google Scholar] [CrossRef]
- Quirino, P.P.S.; Amaral, A.F.; Manenti, F.; Pontes, K.V. Mapping and optimization of an industrial steam methane reformer by the design of experiments (DOE). Chem. Eng. Res. Des. 2022, 184, 349. [Google Scholar] [CrossRef]
- Pashaei, H.; Ghaemi, A.; Nasiri, M.; Karami, B. Experimental Modeling and Optimization of CO2 Absorption into Piperazine Solutions Using RSM-CCD Methodology. ACS Omega 2020, 5, 8432. [Google Scholar] [CrossRef]
- Pardeshi, C.V.; Rajput, P.V.; Belgamwar, V.S.; Tekade, A.R.; Surana, S.J. Novel surface modified solid lipid nanoparticles as intranasal carriers for ropinirole hydrochloride: Application of factorial design approach. Drug Deliv. 2013, 20, 47. [Google Scholar] [CrossRef]
- Fan, M.-S.; Abdullah, A.Z.; Bhatia, S. Hydrogen production from carbon dioxide reforming of methane over Ni–Co/MgO–ZrO2 catalyst: Process optimization. Int. J. Hydrogen Energy 2011, 36, 4875. [Google Scholar] [CrossRef]
- Fatah, N.A.A.; Jalil, A.A.; Salleh, N.F.M.; Hamid, M.Y.S.; Hassan, Z.H.; Nawawi, M.G.M. Elucidation of cobalt disturbance on Ni/Al2O3 in dissociating hydrogen towards improved CO2 methanation and optimization by response surface methodology (RSM). Int. J. Hydrogen Energy 2020, 45, 18562. [Google Scholar] [CrossRef]
- Kahveci, E.E.; Taymaz, I. Hydrogen PEMFC stack performance analysis through experimental study of operating parameters by using response surface methodology (RSM). Int. J. Hydrogen Energy 2022, 47, 12293. [Google Scholar] [CrossRef]
- Rajagopal, J.; Gopinath, K.P.; Neha, R.; Aakriti, K.; Jayaraman, R.S.; Arun, J.; Pugazhendhi, A. Processing of household waste via hydrothermal gasification and hydrothermal liquefaction for bio-oil and bio-hydrogen production: Comparison with RSM studies. J. Environ. Chem. Eng. 2022, 10, 107218. [Google Scholar] [CrossRef]
- Shavandi, M.; Massoudi, A.; Khanlarkhani, A.; Moradi, M. Size-tunable Ni-Cu nanoparticles using nucleation and growth control of Polyol Reduction Method. Mater. Today Proc. 2018, 5, 15761. [Google Scholar] [CrossRef]
- Gu, Y.-J.; Kim, J.-H.; Jang, W.-J.; Jeong, D.-W. A comparison of Cu/CeO2 catalysts prepared via different precipitants/digestion methods for single stage water gas shift reactions. Catal. Today 2022, 388–389, 237. [Google Scholar] [CrossRef]
- Ouyang, B.; Tan, W.; Liu, B. Morphology effect of nanostructure ceria on the Cu/CeO2 catalysts for synthesis of methanol from CO2 hydrogenation. Catal. Commun. 2017, 95, 36. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, H.; Xu, W.; Li, X.; Wang, W.; Zhang, L.; Li, Y.; Peng, Z.; Yang, F.; Liu, Z. Nature of Active Sites on Cu–CeO2 Catalysts Activated by High-Temperature Thermal Aging. ACS Catal. 2020, 10, 12385. [Google Scholar] [CrossRef]
- Bak, S.-M.; Shadike, Z.; Lin, R.; Yu, X.; Yang, X.-Q. In situ/operando synchrotron-based X-ray techniques for lithium-ion battery research. NPG Asia Mater. 2018, 10, 563. [Google Scholar] [CrossRef]
- Liew, J.X.; Loy, A.C.M.; Chin, B.L.F.; AlNouss, A.; Shahbaz, M.; Al-Ansari, T.; Govindan, R.; Chai, Y.H. Synergistic effects of catalytic co-pyrolysis of corn cob and HDPE waste mixtures using weight average global process model. Renew. Energy 2021, 170, 948. [Google Scholar] [CrossRef]
- Yahya, H.S.M.; Abbas, T.; Amin, N.A.S. Optimization of hydrogen production via toluene steam reforming over Ni–Co supported modified-activated carbon using ANN coupled GA and RSM. Int. J. Hydrogen Energy 2021, 46, 24632. [Google Scholar] [CrossRef]
- Loy, A.C.M.; Quitain, A.T.; Lam, M.K.; Yusup, S.; Sasaki, M.; Kida, T. Development of high microwave-absorptive bifunctional graphene oxide-based catalyst for biodiesel production. Energy Convers. Manag. 2019, 180, 1013. [Google Scholar] [CrossRef]
- Cheah, K.W.; Yusup, S.; Kyriakou, G.; Ameen, M.; Taylor, M.J.; Nowakowski, D.J.; Bridgwater, A.V.; Uemura, Y. In-situ hydrogen generation from 1,2,3,4-tetrahydronaphthalene for catalytic conversion of oleic acid to diesel fuel hydrocarbons: Parametric studies using Response Surface Methodology approach. Int. J. Hydrogen Energy 2019, 44, 20678. [Google Scholar] [CrossRef]
- Cifuentes, B.; Figueredo, M.; Cobo, M. Response Surface Methodology and Aspen Plus Integration for the Simulation of the Catalytic Steam Reforming of Ethanol. Catalysts 2017, 7, 15. [Google Scholar] [CrossRef]
- Ploner, K.; Delir Kheyrollahi Nezhad, P.; Watschinger, M.; Schlicker, L.; Bekheet, M.F.; Gurlo, A.; Gili, A.; Doran, A.; Schwarz, S.; Stöger-Pollach, M.; et al. Steering the methanol steam reforming performance of Cu/ZrO2 catalysts by modification of the Cu-ZrO2 interface dimensions resulting from Cu loading variation. Appl. Catal. A Gen. 2021, 623, 118279. [Google Scholar] [CrossRef]
- Seadira, T.W.P.; Masuku, C.M.; Scurrell, M.S. Solar photocatalytic glycerol reforming for hydrogen production over Ternary Cu/THS/graphene photocatalyst: Effect of Cu and graphene loading. Renew. Energy 2020, 156, 84. [Google Scholar] [CrossRef]
- Chen, Y.; Li, S.; Lv, S.; Huang, Y. A novel synthetic route for MOF-derived CuO-CeO2 catalyst with remarkable methanol steam reforming performance. Catal. Commun. 2021, 149, 106215. [Google Scholar] [CrossRef]
- Ismaila, A.; Chen, H.; Shao, Y.; Xu, S.; Jiao, Y.; Chen, X.; Gao, X.; Fan, X. Renewable hydrogen production from steam reforming of glycerol (SRG) over ceria-modified γ-alumina supported Ni catalyst. Chin. J. Chem. Eng. 2020, 27, R713–R715. [Google Scholar] [CrossRef]
- Chakinala, N.; Chakinala, A.G. Catalytic hydrothermal reforming of glycerol for hydrogen production with nickel catalysts. Mater. Today Proc. 2022, 57, 1484. [Google Scholar] [CrossRef]
- Chakinala, A.G.; Brilman, D.W.F.; van Swaaij, W.P.M.; Kersten, S.R.A. Catalytic and Non-catalytic Supercritical Water Gasification of Microalgae and Glycerol. Ind. Eng. Chem. Res. 2010, 49, 1113. [Google Scholar] [CrossRef]
- Qingli, X.; Zhengdong, Z.; Lifang, L.; Ping, L.; Rui, W.; Shoutao, C.; Pize, L.; Chenyang, Z. Hydrogen production by glycerol reforming in a two-fixed-bed reactor. Int. J. Hydrogen Energy 2022, 47, 16805. [Google Scholar] [CrossRef]
- Alipour-Dehkordi, A.; Neek, S.J.; Shahnazar, A. Sustainable H2 production from glycerol steam reforming in the heat-integrated reactor: Using reforming-side by-products as feed for the catalytic combustion-side. J. Ind. Eng. Chem. 2022, 113, 264–274. [Google Scholar] [CrossRef]
- Samudrala, S.P.; Kandasamy, S.; Bhattacharya, S. Turning Biodiesel Waste Glycerol into 1,3-Propanediol: Catalytic Performance of Sulphuric acid-Activated Montmorillonite Supported Platinum Catalysts in Glycerol Hydrogenolysis. Sci. Rep. 2018, 8, 7484. [Google Scholar] [CrossRef] [PubMed]
- Tapah, B.F.; Santos, R.C.D.; Leeke, G.A. Processing of glycerol under sub and supercritical water conditions. Renew. Energy 2014, 62, 353. [Google Scholar] [CrossRef]
- Wang, S.; Yan, L.; Zhao, Y.; Ma, Y.; Wu, G.; Wu, J.; Zeng, S. Honeycomb porous carbon frameworks from wheat flour as supports for CuxO-CeO2 monolithic catalysts. Appl. Surf. Sci. 2019, 464, 294. [Google Scholar] [CrossRef]
- Zhao, G.; Li, C.; Zhang, H. Honeycomb nano cerium oxide fabricated by vacuum drying process with sodium alginate. IOP Conf. Ser. Mater. Sci. Eng. 2017, 207, 012001. [Google Scholar] [CrossRef]
- Akan, M.M.; Fung, A.S.; Kumar, R. Process energy analysis and saving opportunities in small and medium size enterprises for cleaner industrial production. J. Clean. Prod. 2019, 233, 43. [Google Scholar] [CrossRef]
Glycerol Reforming | 3CO2 + 7H2 | Equation (1) |
Water gas shift reaction: | CO2 + H2 | Equation (2) |
Methanation: | CH4 + H2O | Equation (3) |
CH4 + 2H2O | Equation (4) | |
Glycerol oxidation: | 2CO2 + 4H2 | Equation (5) |
CO + 2CO2 + 4H2 | Equation (6) | |
3CO2 + 4H2 | Equation (7) | |
3CO2 + 4H2O | Equation (8) | |
Decomposition of water | Equation (9) | |
CO2 reforming of methane | Equation (10) | |
Boudouard’s reaction | Equation (11) | |
Carbon gasification | Equation (12) |
Catalyst | Cu Loading (wt.%) a | CuxO Loading b (wt%) | CuO (111) Crystalline Size (nm) | CeO2 (111) Crystalline Size (nm) | Lattice Constant (Å) | Average Particle Size (nm) f | SBET (m2g−1) | Lateral Height of Catalyst (nm) g |
---|---|---|---|---|---|---|---|---|
10 wt.%-CuO/CeO2 | 8.52 | 11.12 | 35.6 c, 39.2 d, 42.1 e | 6.89 c, 7.13 d, 7.41e | 5.38 c, 5.39 d, 5.40 e | 17.50 | 14.28 | 25.00 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Model | 2097.56 | 14 | 149.83 | 38.88 | <0.0001 |
A-Cu loading | 155.04 | 1 | 155.04 | 40.23 | <0.0001 |
B-reaction temperature | 1488.37 | 1 | 1488.37 | 386.23 | <0.0001 |
C-WHSV | 108.37 | 1 | 108.37 | 28.12 | <0.0001 |
D-glycerol concentration | 71.14 | 1 | 71.14 | 18.46 | 0.0006 |
AB | 5.06 | 1 | 5.06 | 1.31 | 0.2697 |
AC | 39.06 | 1 | 39.06 | 10.14 | 0.0062 |
AD | 22.56 | 1 | 22.56 | 5.85 | 0.0287 |
BC | 10.56 | 1 | 10.56 | 2.74 | 0.1186 |
BD | 14.06 | 1 | 14.06 | 3.65 | 0.0754 |
CD | 3.06 | 1 | 3.06 | 0.7947 | 0.3868 |
A2 | 10.05 | 1 | 10.05 | 2.61 | 0.1271 |
B2 | 45.39 | 1 | 45.39 | 11.78 | 0.0037 |
C2 | 54.73 | 1 | 54.73 | 14.20 | 0.0019 |
D2 | 19.88 | 1 | 19.88 | 5.16 | 0.0383 |
Residual | 57.80 | 15 | 3.85 | ||
Lack of Fit | 46.47 | 10 | 4.65 | 2.05 | 0.2216 |
Pure error | 11.33 | 5 | 2.27 | ||
Cor total | 2155.37 | 29 | |||
Std. dev. | 1.96 | R2 | 0.9732 | ||
Mean | 80.57 | Adjusted R2 | 0.9482 | ||
C.V. % | 2.44 | Predicted R2 | 0.8594 | ||
Adeq precision | 23.6774 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Model | 500.44 | 4 | 125.11 | 53.60 | <0.0001 |
A-Cu loading | 57.04 | 1 | 57.04 | 24.44 | <0.0001 |
B-reaction temperature | 360.37 | 1 | 360.37 | 154.38 | <0.0001 |
C-WHSV | 77.04 | 1 | 77.04 | 33.00 | <0.0001 |
D-glycerol concentration | 5.98 | 1 | 5.98 | 2.56 | 0.1220 |
Residual | 58.36 | 25 | 2.33 | ||
Lack of fit | 53.03 | 20 | 2.65 | 2.49 | 0.1586 |
Pure error | 5.33 | 5 | 1.07 | ||
Cor total | 558.80 | 29 | |||
Std. dev. | 1.53 | R2 | 0.8956 | ||
Mean | 70.80 | Adjusted R2 | 0.8789 | ||
C.V. % | 2.16 | Predicted R2 | 0.8454 | ||
Adeq precision | 24.8499 |
Run | Glycerol Conversion (%) | Hydrogen Production (Vol%) | |
---|---|---|---|
1 | 81 | 69 | |
2 | 79 | 70 | |
3 | 83 | 73 | |
Std Dev | 95% PI low | 95% PI high | |
Glycerol conversion (%) | 3.38 | 75.2 | 84.5 |
Hydrogen production (vol%) | 1.53 | 69.6 | 73.8 |
Run | A: (Cu Loading, wt.%) | B: (Reaction Temperature, K) | C: (WHSV, h−1) | D: (Glycerol Concentration, vol.%) | Y1: (Glycerol Conversion, %) | Y2:(Hydrogen Production, vol.%) |
---|---|---|---|---|---|---|
1 | 4 | 673 | 1 | 15 | 68 | 63 |
2 | 6 | 598 | 1.5 | 10 | 62 | 61 |
3 | 2 | 748 | 1.5 | 10 | 81 | 67 |
4 | 4 | 823 | 1 | 5 | 79 | 71 |
5 | 8 | 823 | 2 | 5 | 90 | 79 |
6 | 6 | 748 | 1.5 | 10 | 82 | 70 |
7 | 10 | 748 | 1.5 | 10 | 87 | 73 |
8 | 8 | 673 | 1 | 15 | 84 | 69 |
9 | 8 | 673 | 2 | 15 | 81 | 68 |
10 | 8 | 823 | 1 | 5 | 88 | 72 |
11 | 6 | 898 | 1.5 | 10 | 93 | 78 |
12 | 4 | 823 | 2 | 15 | 88 | 75 |
13 | 8 | 673 | 1 | 5 | 73 | 66 |
14 | 4 | 673 | 2 | 5 | 72 | 68 |
15 | 4 | 823 | 2 | 5 | 91 | 74 |
16 | 10 | 823 | 2 | 15 | 94 | 81 |
17 | 6 | 748 | 1.5 | 10 | 82 | 71 |
18 | 4 | 673 | 2 | 15 | 72 | 69 |
19 | 6 | 748 | 1.5 | 20 | 80 | 73 |
20 | 6 | 748 | 1.5 | 5 | 81 | 69 |
21 | 6 | 748 | 1.5 | 10 | 79 | 72 |
22 | 6 | 748 | 1.5 | 10 | 80 | 73 |
23 | 6 | 748 | 1.5 | 10 | 82 | 72 |
24 | 4 | 823 | 1 | 15 | 84 | 70 |
25 | 6 | 748 | 2.5 | 10 | 81 | 72 |
26 | 6 | 748 | 1.5 | 10 | 83 | 72 |
27 | 4 | 673 | 1 | 5 | 64 | 64 |
28 | 6 | 748 | 0.5 | 10 | 71 | 68 |
29 | 8 | 673 | 2 | 5 | 72 | 70 |
30 | 8 | 823 | 1 | 15 | 90 | 74 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loy, A.C.M.; Samudrala, S.P.; Bhattacharya, S. Evaluation of Porous Honeycomb-Shaped CuO/CeO2 Catalyst in Vapour Phase Glycerol Reforming for Sustainable Hydrogen Production. Catalysts 2022, 12, 941. https://doi.org/10.3390/catal12090941
Loy ACM, Samudrala SP, Bhattacharya S. Evaluation of Porous Honeycomb-Shaped CuO/CeO2 Catalyst in Vapour Phase Glycerol Reforming for Sustainable Hydrogen Production. Catalysts. 2022; 12(9):941. https://doi.org/10.3390/catal12090941
Chicago/Turabian StyleLoy, Adrian Chun Minh, Shanthi Priya Samudrala, and Sankar Bhattacharya. 2022. "Evaluation of Porous Honeycomb-Shaped CuO/CeO2 Catalyst in Vapour Phase Glycerol Reforming for Sustainable Hydrogen Production" Catalysts 12, no. 9: 941. https://doi.org/10.3390/catal12090941
APA StyleLoy, A. C. M., Samudrala, S. P., & Bhattacharya, S. (2022). Evaluation of Porous Honeycomb-Shaped CuO/CeO2 Catalyst in Vapour Phase Glycerol Reforming for Sustainable Hydrogen Production. Catalysts, 12(9), 941. https://doi.org/10.3390/catal12090941