Ce-Doped LaMnO3 Redox Catalysts for Chemical Looping Oxidative Dehydrogenation of Ethane
Abstract
:1. Introduction
2. Results and Discussions
2.1. Structural Characterization
2.2. XPS
2.3. H2-TPR and O2−TPD
2.4. Ethane CL-ODH Reaction Resting
2.5. Cyclic Stability
3. Experimental Section
3.1. Redox catalyst Preparation
3.2. CL-ODH Experiments
3.3. Characterization Techniques
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dai, Y.H.; Gao, X.; Wang, Q.; Wan, X.Y.; Zhou, C.M.; Yang, Y.H. Recent Progress in Heterogeneous Metal and Metal Oxide Catalysts for Direct Dehydrogenation of Ethane and Propane. Chem. Soc. Rev. 2021, 50, 5590–5630. [Google Scholar] [CrossRef] [PubMed]
- Mishanin, I.I.; Bogdan, T.V.; Koklin, A.E.; Bogdan, V.I. Design of Highly Selective Heterogeneous Catalyst for CO2-mediated Ethane Oxidative Dehydrogenation Based on Nonoxidative Catalysis in Stainless-steel Reactor. Chem. Eng. J. 2022, 446, 137184. [Google Scholar] [CrossRef]
- Najari, S.; Saeidi, S.; Concepcion, P.; Dionysiou, D.D.; Bhargava, S.K.; Lee, A.F.; Wilson, K. Oxidative Dehydrogenation of Ethane: Catalytic and Mechanistic Aspects and Future Trends. Chem. Soc. Rev. 2021, 50, 4564–4605. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Westmoreland, P.R.; Li, F.X. CaMn0.9Ti0.1O3 Based Redox Catalysts for Chemical Looping-Oxidative Dehydrogenation of Ethane: Effects of Na2MoO4 Promoter and Degree of Reduction on the Reaction Kinetics. Catal. Today 2022. [Google Scholar] [CrossRef]
- Amghizar, I.; Vandewalle, L.A.; Van Geem, K.M.; Marin, G.B. New Trends in Olefin Production. Engineering 2017, 3, 171–178. [Google Scholar] [CrossRef]
- Sattler, J.J.H.B.; Ruiz-Martinez, J.; Santillan-Jimenez, E.; Weckhuysen, B.M. Catalytic Dehydrogenation of Light Alkanes on Metals and Metal Oxides. Chem. Rev. 2014, 114, 10613–10653. [Google Scholar] [CrossRef]
- Zhang, R.H.; Wang, H.; Tang, S.Y.; Liu, C.J.; Dong, F.; Yue, H.R.; Liang, B. Photocatalytic Oxidative Dehydrogenation of Ethane Using CO2 as a Soft Oxidant over Pd/TiO2 Catalysts to C2H4 and Syngas. ACS Catal. 2018, 8, 9280–9286. [Google Scholar] [CrossRef]
- Luongo, c.; Donat, F.; Krödel, M.; Cormos, C.; Müller, C.R. Experimental Data Supported Techno-economic Assessment of the Oxidative Dehydrogenation of Ethane through Chemical Looping with Oxygen Uncoupling. Renew. Sust. Energ. Rev. 2021, 149, 111403. [Google Scholar] [CrossRef]
- Neal, L.M.; Yusuf, S.; Sofranko, J.A.; Li, F.X. Oxidative Dehydrogenation of Ethane: A Chemical Looping Approach. Energy Technol. 2016, 4, 1200–1208. [Google Scholar] [CrossRef]
- Tian, X.; Zheng, C.H.; Zhao, H.B. Ce-modified SrFeO3-δ for Ethane Oxidative Dehydrogenation Coupled with CO2 Splitting via a Chemical Looping Scheme. Appl. Catal. B-Environ. 2022, 303, 120894. [Google Scholar] [CrossRef]
- Ding, W.X.; Zhao, K.; Jiang, S.C.; Zhao, Z.L.; Cao, Y.; He, F. Alkali-metal Enhanced LaMnO3 Perovskite Oxides for Chemical Looping Oxidative Dehydrogenation of Ethane. Appl. Catal. A-Gen. 2021, 609, 117910. [Google Scholar] [CrossRef]
- Maffia, G.J.; Gaffney, A.M.; Mason, O.M. Techno-Economic Analysis of Oxidative Dehydrogenation Options. Top. Catal. 2016, 59, 1573–1579. [Google Scholar] [CrossRef]
- Zhu, H.B.; Dong, H.L.; Laveille, P.; Saih, Y.; Caps, V.; Basset, J. Metal Oxides Modified NiO Catalysts for Oxidative Dehydrogenation of Ethane to Ethylene. Catal. Today 2014, 228, 58–64. [Google Scholar] [CrossRef]
- Solsona, B.; Dejoz, A.; Garcia, T.; Concepción, P.; Lopez Nieto, J.M.; Vázquez, M.I.; Navarro, M.T. Molybdenum–vanadium Supported on Mesoporous Alumina Catalysts for the Oxidative Dehydrogenation of Ethane. Catal. Today 2006, 117, 228–233. [Google Scholar] [CrossRef]
- Yokoyama, C.; Bharadwaj, S.S.; Schmidt, L.D. Platinum-tin and Platinum-copper Catalysts for Autothermal Oxidative Dehydrogenation of Ethane to Ethylene. Catal. Lett. 1996, 38, 181–188. [Google Scholar] [CrossRef]
- Dai, H.X.; Ng, C.F.; Au, C.T. Perovskite-Type Halo-oxide La1−xSrxFeO3−δXσ (X=F, Cl) Catalysts Selective for the Oxidation of Ethane to Ethene. J. Catal. 2000, 189, 52–62. [Google Scholar] [CrossRef]
- Védrine, J.C.; Fechete, I. Heterogeneous Partial Oxidation Catalysis on Metal Oxides. CR Chim. 2016, 19, 1203–1225. [Google Scholar] [CrossRef]
- Baroi, C.; Gaffney, A.M.; Fushimi, R. Process Economics and Safety Considerations for the Oxidative Dehydrogenation of Ethane Using the M1 Catalyst. Catal. Today 2017, 298, 138–144. [Google Scholar] [CrossRef]
- Mendiara, T.; García-Labiano, F.; Abad, A.; Gayán, P.; de Diego, L.F.; Izquierdo, M.T.; Adánez, J. Negative CO2 Emissions through the Use of Biofuels in Chemical Looping Technology: A Review. Appl. Energ. 2018, 232, 657–684. [Google Scholar] [CrossRef]
- Novotný, P.; Yusuf, S.; Li, F.X.; Lamb, H.H. Oxidative Dehydrogenation of Ethane Using MoO3/Fe2O3 Catalysts in a Cyclic Redox Mode. Catal. Today 2018, 317, 50–55. [Google Scholar] [CrossRef]
- Zhao, K.; He, F.; Huang, Z.; Wei, G.Q.; Zheng, A.Q.; Liu, H.B.; Zhao, Z.L. Perovskite-type Oxides LaFe1−xCoxO3 for Chemical Looping Steam Methane Reforming to Syngas and Hydrogen Co-production. Appl. Energ. 2016, 168, 193–203. [Google Scholar] [CrossRef]
- Zhao, H.B.; Tian, X.; Ma, J.C.; Su, M.Z.; Wang, B.W.; Mei, D.F. Development of Tailor-made Oxygen Carriers and Reactors for Chemical Looping Processes at Huazhong University of Science & Technology. Int. J. Greenh. Gas Con. 2020, 93, 102898. [Google Scholar]
- Dudek, R.B.; Gao, Y.F.; Zhang, J.S.; Li, F.X. Manganese-containing Redox Catalysts for Selective Hydrogen Combustion under a Cyclic Redox Scheme. AICHE J. 2018, 64, 3141–3150. [Google Scholar] [CrossRef]
- Yusuf, S.; Neal, L.; Bao, Z.H.; Wu, Z.L.; Li, F.X. Effects of Sodium and Tungsten Promoters on Mg6MnO8-Based Core–Shell Redox Catalysts for Chemical Looping—Oxidative Dehydrogenation of Ethane. ACS Catal. 2019, 9, 3174–3186. [Google Scholar] [CrossRef]
- Gao, Y.F.; Neal, L.M.; Li, F.X. Li-Promoted LaxSr2–xFeO4−δ Core–Shell Redox Catalysts for Oxidative Dehydrogenation of Ethane under a Cyclic Redox Scheme. ACS Catal. 2016, 6, 7293–7302. [Google Scholar] [CrossRef]
- Tian, Y.; Dudek, R.B.; Westmoreland, P.R.; Li, F.X. Effect of Sodium Tungstate Promoter on the Reduction Kinetics of CaMn0.9Fe0.1O3 for Chemical Looping-Oxidative Dehydrogenation of Ethane. Chem. Eng. J. 2020, 398, 125583. [Google Scholar] [CrossRef]
- Yusuf, S.; Neal, L.; Haribal, V.; Lamb, H.H.; Li, F.X. Manganese Silicate Based Redox Catalysts for Greener Ethylene Production via Chemical Looping-Oxidative Dehydrogenation of Ethane. Appl. Catal. B-Environ. 2018, 232, 77–85. [Google Scholar] [CrossRef]
- Yusuf, S.; Neal, L.M.; Li, F.X. Effect of Promoters on Manganese-Containing Mixed Metal Oxides for Oxidative Dehydrogenation of Ethane via a Cyclic Redox Scheme. ACS Catal. 2017, 7, 5163–5173. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, W.B.; Wu, J.; Hu, Y.; Huang, C.D.; Zhu, Y.Y.; Tian, M.; Kang, Y.; Pan, X.L.; Su, Y.; et al. Identifying the Role of A-Site Cations in Modulating Oxygen Capacity of Iron-Based Perovskite for Enhanced Chemical Looping Methane-to-Syngas Conversion. ACS Catal. 2020, 10, 9420–9430. [Google Scholar] [CrossRef]
- Rajkumar, T.; Sápi, A.; Ábel, M.; Kiss, J.; Szenti, I.; Baán, K.; Gómez-Pérez, J.F.; Kukovecz, Á.; Kónya, Z. Surface Engineering of CeO2 Catalysts: Differences Between Solid Solution Based and Interfacially Designed Ce1−xMxO2 and MO/CeO2 (M=Zn, Mn) in CO2 Hydrogenation Reaction. Catal. Lett. 2021, 151, 3477–3491. [Google Scholar] [CrossRef]
- Ahmad, J.; Ahmad, U.; Bukhari, S.H. Synthesis and Optical Properties of La1−XCeXMnO3 Studied by Infrared Reflectivity Measurements. Chin. J. Phy. 2018, 56, 1439–1448. [Google Scholar] [CrossRef]
- Zhang, C.H.; Hua, W.C.; Wang, C.; Guo, Y.L.; Guo, Y.; Lua, G.Z.; Baylet, A.; Giroir-Fendler, A. The Effect of A-site Substitution by Sr, Mg and Ce on the Catalytic Performance of LaMnO3 Catalysts for the Oxidation of Vinyl Chloride Emission. Appl. Catal. B-Environ. 2013, 134–135, 310–315. [Google Scholar] [CrossRef]
- Suárez-Vázquez, S.I.; Moreno-Román, E.J.; Zanella, R.; Cruz-López, A.; García-Goméz, C.; Nieto-Márquez, A.; Gil, S. Insight into the Surface Reaction Mechanism of Toluene Oxidation over a Composite CeOx/La1-xCexMnO3 Catalyst using DRIFTS. Chem. Eng. Sci. 2022, 259, 117831. [Google Scholar] [CrossRef]
- Yin, X.L.; Wang, S.; Wang, B.Y.; Shen, L.H. Perovskite-type LaMn1−xBxO3+δ (B = Fe, CO and Ni) as Oxygen Carriers for Chemical Looping Steam Methane Reforming. Chem. Eng. J. 2021, 422, 128751. [Google Scholar] [CrossRef]
- Wang, Y.J.; Zheng, Y.E.; Wang, Y.H.; Wang, H.; Zhu, X.; Wei, Y.G.; Wang, Y.M.; Jiang, L.H.; Yang, Z.Y.; Li, K.Z. Evaluation of Fe Substitution in Perovskite LaMnO3 for the Production of High Purity Syngas and Hydrogen. J. Power Sources 2020, 449, 227505. [Google Scholar] [CrossRef]
- Zhao, K.; He, F.; Huang, Z.; Wei, G.Q.; Zheng, A.Q.; Li, H.B.; Zhao, Z.L. Perovskite-type LaFe1−xMnxO3 (x = 0, 0.3, 0.5, 0.7, 1.0) Oxygen Carriers for Chemical-looping Steam Methane Reforming: Oxidation Activity and Resistance to Carbon Rormation. Korean J. Chem. Eng. 2017, 34, 1651–1660. [Google Scholar] [CrossRef]
- Jiang, S.C.; Ding, W.X.; Zhao, K.; Huang, Z.; Wei, G.Q.; Feng, Y.Y.; Lv, Y.J.; He, F. Enhanced Chemical Looping Oxidative Coupling of Methane by Na-doped LaMnO3 Redox Catalysts. Fuel 2021, 299, 120932. [Google Scholar] [CrossRef]
- Ponce, S.; Peña, M.A.; Fierro, J.L.G. Surface Properties and Catalytic Performance in Methane Combustion of Sr-substituted Lanthanum Manganites. Appl. Catal. B-Environ. 2000, 24, 193–205. [Google Scholar] [CrossRef]
- Zhang, C.H.; Zeng, K.; Wang, C.; Liu, X.H.; Wu, G.L.; Wang, Z.; Wang, D. LaMnO3 Perovskites via a Facile Nickel Substitution Strategy for Boosting Propane Combustion Performance. Ceram. Int. 2020, 46, 6652–6662. [Google Scholar] [CrossRef]
- Najjar, H.; Lamonier, J.-F.; Mentré, O.; Giraudon, J.-M.; Batis, H. Optimization of the Combustion Synthesis towards Efficient LaMnO3+y Catalysts in Methane Oxidation. Appl. Catal. B-Environ. 2011, 106, 149–159. [Google Scholar] [CrossRef]
- Yang, X.Q.; Yu, X.L.; Jing, M.Z.; Song, W.Y.; Liu, J.; Ge, M.F. Defective MnxZr1-xO2 Solid Solution for the Catalytic Oxidation of Toluene: Insights into the Oxygen Vacancy Contribution. ACS Appl. Mater. Inter. 2019, 11, 730–739. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.H.; Wang, C.; Hua, W.H.; Guo, Y.L.; Lu, G.Z.; Gil, S.; Giroir-Fendler, A. Relationship between Catalytic Deactivation and PhysicoChemical Properties of LaMnO3 Perovskite Catalyst during Catalytic Oxidation of Vinyl Chloride. Appl. Catal. B-Environ. 2016, 186, 173–183. [Google Scholar] [CrossRef]
- Zhu, J.J.; Zhao, Z.; Xiao, D.H.; Li, J.; Yang, X.G.; Wu, Y. Study of La2−xSrxCuO4 (x = 0.0, 0.5, 1.0) Catalysts for NO+CO Reaction from the Measurements of O2-TPD, H2-TPR and Cyclic Voltammetry. J. Mol. Catal. A-Chem. 2005, 238, 35–40. [Google Scholar] [CrossRef]
- Wang, T.; Gao, Y.F.; Liu, Y.Z.; Song, M.H.; Liu, J.J.; Guo, Q.J. Core-shell Na2WO4/CuMn2O4 Oxygen Carrier with High Oxygen Capacity for Chemical Looping Oxidative Dehydrogenation of Ethane. Fuel 2021, 303, 121286. [Google Scholar] [CrossRef]
- Galinsky, N.; Mishra, A.; Zhang, J.; Li, F.X. Ca1−xAxMnO3 (A = Sr and Ba) Perovskite Based Oxygen Carriers for Chemical Looping with Oxygen Uncoupling (CLOU). Appl. Energ. 2015, 157, 358–367. [Google Scholar] [CrossRef] [Green Version]
- He, F.; Li, X.A.; Zhao, K.; Huang, Z.; Wei, G.Q.; Li, H.B. The Use of La1−xSrxFeO3 Perovskite-type Oxides as Oxygen Carriers in Chemical-looping Reforming of Methane. Fuel 2013, 108, 465–473. [Google Scholar] [CrossRef]
- Song, D.; Lin, Y.; Zhao, K.; Huang, Z.; He, F.; Xiong, Y. Migration Mechanism of Lattice Oxygen: Conversion of CO2 to CO Using NiFe2O4 Spinel Oxygen Carrier in Chemical Looping Reactions. Catalysts 2022, 12, 1181. [Google Scholar] [CrossRef]
- Zhang, C.H.; Guo, Y.L.; Guo, J.; Lu, G.Z.; Boreave, A.; Retailleau, L.; Baylet, A.; Giroir-Fendler, A. LaMnO3 Perovskite Oxides Prepared by Different Methods for Catalytic Oxidation of Toluene. Appl. Catal. B-Environ. 2014, 148–149, 490–498. [Google Scholar] [CrossRef]
Samples | Lattice Structure | Crystal Size (nm) | a (Å) | b (Å) | c (Å) | Vol (Å3) |
---|---|---|---|---|---|---|
LMO | hexagonal | 21.93 | 5.525 | 5.525 | 13.361 | 407.853 |
0.1LCMO | orthorhombic | 21.02 | 5.517 | 5.517 | 13.356 | 406.530 |
0.2LCMO | orthorhombic | 19.56 | 5.516 | 5.516 | 13.348 | 406.130 |
0.3LCMO | orthorhombic | 19.15 | 5.517 | 5.517 | 13.351 | 406.368 |
0.4LCMO | orthorhombic | 18.23 | 5.521 | 5.521 | 13.358 | 407.171 |
SBET (m2/g) | Vpore (cm3/g) | Average Pore Diameter (nm) | |
---|---|---|---|
LCMO | 3.1 | 0.01 | 9.2 |
0.1LCMO | 5.1 | 0.02 | 14.7 |
0.2LCMO | 3.4 | 0.02 | 17.1 |
0.3LCMO | 4.7 | 0.04 | 26.4 |
0.4LCMO | 5.0 | 0.03 | 15.8 |
Mn 2p3/2 | O 1s | ||||||
---|---|---|---|---|---|---|---|
Mn3+ | Mn4+ | Mn4+/Mn3+ | OⅠ | OⅡ | OⅢ | OⅠ/(OⅡ+OⅢ) | |
LCMO | 0.53 | 0.47 | 0.90 | 0.40 | 0.55 | 0.05 | 0.67 |
0.1LCMO | 0.58 | 0.42 | 0.74 | 0.47 | 0.44 | 0.09 | 0.88 |
0.2LCMO | 0.54 | 0.46 | 0.85 | 0.45 | 0.52 | 0.03 | 0.81 |
0.3LCMO | 0.55 | 0.45 | 0.81 | 0.46 | 0.50 | 0.04 | 0.85 |
0.4LCMO | 0.58 | 0.42 | 0.71 | 0.49 | 0.46 | 0.05 | 0.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Liang, X.; Xing, Z.; Chen, H.; Li, Y.; Song, D.; He, F. Ce-Doped LaMnO3 Redox Catalysts for Chemical Looping Oxidative Dehydrogenation of Ethane. Catalysts 2023, 13, 131. https://doi.org/10.3390/catal13010131
Wang J, Liang X, Xing Z, Chen H, Li Y, Song D, He F. Ce-Doped LaMnO3 Redox Catalysts for Chemical Looping Oxidative Dehydrogenation of Ethane. Catalysts. 2023; 13(1):131. https://doi.org/10.3390/catal13010131
Chicago/Turabian StyleWang, Jingwei, Xiaocen Liang, Zifan Xing, Haitao Chen, Yang Li, Da Song, and Fang He. 2023. "Ce-Doped LaMnO3 Redox Catalysts for Chemical Looping Oxidative Dehydrogenation of Ethane" Catalysts 13, no. 1: 131. https://doi.org/10.3390/catal13010131
APA StyleWang, J., Liang, X., Xing, Z., Chen, H., Li, Y., Song, D., & He, F. (2023). Ce-Doped LaMnO3 Redox Catalysts for Chemical Looping Oxidative Dehydrogenation of Ethane. Catalysts, 13(1), 131. https://doi.org/10.3390/catal13010131