Nickel Catalysts on Carbon-Mineral Sapropel-Based Supports for Liquid-Phase Hydrogenation of Nitrobenzene
Abstract
:1. Introduction
2. Results and Discussion
2.1. Investigation of CM Supports
2.2. Synthesis and Investigation of Ni-Containing Catalysts
2.3. Investigation of the Catalytic Activity of Ni/CM in Hydrogenation of Benzene
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, L.; Lu, Y.; Wu, S.; Liu, P.; Xiong, W.; Hao, F.; Luo, H. Activated carbon supported bimetallic catalysts with combined catalytic effects for aromatic nitro compounds hydrogenation under mild conditions. Appl. Catal. A Gen. 2019, 577, 76–85. [Google Scholar] [CrossRef]
- Wang, P.; Wang, S.; Lin, R.; Mou, X.; Ding, Y. Pre-coking strategy strengthening stability performance of supported nickel catalysts in chloronitrobenzene hydrogenation. Catalysts 2021, 11, 1156. [Google Scholar] [CrossRef]
- Lang, L.; Pan, Z.; Yan, J. Ni-Au alloy nanoparticles as a high performance heterogeneous catalyst for hydrogenation of aromatic nitro compounds. J. Alloy. Compd. 2019, 792, 286–290. [Google Scholar] [CrossRef]
- Zhao, W.; Huang, Z.; Yang, L.; Liu, X.; Xie, H.; Liu, Z. Highly efficient syntheses of 2,5-bis(hydroxymethyl)furan and 2,5-dimethylfuran via the hydrogenation of biomass-derived 5-hydroxymethylfurfural over a nickel–cobalt bimetallic catalyst. Appl. Surf. Sci. 2022, 577, 151869. [Google Scholar] [CrossRef]
- Carvalho, S.L.B.V.; de Moraes Medeiros, E.B.; de Souza Wanderley, A.; de Moura Ribeiro, L.; da Silva, J.G.; de Almeida Simões, I.T.; do Rego Lemos, N.C.; Ribeiro Neto, N.J.; de Abreu, C.A.M.; Baudel, H.M.; et al. Production of xylitol from acidic hydrolysates of lignocellulosic biomass by catalytic hydrogenationover a Ni–Ru/C catalyst. Chem. Eng. Res. Des. 2021, 174, 11–18. [Google Scholar] [CrossRef]
- Bahuguna, A.; Chakraborty, S.; Sasson, Y. NiO-Ni/graphitic carbon nitride as a selective catalyst for transfer hydrogenation of carbonyl compounds using NaH2PO2 as a hydrogen source. Int. J. Hydrog. Energy 2021, 46, 28554–28564. [Google Scholar] [CrossRef]
- Pothu, R.; Mitta, H.; Boddula, R.; Balla, P.; Gundeboyina, R.; Perugopu, V.; Ma, J. Direct cascade hydrogenation of biorenewable levulinic acid to valeric acid biofuel additives over metal (M = Nb, Ti, and Zr) supported SBA-15 catalysts. Mater. Sci. Energy Technol. 2022, 5, 391. [Google Scholar] [CrossRef]
- Niu, L.; An, Y.; Yang, X.; Bian, G.; Wu, Q.; Xia, Z.; Bai, G. Highly dispersed Ni nanoparticles encapsulated in hollow mesoporous silica spheres as an efficient catalyst for quinoline hydrogenation. Mol. Catal. 2021, 514, 111855. [Google Scholar] [CrossRef]
- Gao, X.; Ashok, J.; Kawi, S. A review on roles of pretreatment atmospheres for the preparation of efficient Ni-based catalysts. Catal. Today 2022, 397–399, 581–591. [Google Scholar] [CrossRef]
- Tabassum, N.; Pothu, R.; Pattnaik, A.; Boddula, R.; Balla, P.; Gundeboyina, R.; Challa, P.; Rajesh, R.; Perugopu, V.; Mameda, N.; et al. Heterogeneous catalysts for conversion of biodiesel-waste glycerol into high-added-value chemicals. Catalysts 2022, 12, 767. [Google Scholar] [CrossRef]
- Al-Muntaser, A.A.; Varfolomeev, M.A.; Suwaid, M.A.; Saleh, M.M.; Djimasbe, R.; Yuan, C.; Zairov, R.R.; Jorge Ancheyta, J. Effect of decalin as hydrogen-donor for in-situ upgrading of heavy crude oil in presence of nickel-based catalyst. Fuel 2022, 313, 122562. [Google Scholar] [CrossRef]
- Chen, J.; Wang, D.; Luo, F.; Yang, X.; Li, X.; Li, S.; Ye, Y.; Wang, D.; Heng, Z. Selective production of alkanes and fatty alcohol via hydrodeoxygenation of palmitic acid over red mud-supported nickel catalysts. Fuel 2022, 314, 122780. [Google Scholar] [CrossRef]
- Yan, P.; Kennedy, E.; Stockenhuber, M. Hydrodeoxygenation of guaiacol over BEA supported bimetallic Ni-Fe catalysts with varied impregnation sequence. J. Catal. 2021, 404, 1–11. [Google Scholar] [CrossRef]
- Poddar, M.K.; Pandey, A.; Jha, M.K.; Andola, S.C.; Ali, S.S.; Handari, S.; Sahani, G.K.; Bal, R. Aqueous phase hydrogenolysis of renewable glycerol to 1,2-propanediol over bimetallic highly stable and efficient Ni-Cu/Al2O3 catalyst. Mol. Catal. 2021, 15, 111943. [Google Scholar] [CrossRef]
- Sadier, A.; Shi, D.; Mamede, A.-S.; Paul, S.; Marceau, E.; Wojcieszak, R. Selective aqueous phase hydrogenation of xylose to xylitol over SiO2-supported Ni and Ni-Fe catalysts: Benefits of promotion by Fe. Appl. Catal. B Environ. 2021, 298, 120564. [Google Scholar] [CrossRef]
- Jurado, L.; Papaefthimiou, V.; Thomas, S.; Roger, A.-C. Low temperature toluene and phenol abatement as tar model molecules over Ni-based catalysts: Influence of the support and the synthesis method. Appl. Catal. B Environ. 2021, 297, 120479. [Google Scholar] [CrossRef]
- Satriadi, H.; Pratiwi, I.Y.; Khuriyah, M.; Widayat; Hadiyanto; Prameswari, J. Geothermal solid waste derived Ni/Zeolite catalyst for waste cooking oil processing. Chemosphere 2022, 286, 131618. [Google Scholar] [CrossRef]
- Lycourghiotis, S.; Kordouli, E.; Kordulis, C.; Bourikas, K. Transformation of residual fatty raw materials into third generation green diesel over a nickel catalyst supported on mineral palygorskite. Renew. Energy 2021, 180, 773–786. [Google Scholar] [CrossRef]
- Balla, P.; Seelam, P.K.; Balaga, R.; Rajesh, R.; Perupogu, V.; Liang, T.X. Immobilized highly dispersed Ni nanoparticles over porous carbon as an efficient catalyst for selective hydrogenation of furfural and levulinic acid. J. Environ. Chem. Eng. 2021, 9, 106530. [Google Scholar] [CrossRef]
- Yue, X.; Chen, D.; Luo, J.; Huang, Z.; Hong, L.; Hu, Y. Direct synthesis of methane-rich gas from reed biomass pyrolysis volatiles over its biochar-supported Ni catalysts. Biomass Bioenergy 2021, 154, 106250. [Google Scholar] [CrossRef]
- Zhang, W.; Xi, R.; Li, Y.; Zhang, Y.; Wang, P.; Hu, D. Recent development of transition metal doped carbon materials derived from biomass for hydrogen evolution reaction. Int. J. Hydrog. Energy 2022, 47, 32436–32454. [Google Scholar] [CrossRef]
- Ishii, T.; Kitamura, Y.; Hasegawa, S.; Sasaki, C.; Ozaki, J. Benzene hydrogenation activities of Ni catalyst supported on N- and B-doped carbons. Diam. Relat. Mater. 2021, 119, 108550. [Google Scholar] [CrossRef]
- Terekhova, E.N.; Gulyaeva, T.I.; Trenikhin, M.V.; Muromtsev, I.V.; Nepomnyashchii, A.A.; Belskaya, O.B. Sapropel-based carbon mineral materials as catalyst supports for transformation of large organic molecules. Kinet. Catal. 2018, 59, 237–245. [Google Scholar] [CrossRef]
- Terekhova, E.N.; Belskaya, O.B. Cobalt-molybdenum catalysts based on carbon-mineral materials from sapropel for the large organic molecules transformation. AIP Conf. Proc. 2017, 1876, 020010. [Google Scholar]
- Terekhova, E.N.; Belskaya, O.B. Synthesis and study of bimetallic catalysts based on carbon-mineral materials derived from sapropel. AIP Conf. Proc. 2019, 2141, 020014. [Google Scholar]
- Terekhova, E.N.; Belskaya, O.B. Synthesis of nickel-containing sapropel based catalysts and their study in the liquid-phase hydrogenation of nitrobenzene. Russ. J. Appl. Chem. 2021, 94, 223. [Google Scholar] [CrossRef]
- Steklov, N.A.; Il’ina, E.D. Sapropel and Its Use in the National Economy; Nedra: Moscow, Russia, 1969; pp. 99–136. [Google Scholar]
- Terekhova, E.N.; Belskaya, O.B.; Trenikhin, M.V.; Babenko, A.V.; Muromtzev, I.V.; Likholobov, V.A. Nickel catalysts based on carbon-mineral supports derived from sapropel for hydroliquefaction of sapropel organic matter. Fuel 2023, 332, 126300. [Google Scholar] [CrossRef]
- Terekhova, E.N.; Lavrenov, A.V.; Shilova, A.V.; Kireeva, T.V.; Saveleva, G.G.; Trenikhin, M.V.; Belskaya, O.B. Preparation of porous carbon–mineral materials by chemical treatment of sapropel carbonization products. Russ. J. Appl. Chem. 2017, 90, 1990–1997. [Google Scholar] [CrossRef]
- Terekhova, E.N.; Krivonos, O.I.; Belskaya, O.B. Synthesis of carbon-containing supports based on natural raw materials. Solid Fuel Chem. 2020, 54, 373–384. [Google Scholar] [CrossRef]
- Yang, J.; Lu, X.; Han, C.; Liu, H.; Gong, D.; Mo, L.; Wei, Q.; Tao, H.; Cui, S.; Wang, L. Glycine-assisted preparation of highly dispersed Ni/SiO2 catalyst for low-temperature dry reforming of methane. Int. J. Hydrog. Energy 2022, 47, 32071–32080. [Google Scholar] [CrossRef]
- Guo, X.; Kan, H.; Liu, X.; Geng, H.; Wang, L. Facile synthesis of hollow hierarchical Ni@C nanocomposites with well-dispersed high-loading Ni nanoparticles embedded in carbon for reduction of 4-nitrophenol. RSC Adv. 2018, 8, 15999. [Google Scholar] [CrossRef] [Green Version]
- Sung, C.M.; Tai, M.F. Reactivities of transition metals with carbon: Implications to the mechanism of diamond synthesis under high pressure. Int. J. Refract. Met. Hard Mater. 1997, 15, 237–256. [Google Scholar] [CrossRef]
- Park, J.; Regalbuto, J.R. A simple, accurate determination of oxide PZC and the strong buffering effect of oxide surfaces at incipient wetness. J. Colloid Interface Sci. 1995, 175, 239. [Google Scholar] [CrossRef]
- Boehm, H.P. Surface oxides on carbon and their analysis: A critical assessment. Carbon 1994, 32, 759–769. [Google Scholar] [CrossRef]
Sample | ρ, g·cm−3 | Adaf, wt.% | pHPZC | [O=], mmol·g−1 * | |
---|---|---|---|---|---|
CM-M | 0.65 | 79.7 | 0.17 | 2.6 | 0.24 |
CM-O | 0.49 | 46.2 | 0.15 | 2.4 | 0.31 |
Sample | SBET, m2·g−1 | Vpore, cm3·g−1 | Pore Fraction, % | ||
---|---|---|---|---|---|
Micropores (<2 nm) | Mesopores (2–50 nm) | Macropores (50–600 nm) | |||
CM-M | 161 | 0.25 | 27 | 42 | 31 |
CM-O | 172 | 0.19 | 34 | 33 | 33 |
Precursor | Ni Content, wt.% | |
---|---|---|
CM-M | CM-O | |
Ni(NO3)2 | 10.4 | 10.6 |
Ni(CH3CO2)2 | 9.1 | 10.3 |
(NH4)2Ni(SO4)2 | 9.2 | 10.2 |
Ni(CHO2)2 | 9.9 | 9.4 |
Precursor | Catalyst | nH2/nNiO | CSR, nm (111) |
---|---|---|---|
Ni(NO3)2 | Ni/CM-M | 0.2 | 20.0 |
Ni/CM-O | 0.4 | 28.2 | |
Ni(CH3CO2)2 | Ni/CM-M | 0.3 | 31.3 |
Ni/CM-O | 0.4 | 31.0 | |
(NH4)2Ni(SO4)2 | Ni/CM-M | 0.2 | 31.7 |
Ni/CM-O | 1.0 | 34.5 | |
Ni(CHO2)2 | Ni/CM-M | 0.2 | 20.9 |
Ni/CM-O | 0.5 | 47.3 |
Support | Ni(NO3)2 | Ni(CH3CO2)2 | (NH4)2Ni(SO4)2 | Ni(CHO2)2 | |
---|---|---|---|---|---|
X | CM-M | 64.9 | 33.0 | 2.8 | 50.5 |
CM-O | 31.3 | 13.7 | 1.2 | 5.0 | |
SCA | CM-M | 0.7 | 0.6 | 0.1 | 0.7 |
CM-O | 0.3 | 0.1 | <<0.1 | 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Terekhova, E.N.; Belskaya, O.B.; Izmaylov, R.R.; Trenikhin, M.V.; Likholobov, V.A. Nickel Catalysts on Carbon-Mineral Sapropel-Based Supports for Liquid-Phase Hydrogenation of Nitrobenzene. Catalysts 2023, 13, 82. https://doi.org/10.3390/catal13010082
Terekhova EN, Belskaya OB, Izmaylov RR, Trenikhin MV, Likholobov VA. Nickel Catalysts on Carbon-Mineral Sapropel-Based Supports for Liquid-Phase Hydrogenation of Nitrobenzene. Catalysts. 2023; 13(1):82. https://doi.org/10.3390/catal13010082
Chicago/Turabian StyleTerekhova, Elena N., Olga B. Belskaya, Rinat R. Izmaylov, Mikhail V. Trenikhin, and Vladimir A. Likholobov. 2023. "Nickel Catalysts on Carbon-Mineral Sapropel-Based Supports for Liquid-Phase Hydrogenation of Nitrobenzene" Catalysts 13, no. 1: 82. https://doi.org/10.3390/catal13010082
APA StyleTerekhova, E. N., Belskaya, O. B., Izmaylov, R. R., Trenikhin, M. V., & Likholobov, V. A. (2023). Nickel Catalysts on Carbon-Mineral Sapropel-Based Supports for Liquid-Phase Hydrogenation of Nitrobenzene. Catalysts, 13(1), 82. https://doi.org/10.3390/catal13010082