Aminocyclopropenium as a New Class of Hydrogen Bonding Catalyst in Friedel–Crafts Alkylation
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
- Preparation of the catalyst TPAC·Cl [66]
- Preparation of the catalyst TDAC·Cl [67]
- The general method for Friedel–Crafts Alkylation catalyzed via TPAC·Cl
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bartoli, G.; Bencivenni, G.; Dalpozzo, R. Organocatalytic strategies for the asymmetric functionalization of indoles. Chem. Soc. Rev. 2010, 39, 4449–4465. [Google Scholar] [CrossRef] [PubMed]
- Herrera, R.P.; Sgarzani, V.; Bernardi, L.; Ricci, A. Catalytic enantioselective Friedel–Crafts alkylation of indoles with nitroalkenes by using a simple thiourea organocatalyst. Angew. Chem. Int. Ed. 2005, 44, 6576–6579. [Google Scholar] [CrossRef] [PubMed]
- Narumi, T.; Tsuzuki, S.; Tamamura, H. Imidazolium Salt-Catalyzed Friedel–Crafts-Type Conjugate Addition of Indoles: Analysis of Indole/Imidazolium Complex by High Level ab Initio Calculations. Asian J. Org. Chem. 2014, 3, 497–503. [Google Scholar] [CrossRef]
- Capito, E.; Brown, J.M.; Ricci, A. Directed palladation: Fine tuning permits the catalytic 2-alkenylation of indoles. Chem. Commun. 2005, 14, 1854–1856. [Google Scholar] [CrossRef] [PubMed]
- Fizala, M.B.; Saranya, P.V.; Anilkumar, G. Copper-catalyzed alkylation reactions of indole: An overview. Chem. Pap. 2023, 77, 6425–6457. [Google Scholar] [CrossRef]
- Wan, N.N.; Yang, Y.L.; Wang, W.P.; Xie, Z.F.; Wang, J.D. Friedel–Crafts alkylation of indoles with nitroalkenes catalyzed by Cu(II)–imine complex. Chin. Chem. Lett. 2011, 22, 1155–1158. [Google Scholar] [CrossRef]
- Singh, M.; Neogi, S. Urea-engineering mediated hydrogen-bond donating Friedel–Crafts alkylation of indoles and nitroalkenes in a dual-functionalized microporous metal–organic framework with high recyclability and pore-fitting-induced size-selectivity. Inorg. Chem. Front. 2022, 9, 1897–1911. [Google Scholar] [CrossRef]
- Jia, Y.-X.; Zhu, S.-F.; Yang, Y.; Zhou, Q.-L. Asymmetric Friedel–Crafts Alkylations of Indoles with Nitroalkenes Catalyzed by Zn(II)–Bisoxazoline Complexes. J. Org. Chem. 2006, 71, 75–80. [Google Scholar] [CrossRef]
- Azizi, N.; Arynasab, F.; Saidi, M.R. Efficient Friedel–Crafts alkylation of indoles and pyrrole with enones and nitroalkene in water. Org. Biomol. Chem. 2006, 4, 4275–4277. [Google Scholar] [CrossRef]
- Taniguchi, Y.; Nakamura, A.; Senko, Y.; Nagatsugi, F.; Sasaki, S. Effects of Halogenated WNA Derivatives on Sequence Dependency for Expansion of Recognition Sequences in Non-Natural-Type Triplexes. J. Org. Chem. 2006, 71, 2115–2122. [Google Scholar] [CrossRef]
- Karimi, B.; Jafari, E.; Mansouri, F.; Tavakolian, M. Catalytic asymmetric Friedel–Crafts alkylation of unprotected indoles with nitroalkenes using a novel chiral Yb(OTf)3-pybox complex. Sci. Rep. 2023, 13, 14736. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Al Majid, A.M.A.; Al-Othman, Z.A.; Barakat, A. Highly enantioselective Friedel–Crafts alkylation of indole with electron deficient trans-β-nitroalkenes using Zn(II)–oxazoline–imidazoline catalysts. Tetrahedron Asymmetry 2014, 25, 245–251. [Google Scholar] [CrossRef]
- Suzuki, T.; Chisholm, J.D. Friedel–Crafts Alkylation of Indoles with Trichloroacetimidates. Tetrahedron Lett. 2019, 60, 1325–1329. [Google Scholar] [CrossRef] [PubMed]
- Dündar, E.; Tanyeli, C. Enantioselective Friedel–Crafts alkylation of indole with nitroalkenes in the presence of bifunctional squaramide organocatalysts. Tetrahedron Lett. 2021, 73, 153153. [Google Scholar] [CrossRef]
- Zhuang, W.; Hazell, R.G.; Jorgensen, K.A. Enantioselective Friedel–Crafts type addition of indoles to nitro-olefins using a chiral hydrogen-bonding catalyst–synthesis of optically active tetrahydro-[small beta]-carbolines. Org. Biomol. Chem. 2005, 3, 2566–2571. [Google Scholar] [CrossRef]
- Schreiner, P.R. Metal-free organocatalysis through explicit hydrogen bonding interactions. Chem. Soc. Rev. 2003, 32, 289–296. [Google Scholar] [CrossRef]
- Doyle, A.G.; Jacobsen, E.N. Small-molecule H-bond donors in asymmetric catalysis. Chem. Rev. 2007, 107, 5713–5743. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.S.; Jacobsen, E.N. Asymmetric catalysis by chiral hydrogen-bond donors. Angew. Chem. Int. Ed. 2006, 45, 1520–1543. [Google Scholar] [CrossRef]
- Malerich, J.P.; Hagihara, K.; Rawal, V.H. Chiral Squaramide Derivatives are Excellent Hydrogen Bond Donor Catalysts. J. Am. Chem. Soc. 2008, 130, 14416–14417. [Google Scholar] [CrossRef]
- Phipps, R.J.; Hamilton, G.L.; Toste, F.D. The progression of chiral anions from concepts to applications in asymmetric catalysis. Nat. Chem. 2012, 4, 603–614. [Google Scholar] [CrossRef]
- Auvil, T.J.; Schafer, A.G.; Mattson, A.E. Design Strategies for Enhanced Hydrogen-Bond Donor Catalysts. Eur. J. Org. Chem. 2014, 2014, 2633–2646. [Google Scholar] [CrossRef]
- Min, C.; Seidel, D. Asymmetric Bronsted acid catalysis with chiral carboxylic acids. Chem. Soc. Rev. 2017, 46, 5889–5902. [Google Scholar] [CrossRef] [PubMed]
- Nishikawa, Y. Recent topics in dual hydrogen bonding catalysis. Tetrahedron Lett. 2018, 59, 216–223. [Google Scholar] [CrossRef]
- Zhang, Z.G.; Schreiner, P.R. (Thio)urea organocatalysis—What can be learnt from anion recognition? Chem. Soc. Rev. 2009, 38, 1187–1198. [Google Scholar] [CrossRef]
- Okino, T.; Hoashi, Y.; Takemoto, Y. Enantioselective Michael Reaction of Malonates to Nitroolefins Catalyzed by Bifunctional Organocatalysts. J. Am. Chem. Soc. 2003, 125, 12672–12673. [Google Scholar] [CrossRef] [PubMed]
- Berkessel, A.; Cleemann, F.; Mukherjee, S.; Müller, T.N.; Lex, J. Highly Efficient Dynamic Kinetic Resolution of Azlactones by Urea-Based Bifunctional Organocatalysts. Angew. Chem. Int. Ed. 2005, 44, 807–811. [Google Scholar] [CrossRef] [PubMed]
- Connon, S.J. Organocatalysis Mediated by (Thio)urea Derivatives. Chem. Eur. J. 2006, 12, 5418–5427. [Google Scholar] [CrossRef]
- Jensen, K.H.; Sigman, M.S. Systematically Probing the Effect of Catalyst Acidity in a Hydrogen-Bond-Catalyzed Enantioselective Reaction. Angew. Chem. Int. Ed. 2007, 46, 4748–4750. [Google Scholar] [CrossRef]
- Jensen, K.H.; Sigman, M.S. Evaluation of Catalyst Acidity and Substrate Electronic Effects in a Hydrogen Bond-Catalyzed Enantioselective Reaction. J. Org. Chem. 2010, 75, 7194–7201. [Google Scholar] [CrossRef]
- Li, X.; Deng, H.; Zhang, B.; Li, J.; Zhang, L.; Luo, S.; Cheng, J.P. Physical Organic Study of Structure–Activity–Enantioselectivity Relationships in Asymmetric Bifunctional Thiourea Catalysis: Hints for the Design of New Organocatalysts. Chem. Eur. J. 2010, 16, 450–455. [Google Scholar] [CrossRef]
- Corey, E.J.; Grogan, M.J. Enantioselective synthesis of alpha-amino nitriles from N-benzhydryl imines and HCN with a chiral bicyclic guanidine as catalyst. Org. Lett. 1999, 1, 157–160. [Google Scholar] [CrossRef] [PubMed]
- Terada, M.; Nakano, M.; Ube, H. Axially chiral guanidine as highly active and enantioselective catalyst for electrophilic amination of unsymmetrically substituted 1,3-dicarbonyl compounds. J. Am. Chem. Soc. 2006, 128, 16044–16045. [Google Scholar] [CrossRef] [PubMed]
- Uyeda, C.; Jacobsen, E.N. Enantioselective Claisen rearrangements with a hydrogen-bond donor catalyst. J. Am. Chem. Soc. 2008, 130, 9228–9229. [Google Scholar] [CrossRef]
- Selig, P. Guanidine Organocatalysis. Synthesis 2013, 45, 703–718. [Google Scholar] [CrossRef]
- Fu, X.; Tan, C.-H. Mechanistic considerations of guanidine-catalyzed reactions. Chem. Commun. 2011, 47, 8210–8222. [Google Scholar] [CrossRef]
- Wittkopp, A.; Schreiner, P.R. Metal-Free, Noncovalent Catalysis of Diels–Alder Reactions by Neutral Hydrogen Bond Donors in Organic Solvents and in Water. Chem. Eur. J. 2003, 9, 407–414. [Google Scholar] [CrossRef]
- Yoon, T.P.; Jacobsen, E.N. Highly enantioselective thiourea-catalyzed nitro-Mannich reactions. Angew. Chem. Int. Ed. 2005, 44, 466–468. [Google Scholar] [CrossRef]
- Aleman, J.; Parra, A.; Jiang, H.; Jorgensen, K.A. Squaramides: Bridging from Molecular Recognition to Bifunctional Organocatalysis. Chem. Eur. J. 2011, 17, 6890–6899. [Google Scholar] [CrossRef]
- Reetz, M.T.; Huette, S.; Goddard, R. Tetrabutylammonium salts of CH-acidic carbonyl compounds: Real carbanions or supramolecules? J. Am. Chem. Soc. 1993, 115, 9339–9340. [Google Scholar] [CrossRef]
- Shirakawa, S.; Liu, S.; Kaneko, S.; Kumatabara, Y.; Fukuda, A.; Omagari, Y.; Maruoka, K. Tetraalkylammonium Salts as Hydrogen-Bonding Catalysts. Angew. Chem. Int. Ed. 2015, 54, 15767–15770. [Google Scholar] [CrossRef]
- Kaneko, S.; Kumatabara, Y.; Shimizu, S.; Maruoka, K.; Shirakawa, S. Hydrogen-bonding catalysis of sulfonium salts. Chem. Commun. 2017, 53, 119–122. [Google Scholar] [CrossRef] [PubMed]
- Kumatabara, Y.; Kaneko, S.; Nakata, S.; Shirakawa, S.; Maruoka, K. Hydrogen-Bonding Catalysis of Tetraalkylammonium Salts in an Aza-Diels-Alder Reaction. Chem. Asian J. 2016, 11, 2126–2129. [Google Scholar] [CrossRef] [PubMed]
- Wilson, R.M.; Lambert, T.H. Cyclopropenium Ions in Catalysis. Acc. Chem. Res. 2022, 55, 3057–3069. [Google Scholar] [CrossRef] [PubMed]
- Lyons, D.J.; Crocker, R.D.; Blumel, M.; Nguyen, T.V. Promotion of Organic Reactions by Non-Benzenoid Carbocyclic Aromatic Ions. Angew. Chem. Int. Ed. 2017, 56, 1466–1484. [Google Scholar] [CrossRef] [PubMed]
- Bandar, J.S.; Lambert, T.H. Aminocyclopropenium Ions: Synthesis, Properties, and Applications. Synthesis 2013, 45, 2485–2498. [Google Scholar]
- Bandar, J.S.; Lambert, T.H. Cyclopropenimine-catalyzed enantioselective Mannich reactions of tert-butyl glycinates with N-Boc-imines. J. Am. Chem. Soc. 2013, 135, 11799–11802. [Google Scholar] [CrossRef]
- Bandar, J.S.; Lambert, T.H. Enantioselective Bronsted base catalysis with chiral cyclopropenimines. J. Am. Chem. Soc. 2012, 134, 5552–5555. [Google Scholar] [CrossRef]
- Bandar, J.S.; Tanaset, A.; Lambert, T.H. Phase-Transfer and Other Types of Catalysis with Cyclopropenium Ions. Chem. Eur. J. 2015, 21, 7365–7368. [Google Scholar] [CrossRef]
- Mir, R.; Dudding, T. Phase-Transfer Catalyzed O-Silyl Ether Deprotection Mediated by a Cyclopropenium Cation. J. Org. Chem. 2017, 82, 709–714. [Google Scholar] [CrossRef]
- Huang, H.; Strater, Z.M.; Rauch, M.; Shee, J.; Sisto, T.J.; Nuckolls, C.; Lambert, T.H. Electrophotocatalysis with a Trisaminocyclopropenium Radical Dication. Angew. Chem. Int. Ed. 2019, 58, 13318–13322. [Google Scholar] [CrossRef]
- Weiss, R.; Hertel, M. NITROGEN ANALOG OF DELTIC ACID. J. Chem. Soc. Chem. Commun. 1980, 11, 223–224. [Google Scholar] [CrossRef]
- Krebs, A.W. Cyclopropenylium Compounds and Cyclopropenones. Angew. Chem. Int. Ed. 1965, 4, 10–22. [Google Scholar] [CrossRef]
- Breslow, R.; Groves, J.T.; Ryan, G. Cyclopropenyl cation. J. Am. Chem. Soc. 1967, 89, 5048. [Google Scholar] [CrossRef]
- Xu, J.; Liu, J.; Li, Z.; Xu, S.; Wang, H.; Guo, T.; Gao, Y.; Zhang, L.; Zhang, C.; Guo, K. Opposite-charge repulsive cation and anion pair cooperative organocatalysis in ring-opening polymerization. Polym. Chem. 2018, 9, 2183–2192. [Google Scholar] [CrossRef]
- Lancianesi, S.; Palmieri, A.; Petrini, M. Synthetic Approaches to 3-(2-Nitroalkyl) Indoles and Their Use to Access Tryptamines and Related Bioactive Compounds. Chem. Rev. 2014, 114, 7108–7149. [Google Scholar] [CrossRef] [PubMed]
- Nickerson, D.M.; Mattson, A.E. Transition Metal and Hydrogen Bond Donor Hybrids: Catalysts for the Activation of Alkylidene Malonates. Chem. Eur. J. 2012, 18, 8310–8314. [Google Scholar] [CrossRef]
- Boiocchi, M.; Del Boca, L.; Gómez, D.E.; Fabbrizzi, L.; Licchelli, M.; Monzani, E. Nature of Urea–Fluoride Interaction: Incipient and Definitive Proton Transfer. J. Am. Chem. Soc. 2004, 126, 16507–16514. [Google Scholar] [CrossRef]
- Cametti, M.; Rissanen, K. Recognition and sensing of fluoride anion. Chem. Commun. 2009, 20, 2809–2829. [Google Scholar] [CrossRef]
- Lacour, J.; Moraleda, D. Chiral anion-mediated asymmetric ion pairing chemistry. Chem. Commun. 2009, 46, 7073–7089. [Google Scholar] [CrossRef]
- Komatsu, K.; Kitagawa, T. Cyclopropenylium Cations, Cyclopropenones, and Heteroanalogues Recent Advances. Chem. Rev. 2003, 103, 1371–1428. [Google Scholar] [CrossRef]
- Weiss, R.; Schwab, O.; Hampel, F. Ion-Pair Strain as the Driving Force for Hypervalent Adduct Formation between Iodide Ions and Substituted Iodobenzenes: Structural Alternatives to Meisenheimer Complexes. Chem. Eur. J. 1999, 5, 968–974. [Google Scholar] [CrossRef]
- Weiss, R.; Brenner, T.; Hampel, F.; Wolski, A. The Consequences of an Electrostatic “Forced Marriage” between Two Electron-Rich Particles: Strained Ion Pairs. Angew. Chem. Int. Ed. 1995, 34, 439–441. [Google Scholar] [CrossRef]
- Weiss, R.; Rechinger, M.; Hampel, F.; Wolski, A. Stable 1:1 Adducts from Iodoacetylenes and Iodide Ions: Ion Pair Strain as an Additional Driving Force? Angew. Chem. Int. Ed. 1995, 34, 441–443. [Google Scholar] [CrossRef]
- Fuchter, M.J.; Smith, C.J.; Tsang, M.W.S.; Boyer, A.; Saubern, S.; Ryan, J.H.; Holmes, A.B. Clean and efficient synthesis of O-silylcarbamates and ureas in supercritical carbon dioxide. Chem. Commun. 2008, 18, 2152–2154. [Google Scholar] [CrossRef] [PubMed]
- Gaul, D.A.; Just, O.; Rees, W.S. Synthesis and characterization of a series of zinc bis (alkyl)(trimethylsilyl)amide compounds. Inorg. Chem. 2000, 39, 5648–5654. [Google Scholar] [CrossRef] [PubMed]
- Hardy, J.P.; Cumming, W.D. Conformational preferences of the N-trimethylsilyl and O-trimethylsilyl groups. J. Am. Chem. Soc. 1971, 93, 928–932. [Google Scholar] [CrossRef]
- Xu, J.; Xian, A.; Li, Z.; Liu, J.; Zhang, Z.; Yan, R.; Gao, L.; Liu, B.; Zhao, L.; Guo, K. A Strained Ion Pair Permits Carbon Dioxide Fixation at Atmospheric Pressure by C–H H-Bonding Organocatalysis. J. Org. Chem. 2021, 86, 3422–3432. [Google Scholar] [CrossRef]
- Fleming, E.M.; McCabe, T.; Connon, S.J. Novel axially chiral bis-arylthiourea-based organocatalysts for asymmetric Friedel–Crafts type reactions. Tetrahedron Lett. 2006, 47, 7037–7042. [Google Scholar] [CrossRef]
- Itoh, J.; Fuchibe, K.; Akiyama, T. Chiral phosphoric acid catalyzed enantioselective Friedel-Crafts alkylation of indoles with nitroalkenes: Cooperative effect of 3 Å molecular sieves. Angew. Chem. Int. Ed. 2008, 47, 4016–4018. [Google Scholar] [CrossRef]
- Huang, K.; Pei, X.; Yin, X.; Chen, Z. Novel Chiral Secondary Amine-Amide Catalysts Friedel-Craft Alkylation Reaction. Asian J. Chem. 2017, 29, 595–600. [Google Scholar] [CrossRef]
Entry | Catalyst | Indole | R1 | R2 | Nitroalkene | Product | Time/h | Yield b/% |
---|---|---|---|---|---|---|---|---|
1 c | - | 1a | H | Ph | 2a | 3aa | 24 | trace |
2 | TPAC·Cl | 1a | H | Ph | 2a | 3aa | 24 | 78 |
3 | TPAC·F | 1a | H | Ph | 2a | 3aa | 24 | trace |
4 | TDAC·Cl | 1a | H | Ph | 2a | 3aa | 24 | trace |
5 | TDAC·F | 1a | H | Ph | 2a | 3aa | 24 | trace |
6 | TBA·Cl | 1a | H | Ph | 2a | 3aa | 24 | trace |
7 | TBA·F | 1a | H | Ph | 2a | 3aa | 24 | trace |
8 | TPAC·Cl | 1b | 2-Me | Ph | 2a | 3ba | 24 | 86 |
9 | TPAC·Cl | 1c | 5-OMe | Ph | 2a | 3ca | 24 | 88 |
10 | TPAC·Cl | 1d | 5-Cl | Ph | 2a | 3da | 24 (72) d | 16 (52) |
11 | TPAC·Cl | 1e | 7-Me | Ph | 2a | 3ea | 24 | 57 |
12 | TPAC·Cl | 1a | H | 4-MeC6H4 | 2b | 3ab | 24 | 33 |
13 | TPAC·Cl | 1a | H | 4-MeOC6H4 | 2c | 3ac | 24 | 55 |
14 | TPAC·Cl | 1a | H | 2-thienyl | 2d | 3ad | 24 | 71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, X.; Xu, J.; Liu, J.; He, J.; Chang, T.; Yang, Q.; Li, N.; Qian, D.; Li, Z. Aminocyclopropenium as a New Class of Hydrogen Bonding Catalyst in Friedel–Crafts Alkylation. Catalysts 2023, 13, 1370. https://doi.org/10.3390/catal13101370
Ma X, Xu J, Liu J, He J, Chang T, Yang Q, Li N, Qian D, Li Z. Aminocyclopropenium as a New Class of Hydrogen Bonding Catalyst in Friedel–Crafts Alkylation. Catalysts. 2023; 13(10):1370. https://doi.org/10.3390/catal13101370
Chicago/Turabian StyleMa, Xuesuo, Jiaxi Xu, Jingjing Liu, Jun He, Tong Chang, Qingbiao Yang, Ning Li, Dong Qian, and Zhenjiang Li. 2023. "Aminocyclopropenium as a New Class of Hydrogen Bonding Catalyst in Friedel–Crafts Alkylation" Catalysts 13, no. 10: 1370. https://doi.org/10.3390/catal13101370
APA StyleMa, X., Xu, J., Liu, J., He, J., Chang, T., Yang, Q., Li, N., Qian, D., & Li, Z. (2023). Aminocyclopropenium as a New Class of Hydrogen Bonding Catalyst in Friedel–Crafts Alkylation. Catalysts, 13(10), 1370. https://doi.org/10.3390/catal13101370