Synthesis and Characterization of Acid-Activated Carbon Prepared from Sugarcane Bagasse for Furfural Production in Aqueous Media
Abstract
:1. Introduction
2. Results and Discussion
2.1. Carbonization and Sulfonation Process Yields
2.2. Catalyst Characterization
2.2.1. Textural Properties
2.2.2. SEM-EDX Analysis
2.2.3. Elementary Analysis and Ion Exchange Capacity
2.2.4. TGA Analysis
2.2.5. XRD and Raman Analysis
2.3. Conversion of Xylose into Furfural
3. Materials and Methods
3.1. Precursor Material
3.2. Preparation of Activated Carbon: Impregnation and Carbonization
3.3. Activated Carbon Sulfonation Process
3.4. Catalyst Characterization
3.4.1. Textural Properties
3.4.2. Elemental Analysis
3.4.3. Ion Exchange Capacity Analysis
3.4.4. Scanning Electron Microscopy Analysis (SEM)
3.4.5. Thermogravimetric Analysis (TGA)
3.4.6. X-ray Diffraction Analysis (XRD)
3.4.7. Raman Spectroscopy Analysis
3.5. Application of Activated Carbon for Conversion of Xylose to Furfural
3.5.1. Experimental Conditions
3.5.2. Determination of Xylose and Furfural
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, C.B.T.L.; Wu, T.Y. A review on solvent systems for furfural production from lignocellulosic biomass. Renew. Sustain. Energy Rev. 2021, 137, 110172. [Google Scholar] [CrossRef]
- Wang, F.; Ouyang, D.; Zhou, Z.; Page, S.J.; Liu, D.; Zhao, X. Lignocellulosic biomass as sustainable feedstock and materials for power generation and energy storage. J. Energy Chem. 2021, 57, 247–280. [Google Scholar] [CrossRef]
- Yang, T.; Li, W.; Ogunbiyi, A.T.; An, S. Efficient catalytic conversion of corn stover to furfural and 5-hydromethylfurfural using glucosamine hydrochloride derived carbon solid acid in Ƴ-valerolactone. Ind. Crops Prod. 2021, 161, 113173. [Google Scholar] [CrossRef]
- Okolie, J.A.; Nanda, S.; Dalai, A.K.; Kozinsk, J.A. Chemistry and specialty industrial applications of lignocellulosic biomass. Waste Biomass Valorization 2021, 12, 2145–2169. [Google Scholar] [CrossRef]
- Ashokkumar, V.; Venkatkarthick, R.; Jayashree, S.; Chuetor, S.; Dharmaraj, S.; Kumar, G.; Chen, W.-H.; Ngamcharussrivichai, C. Recent advances in lignocellulosic biomass for biofuels and value-added bioproducts—A critical review. Bioresour. Technol. 2022, 34, 126195. [Google Scholar] [CrossRef] [PubMed]
- Perez, R.F.; Canhaci, S.J.; Borges, L.E.P.; Fraga, M.A. One-step conversion of xylose to furfuryl alcohol on sulfated zirconia-supported Pt catalyst—Balance between acid and metal sites. Catal. Today 2017, 289, 273–279. [Google Scholar] [CrossRef]
- Deng, W.; Feng, Y.; Fu, J.; Guo, H.; Guo, Y.; Han, B.; Jiang, Z.; Kong, L.; Li, C.; Liu, H.; et al. Catalytic conversion of lignocellulosic biomass into chemicals and fuels. Green Energy Environ. 2022, 8, 10–114. [Google Scholar] [CrossRef]
- Perez, R.F.; Fraga, M.A. Hemicellulose-derived chemicals: One-step production of furfuryl alcohol from xylose. Green Chem. 2014, 16, 3942–3950. [Google Scholar] [CrossRef]
- Lee, Y.; Kwon, E.E.; Lee, J. Polymers derived from hemicellulosic parts of lignocellulosic biomass. Rev. Environ. Sci. Biotechnol. 2019, 18, 317–334. [Google Scholar] [CrossRef]
- Sai, M.S.N.; De, D.; Satyavathi, B. Sustainable production and purification of furfural from waste agricultural residue: An insight into integrated biorefinery. J. Clean. Prod. 2021, 327, 129467. [Google Scholar] [CrossRef]
- Lei, Y.; Yiwen, H.; Xiaotong, W.; Xuebin, L.; Xinhua, Q.; Hongbing, Y. Recent progress in furfural production from hemicellulose and its derivatives: Conversion mechanism, catalytic system, solvent selection. Mol. Catal. 2021, 515, 111899. [Google Scholar] [CrossRef]
- Choudhary, V.; Sandler, S.I.; Vlachos, D.G. Conversion of xylose to furfural using Lewis and Brønsted acid catalysts in aqueous media. ACS Catal. 2012, 2, 2022–2028. [Google Scholar] [CrossRef]
- Rachamontree, P.; Douzou, T.; Cheenkachorn, K.; Sriariyanun, M.; Rattanaporn, K. Furfural: A sustainable platform chemical and fuel. Appl. Sci. Eng. Prog. 2020, 13, 315–322. [Google Scholar] [CrossRef]
- Mamman, A.S.; Lee, J.-M.; Kim, Y.-C.; Hwang, I.T.; Park, N.-J.; Hwang, Y.K.; Chang, J.-S.; Hwang, J.-S. Furfural: Hemicellulose/xylose derived biochemical. Biofuels Bioprod. Biorefin. 2008, 2, 438–454. [Google Scholar] [CrossRef]
- Mariscal, R.; Maireles-Torres, P.; Ojeda, M.; Sádaba, I.; Granados, M.L. Furfural: A renewable and versatile platform molecule for the synthesis of chemicals and fuels. Energy Environ. Sci. 2016, 9, 1144–1189. [Google Scholar] [CrossRef]
- Ge, X.; Chang, C.; Zhang, L.; Cui, S.; Luo, X.; Hu, S.; Qin, Y.; Li, Y. Conversion of lignocellulosic biomass into platform chemicals for biobased polyurethane application. In Advances in Bioenergy, 1st ed.; Li, Y., Zhou, Y., Eds.; Elsevier: Amsterdã, The Netherlands, 2018; Volume 3, pp. 161–213. [Google Scholar] [CrossRef]
- Yong, K.J.; Wu, T.Y.; Lee, C.B.T.L.; Lee, Z.J.; Liu, Q.; Jahim, J.M.D.; Zhou, Q.; Zhang, L. Furfural production from biomass residues: Current technologies, challenges and future prospects. Biomass Bioenergy 2022, 161, 106458. [Google Scholar] [CrossRef]
- Zhang, L.; Xi, G.; Yu, K.; Yu, H.; Wang, X. Furfural production from biomass–derived carbohydrates and lignocellulosic residues via heterogeneous acid catalysts. Ind. Crops Prod. 2017, 98, 68–75. [Google Scholar] [CrossRef]
- Lyu, X.; Botte, G.G. Investigation of factors that inhibit furfural production using metal chloride catalysts. Chem. Eng. J. 2021, 403, 126271. [Google Scholar] [CrossRef]
- Gabriel, J.B.; Oliveira, V.; de Souza, T.E.; Padula, I.; Oliveira, L.C.A.; Gurgel, L.V.A.; Baêta, B.E.L.; Silva, A.C. New Approach to dehydration of xylose to 2-furfuraldehyde using a mesoporous niobium-based catalyst. ACS Omega 2020, 5, 21392–21400. [Google Scholar] [CrossRef]
- Liang, J.; Zha, J.; Zhao, N.; Tang, Z.; He, Y.; Ma, C. Valorization of waste lignocellulose to furfural by sulfonated biobased heterogeneous catalyst using ultrasonic-treated chestnut shell waste as carrier. Processes 2021, 9, 2269. [Google Scholar] [CrossRef]
- Zhang, T.; Li, W.; Xiao, H.; Jin, Y.; Wu, S. Recent progress in direct production of furfural from lignocellulosic residues and hemicellulose. Bioresour. Technol. 2022, 354, 127126. [Google Scholar] [CrossRef]
- Gong, L.; Zha, J.; Pan, L.; Ma, C.; He, Y.-C. Highly efficient conversion of sunflower stalk-hydrolysate to furfural by sunflower stalk residue-derived carbonaceous solid acid in deep eutectic solvent/organic solvent system. Bioresour. Technol. 2022, 351, 126945. [Google Scholar] [CrossRef]
- Zha, J.; Fan, B.; He, J.; He, Y.-C.; Ma, C. Valorization of biomass to furfural by chestnut shell-based solid acid in methyl isobutyl ketone–water–sodium chloride system. Appl. Biochem. Biotechnol. 2022, 194, 2021–2035. [Google Scholar] [CrossRef] [PubMed]
- Romo, J.E.; Bollar, N.V.; Zimmermann, C.J.; Wettstein, S.G. Conversion of sugars and biomass to furans using heterogeneous catalysts in biphasic solvent systems. ChemCatChem 2018, 10, 4805–4816. [Google Scholar] [CrossRef]
- Xu, H.; Xiong, S.; Zhao, Y.; Zhu, L.; Wang, S. Conversion of xylose to furfural catalyzed by carbon-based solid acid prepared from pectin. Energy Fuels 2021, 35, 9961–9969. [Google Scholar] [CrossRef]
- Termvidchakorn, C.; Itthibenchapong, V.; Songtawee, S.; Chamnankid, B.; Namuangruk, S.; Faungnawakij, K.; Charinpanitkul, T.; Khunchit, R.; Hansupaluk, N.; Sano, N.; et al. Dehydration of D-xylose to furfural using acid-functionalized MWCNTs catalysts. Adv. Nat. Sci. Nanosci. Nanotechnol. 2017, 8, 035006. [Google Scholar] [CrossRef]
- Lin, Q.; Li, H.; Wang, X.; Jian, L.; Ren, J.; Liu, C.; Sun, R. SO4-2/Sn-MMT solid acid catalyst for xylose and xylan conversion into furfural in the biphasic system. Catalyst 2017, 7, 118. [Google Scholar] [CrossRef]
- Tran, T.T.V.; Kongparakul, S.; Reubroycharoen, P.; Guan, G.; Nguyen, M.H.; Chanlek, N.; Samart, C. Production of furan based biofuel with an environmental benign carbon catalyst. Environ. Prog. Sustain. Energy 2018, 37, 1455–1461. [Google Scholar] [CrossRef]
- Dulie, N.W.; Woldeyes, B.; Demsash, H.D. Synthesis of lignin-carbohydrate complex-based catalyst from Eragrostis tef straw and its catalytic performance in xylose dehydration to furfural. Int. J. Biol. Macromol. 2021, 171, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Guo, H.; Cao, X.; Ma, Y.; Wang, W.; Guo, N. Solid acid catalyst derived from cotton for conversion of xylose and corn cob to furfural. ChemistrySelect 2022, 7, e202203762. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, W.; Lu, Y.; Zhang, T.; Jameel, H.; Chang, H.; Ma, L. Production of furfural from xylose and corn stover catalyzed by a novel porous carbon solid acid in γ-valerolactone. RSC Adv. 2017, 7, 29916–29924. [Google Scholar] [CrossRef]
- Lin, Q.-X.; Zhang, C.-H.; Wang, X.-H.; Cheng, B.-G.; Mai, N.; Ren, J.-L. Impact of activation on properties of carbon-based solid acid catalysts for the hydrothermal conversion of xylose and hemicelluloses. Catal. Today 2019, 319, 31–40. [Google Scholar] [CrossRef]
- Li, Q.; Ma, C.-L.; Zhang, P.-Q.; Li, Y.-Y.; Zhu, X.; He, Y.-C. Effective conversion of sugarcane bagasse to furfural by coconut shell activated carbon-based solid acid for enhancing whole-cell biosynthesis of furfurylamin. Ind. Crops Prod. 2021, 160, 113169. [Google Scholar] [CrossRef]
- Chung, N.H.; Dien, L.Q.; Que, N.T.; Thanh, N.T.; Ly, G.T.P. Comparative study on the conversion of Acacia mangium wood sawdust-derived xylose-containing acid hydrolysate to furfural by sulfonated solid catalysts prepared from different lignocellulosic biomass residues. Wood Sci. Technol. 2021, 55, 659–679. [Google Scholar] [CrossRef]
- Wang, W.; Cao, X.; Guo, H.; Yang, X.; Guo, N.; Ma, Y. Carbon-based solid acid derived from lignin and polyvinyl chloride for conversion of xylose and crop wastes to furfural. Mol. Catal. 2022, 524, 112329. [Google Scholar] [CrossRef]
- Zhang, Z.; Luo, X.; Liu, Y.; Zhou, P.; Ma, G.; Lei, Z.; Lei, L. A low cost and highly eficiente adsorbent (activated carbon) prepared from waste potato residue. J. Taiwan Inst. Chem. Eng. 2015, 49, 206–211. [Google Scholar] [CrossRef]
- Liew, R.K.; Azwar, E.; Yek, P.N.Y.; Lim, X.Y.; Cheng, C.K.; Ng, J.-H.; Jusoh, A.; Lam, W.H.; Ibrahim, M.D.; Ma, N.L.; et al. Microwave pyrolysis with KOH/NaOH mixture activation: A new approach to produce micro-mesoporous activated carbon for textile dye adsorption. Bioresour. Technol. 2018, 266, 1–10. [Google Scholar] [CrossRef]
- Norouzi, S.; Heidari, M.; Alipour, V.; Rahmanian, O.; Fazlzadeh, M.; Mohammadi-moghadam, F.; Nourmoradi, H.; Goudarzi, B.; Dindarloo, K. Preparation, characterization and Cr(VI) adsorption evaluation of NaOH-activated carbon produced from Date Press Cake; an agro-industrial waste. Bioresour. Technol. 2018, 258, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Shen, Y.; Zhang, Z.; Ge, X.; Chen, M. Activated bio-chars derived from rice husk via one-and two-step KOH-catalyzed pyrolysis for phenol adsorption. Sci. Total Environ. 2019, 646, 1567–1577. [Google Scholar] [CrossRef]
- Benmahdi, F.; Oulmi, K.; Khettaf, S.; Kolli, M.; Merdrignac-Conanec, O.; Mandin, P. Synthesis and characterization of microporous granular activated carbon from Silver berry seeds using ZnCl2 activation. Fuller Nanotub. Carbon Nanostruct. 2021, 29, 657–669. [Google Scholar] [CrossRef]
- Mbarki, F.; Selim, T.; Kesraoui, A.; Seffen, M. Low-cost activated carbon preparation from Corn stigmata fibers chemically activated using H3PO4, ZnCl2 and KOH: Study of methylene blue adsorption, stochastic isotherm and fractal kinetic. Ind. Crops Prod. 2022, 178, 114546. [Google Scholar] [CrossRef]
- Liu, B.; Gu, J.; Zhou, J. High surface area rice husk-based activated carbon prepared by chemical activation with ZnCl2–CuCl2 composite activator. Environ. Prog. Sustain. Energy 2016, 35, 133–140. [Google Scholar] [CrossRef]
- Zhao, H.; Zhong, H.; Jiang, Y.; Li, H.; Tang, P.; Li, D.; Feng, Y. Porous ZnCl2-activated carbon from shaddock peel: Methylene blue adsorption behavior. Materials 2022, 15, 895. [Google Scholar] [CrossRef]
- Yagmur, E.; Gokce, Y.; Tekin, S.; Isik, S.N.; Aktas, Z. Characteristics and comparison of activated carbons prepared from oleaster (Elaeagnus angustifolia L.) fruit using KOH and ZnCl2. Fuel 2020, 267, 117232. [Google Scholar] [CrossRef]
- Saka, C. BET, TG–DTG, FT-IR, SEM, iodine number analysis and preparation of activated carbon from acorn shell by chemical activation with ZnCl2. J. Anal Appl. Pyrolysis 2012, 95, 21–24. [Google Scholar] [CrossRef]
- Heidarinejad, Z.; Dehghani, M.H.; Heidari, M.; Javedan, G.; Ali, I.; Sillanpää, M. Methods for preparation and activation of activated carbon: A review. Environ. Chem. Lett. 2020, 18, 393–415. [Google Scholar] [CrossRef]
- Luo, X.; Cai, Y.; Liu, L.; Zeng, J. Cr(VI) adsorption performance and mechanism of an effective activated carbon prepared from bagasse with a one-step pyrolysis and ZnCl2 activation method. Celulose 2019, 26, 4921–4934. [Google Scholar] [CrossRef]
- Cai, Y.; Liu, L.; Tian, H.; Yang, Z.; Luo, X. Adsorption and Desorption Performance and Mechanism of Tetracycline Hydrochloride by Activated Carbon-Based Adsorbents Derived from Sugar Cane Bagasse Activated with ZnCl2. Molecules 2019, 24, 4534. [Google Scholar] [CrossRef]
- Abdel-Aziz, M.H.; El-Ashtoukhy, E.Z.; Bassyouni, M.; Al-Hossalny, A.F.; Fawzy, E.M.; Abdel-Hamld, S.M.S.; Zoromba, M.S. DFT and experimental study on adsorption of dyes on activated carbon prepared from apple leaves. Carbon Lett. 2021, 31, 863–878. [Google Scholar] [CrossRef]
- Piriya, S.R.; Rajamani, M.; Jayabalakrishnan, M.M.; Boomiraj, K.; Oumabady, S. Coconut shell derived ZnCl2 activated carbon for malachite green dye removal. Water Sci. Technol. 2021, 83, 1167–1182. [Google Scholar] [CrossRef] [PubMed]
- Suhdi, W.S.-C. Fine activated carbon from rubber fruit shell prepared by using ZnCl2 and KOH activation. Aplic. Sci. 2021, 11, 3994. [Google Scholar] [CrossRef]
- Kumar, D.P.; Ramesh, D.; Subramanian, P.; Karthikeyan, S.; Surendrakumar, A. Activated carbon production from coconut leaflets through chemical activation: Process optimization using Taguchi approach. Bioresour. Technol. Rep. 2022, 19, 101155. [Google Scholar] [CrossRef]
- Amoo, T.E.; Amoo, K.O.; Adeeyo, O.A.; Ogidi, C.O. Kinetics and equilibrium studies of the adsorption of copper (ii) ions from industrial wastewater using activated carbons derived from sugarcane bagasse. Int. J. Chem. Eng. 2002, 2022, 6928568. [Google Scholar] [CrossRef]
- Thue, P.S.; Lima, E.C.; Sieliechi, J.M.; Saucier, C.; Dias, S.L.P.; Vaghetti, J.C.P.; Rodembusch, F.S.; Pavan, F.A. Effects of first-row transition metals and impregnation ratios on the physicochemical properties of microwave-assisted activated carbons from wood biomass. J. Colloid Interface Sci. 2017, 486, 163–175. [Google Scholar] [CrossRef]
- Mateo, W.; Lei, H.; Villota, E.; Qian, M.; Zhao, Y.; Huo, E.; Zhang, Q.; Lin, X.; Wang, C.; Huang, Z. Synthesis and characterization of sulfonated activated carbon as a catalyst for bio-jet fuel production from biomass and waste plastics. Bioresour. Technol. 2020, 297, 122411. [Google Scholar] [CrossRef]
- Niu, S.; Ning, Y.; Lu, C.; Han, K.; Yu, H.; Zhou, Y. Esterification of oleic acid to produce biodiesel catalyzed by sulfonated activated carbon from bamboo. Energy Convers. Manag. 2018, 163, 59–65. [Google Scholar] [CrossRef]
- Kolur, A.; Sharifian, S.; KaghazchI, T. Investigation of sulfuric acid-treated activated carbon properties. Turk. J. Chem. 2019, 43, 663–675. [Google Scholar] [CrossRef]
- Ferreira, A.R.; Silvestre-Albero, J.; Maier, M.E.; Ricardo, N.M.; Cavalcante, C.L.; Luna, F.M.T. Sulfonated activated carbons as potential catalysts for biolubricant synthesis. Mol. Catal. 2020, 488, 110888. [Google Scholar] [CrossRef]
- Higai, D.; Lee, C.; Lang, J.; Qian, E.W. Saccharification of cellulose using biomass-derived activated carbon-based solid acid catalysts. Fuel Process. Technol. 2021, 215, 106738. [Google Scholar] [CrossRef]
- Zhang, T.; Wei, H.; Gao, J.; Chen, S.; Jin, Y.; Deng, C.; Wu, S.; Xiao, H.; Li, W. Synthesis of sulfonated hierarchical carbons and theirs application on the production of furfural from wheat straw. Mol. Catal. 2022, 517, 112034. [Google Scholar] [CrossRef]
- Sing, K.S.W.; Everett, D.H.; Haul, R.A.W.; Moscou, L.; Pierotti, R.A.; Rouquérol, J.; Siemieniewska, T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 1985, 7, 603–619. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Schultz, J.; Capobianco, G.; da Silva Veiga, P.A.; Fornari, M.R.; Antonangelo, A.R.; Tebcherani, S.M.; Mangrich, A.S.; Pinaro, A.S. Sustainable activated carbon obtained as a by-product of the sugar and alcohol industry for removal of amoxicillin from aqueous solution. Energy Ecol. Environ. 2020, 5, 433–443. [Google Scholar] [CrossRef]
- El Nemr, A.; Aboughaly, R.M.; El Sikaily, A.; Ragab, S.; Masoud, M.S.; Ramadan, M.S. Utilization of sugarcane bagasse/ZnCl2 for sustainable production of microporous nano-activated carbons of type I for toxic Cr(VI) removal from aqueous environment. Biomass Conv. Bioref. 2021, 13, 1581–1600. [Google Scholar] [CrossRef]
- Ahuja, V.; Kshirsagar, S.; Ghosh, P.; Sarkar, B.; Sutar, A.; More, S.; Dasgupta, D. Process development for detoxification of corncob hydrolysate using activated charcoal for xylitol production. J. Environ. Chem. Eng. 2022, 10, 107097. [Google Scholar] [CrossRef]
- Jamnongkan, T.; Intaramongkol, N.; Kanjanaphong, N.; Ponjaroen, K.; Sriwiset, W.; Mongkholrattanasit, R.; Wongwachirakorn, P.; Lin, K.Y.A.; Huang, C.F. Study of the enhancements of porous structures of activated carbons produced from durian husk wastes. Sustainability 2022, 14, 5896. [Google Scholar] [CrossRef]
- Wang, Y.-T.; Fang, Z.; Zhang, F. Esterification of oleic acid to biodiesel catalyzed by a highly acidic carbonaceous catalyst. Catal. Today 2019, 319, 172–181. [Google Scholar] [CrossRef]
- Xincheng, T.; Shengli, N. Preparation of carbon-based solid acid with large surface area to catalyze esterification for biodiesel production. J. Ind. Eng. Chem. 2019, 69, 187–195. [Google Scholar] [CrossRef]
- Farabi, M.A.; Ibrahim, M.L.; Rashid, U.; Taufoiq-Yap, Y. Esterification of palm fatty acid distillate using sulfonated carbon-based catalyst derived from palm kernel shell and bamboo. Energy Convers. Manag. 2019, 181, 562–570. [Google Scholar] [CrossRef]
- Kong, X.; Vasudevan, S.V.; Cao, M.; Cai, J.; Mao, H.; Bu, Q. Microwave-assisted efficient fructose–hmf conversion in water over sulfonated carbon microsphere catalyst. ACS Sustain. Chem. Eng. 2021, 9, 15344–15356. [Google Scholar] [CrossRef]
- Leesing, R.; Somdee, T.; Siwina, S.; Ngernyen, Y.; Fiala, K. Production of 2G and 3G biodiesel, yeast oil, and sulfonated carbon catalyst from waste coconut meal: An integrated cascade biorefinery approach. Renew. Energy 2022, 199, 1093–1104. [Google Scholar] [CrossRef]
- Yusuff, A.S.; Thompson-Yusuff, K.A.; Porwal, J. Sulfonated biochar catalyst derived from eucalyptus tree shed bark: Synthesis, characterization and its evaluation in oleic acid esterification. RSC Adv. 2022, 12, 10237–10248. [Google Scholar] [CrossRef] [PubMed]
- Sangsiri, P.; Laosiripojana, N.; Daorattanachai, P. Synthesis of sulfonated carbon-based catalysts from organosolv lignin and methanesulfonic acid: Its activity toward esterification of stearic acid. Renew. Energy 2022, 193, 113–127. [Google Scholar] [CrossRef]
- Xiong, X.; Yu, I.K.M.; Chen, S.S.; Tsang, D.C.W.; Cao, L.; Song, H.; Kwon, E.E.; OK, Y.S.; Zhang, S.; Poon, C.S. Sulfonated biochar as acid catalyst for sugar hydrolysis and dehydration. Catal. Today 2018, 314, 52–61. [Google Scholar] [CrossRef]
- Rocha, P.D.; Oliveira, L.S.; Franca, A.S. Sulfonated activated carbon from corn cobs as heterogeneous catalysts for biodiesel production using microwave-assisted transesterification. Renew. Energy 2019, 143, 1710–1716. [Google Scholar] [CrossRef]
- Van, K.L.; Thu, T.L.T. Preparation of pore-size controllable activated carbon from rice husk using dual activating agent and its application in supercapacitor. J. Chem. 2019, 2019, 4329609. [Google Scholar] [CrossRef]
- Lokman, I.M.; Rashid, U.; Taufiq-Yap, Y.H. Meso- and macroporous sulfonated starch solid acid catalyst for esterification of palm fatty acid distillate. Árabe J. Chem. 2016, 9, 179–189. [Google Scholar] [CrossRef]
- Lima, A.P.; Tirone, A.V.; Batista, A.C.F.; Morais, L.C.; Souza, P.P.; Duarte, M.V.F.; Pasquini, D. Produção, caracterização e utilização de membranas de poliestireno sulfonado e polissulfona como catalisadores na reação de esterificação do ácido oleico. Rev. Virtual Química 2018, 10, 124–141. [Google Scholar] [CrossRef]
- Varão, L.H.R.; Silva, T.A.L.; Zamora, H.D.Z.; de Morais, L.C.; Pasquini, D. Synthesis of methyl biodiesel by esterification using magnetic nanoparticles coated with sulfonated lignin. Biomassa Conv. Bioref. 2023, 13, 12277–12290. [Google Scholar] [CrossRef]
- Thue, P.S.; Umpierres, C.B.; Lima, E.C.; Lima, D.R.; Machado, F.M.; dos Reis, G.S.; da Silva, R.S.; Pavan, F.A.; Tran, H.N. Single-step pyrolysis for producing magnetic activated carbon from tucumã (Astrocaryum aculeatum) seed and nickel(II) chloride and zinc(II) chloride. Application for removal of nicotinamide and propanolol. J. Hazard. Mater. 2020, 398, 122903. [Google Scholar] [CrossRef]
- Ngaosuwan, K.; Goodmin, J.G., Jr.; Prasertdham, P. A green sulfonated carbon-based catalyst derived from coffee residue for esterification. Renew. Energy 2016, 86, 262–269. [Google Scholar] [CrossRef]
- Lima, D.R.; Lima, E.C.; Thue, P.S.; Dias, S.L.P.; Machado, F.M.; Seliem, M.K.; Sher, G.; dos Reis, G.S.; Saeb, M.; Rinklebe, J. Comparison of acidic leaching using a conventional and ultrasound-assisted method for preparation of magnetic-activated biochar. J. Environ. Chem. Eng. 2021, 9, 105865. [Google Scholar] [CrossRef]
- Ibrahim, S.F.; Asikin-Mijan, N.; Ibrahim, M.L.; Abdulkareem-Alsultan, G.; Izham, S.M.; Taufiq-Yap, Y.H. Sulfonated functionalization of carbon derived corncob residue via hydrothermal synthesis route for esterification of palm fatty acid distillate. Energy Convers. Manag. 2020, 210, 112698. [Google Scholar] [CrossRef]
- Bounoukta, C.E.; Megías-Sayago, C.; Ivanova, S.; Penkova, A.; Ammari, F.; Centeno, M.A.; Odriozola, J.A. Effect of the sulphonating agent on the catalytic behavior of activated carbons in the dehydration reaction of fructose in DMSO. Appl. Catal. A Gene. 2021, 617, 118108. [Google Scholar] [CrossRef]
- Zhu, S.; Xu, J.; Kuang, Y.; Cheng, Z.; Wu, Q.; Xie, J.; Wang, B.; Gao, W.; Zeng, J.; Li, J.; et al. Lignin-derived sulfonated porous carbon from cornstalk for efficient and selective removal of cationic dyes. Ind. Crops Prod. 2021, 159, 113071. [Google Scholar] [CrossRef]
- Rawal, S.; Joshi, B.; Kumar, Y. Synthesis and characterization of activated carbon from the biomass of Saccharum bengalense for electrochemical supercapacitors. J. Energy Storage 2018, 20, 418–426. [Google Scholar] [CrossRef]
- Medhat, A.; El-Maghrabi, H.H.; Abdelghany, A.; Menem, N.M.A.; Raynaud, P.; Moustafa, Y.M.; Elsayed, M.A.; Nada, A.A. Efficiently activated carbons from corn cob for methylene blue adsorption. Appl. Surf. Sci. Adv. 2021, 3, 100037. [Google Scholar] [CrossRef]
- Nahavandi, M.; Kasanneni, T.; Yuan, Z.S.; Xu, C.C.; Rohani, S. Efficient conversion of glucose into 5-hydroxymethylfurfural using a sulfonated carbon-based solid acid catalyst: An experimental and numerical study. ACS Sustain. Chem. Eng. 2019, 7, 1970–11984. [Google Scholar] [CrossRef]
- Qin, L.; Ishizaki, T.; Takeuchi, N.; Takahashi, K.; Kim, K.H.; Li, O.L. Green Sulfonation of Carbon Catalysts via Gas–Liquid Interfacial Plasma for Cellulose Hydrolysis. ACS Sustain. Chem. Eng. 2020, 8, 5837–5846. [Google Scholar] [CrossRef]
- Li, N.; Wang, Q.; Ullah, S.; Zheng, X.-C.; Peng, Z.-K.; Zheng, G.-P. Esterification of levulinic acid in the production of fuel additives catalyzed by porous sulfonated carbon derived from pine needle. Catal. Commun. 2019, 129, 105755. [Google Scholar] [CrossRef]
- Pi, Y.; Liu, W.; Wang, J.; Peng, G.; Jiang, D.; Guo, R.; Yin, D. Preparation of activated carbon-based solid sulfonic acid and its catalytic performance in biodiesel preparation. Front. Chem. 2022, 10, 944398. [Google Scholar] [CrossRef]
- Amin, K.A.; Wijaya, K.; Trisunaryanti, W. The catalytic performance of ZrO2-SO4 and Ni/ZrO2-SO4 prepared from commercial ZrO2 in Hydrocracking of LDPE plastic waste into liquid fuels. Orient. J. Chem. 2018, 34, 3070. [Google Scholar] [CrossRef]
- Li, X.; Yang, J.; Xu, R.; Lu, L.; Kong, F.; Liang, M.; Jiang, L.; Nie, S.; Si, C. Kinetic study of furfural production from Eucalyptus sawdust using H-SAPO-34 as solid Brønsted acid and Lewis acid catalysts in biomass-derived solvents. Ind. Crops Prod. 2019, 135, 196–205. [Google Scholar] [CrossRef]
- Sun, K.; Shao, Y.; Liu, P.; Zhang, L.; Gao, G.; Dong, D.; Zhan, S.; Hu, G.; Xu, L.; Hu, X. A solid iron salt catalyst for selective conversion of biomass-derived C5 sugars to furfural. Fuel 2021, 300, 120990. [Google Scholar] [CrossRef]
- Lee, C.B.T.L.; Wu, T.Y.; Yong, K.J.; Cheng, C.K.; Siow, L.F.; Jahim, J.M. Investigation into Lewis and Brønsted acid interactions between metal chloride and aqueous choline chloride-oxalic acid for enhanced furfural production from lignocellulosic biomass. Sci. Total Environ. 2022, 827, 154049. [Google Scholar] [CrossRef] [PubMed]
- Pholjaroen, B.; Li, N.; Wang, Z.; Wang, A.; Zhang, T. Dehydration of xylose to furfural over niobium phosphate catalyst in biphasic solvent system. J. Energy Chem. 2013, 22, 826–832. [Google Scholar] [CrossRef]
- Hu, X.; Westerhof, R.J.M.; Dong, D.; Wu, L.; Li, C.-Z. Acid-catalyzed conversion of xylose in 20 solvents: Insight into interactions of the solvents with xylose, furfural, and the acid catalyst. ACS Sustain. Chem. Eng. 2014, 2, 2562–2575. [Google Scholar] [CrossRef]
- García-Sancho, C.; Agirrezabal-Telleria, I.; Güemez, M.B.; Maireles-Torres, P. Dehydration of D-xylose to furfural using different supported niobia catalysts. Appl. Catal. B Environ. 2014, 152–153, 1–10. [Google Scholar] [CrossRef]
- Sato, O.; Mimura, N.; Masuda, Y.; Shirai, M.; Yamaguchi, A. Effect of extraction on furfural production by solid acid-catalyzed xylose dehydration in water. J. Supercrit. Fluids 2019, 144, 14–18. [Google Scholar] [CrossRef]
- de Lima, L.F.; Lima, J.L.M.; Jorqueira, D.S.S.; Landers, R.; Moya, S.F.; Suppino, R.S. Use of amorphous Nb2O5 and Nb2O5/Al2O3 as acid catalysts for the dehydration of xylose to furfural. React. Kinet. Mech. Cat. 2021, 132, 73–92. [Google Scholar] [CrossRef]
- Wang, X.; Qiu, M.; Tang, Y.; Yang, J.; Shen, F.; Qi, X.; Yu, Y. Synthesis of sulfonated lignin-derived ordered mesoporous carbon for catalytic production of furfural from xylose. Int. J. Biol. Macromol. 2022, 187, 232–239. [Google Scholar] [CrossRef] [PubMed]
- Bittencourt, G.A.; Barreto, E.S.; Brandão, R.L.; Baêta, B.E.L.; Gurgel, L.V.A. Fractionation of sugarcane bagasse using hydrothermal and advanced oxidative pretreatments for bioethanol and biogas production in lignocellulose biorefineries. Bioresour. Technol. 2019, 292, 121963. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, L.C.A.; Pereira, E.; Guimaraes, I.R.; Vallone, A.; Pereira, M.; Mesquita, J.P.; Sapag, K. Preparation of activated carbons from coffee husks utilizing FeCl3 and ZnCl2 as activating agentes. J. Hazard. Mater. 2009, 165, 87–94. [Google Scholar] [CrossRef] [PubMed]
- González, M.E.; Cea, M.; Reyes, D.; Romero-Hermoso, L.; Hidalgo, P.; Meier, S.; Benito, N.; Navia, R. Functionalization of biochar derived from lignocellulosic biomassusing microwave t echnology for catalytic application in biodiesel production. Energy Convers. Manag. 2017, 137, 165–173. [Google Scholar] [CrossRef]
- Dechakhumwat, S.; Hongmanorom, P.; Thunyaratchatanon, C.; Smith, S.M.; Boonyuen, S.; Luengnaruemitchai, A. Catalytic activity of heterogeneous acid catalysts derived from corncob in the esterification of oleic acid with methanol. Renew. Energy 2020, 148, 897–906. [Google Scholar] [CrossRef]
- Damodar, D.; Kunamalla, A.; Varkolu, M.; Maity, S.K.; Deshpande, A.S. Near-room-temperature synthesis of sulfonated carbon nanoplates and their catalytic application. ACS Sustain. Chem. Eng. 2019, 15, 12707–12717. [Google Scholar] [CrossRef]
- Millán, G.G.; Phiri, J.; Mäkelä, M.; Maloney, T.; Balu, A.M.; Pineda, A.; Llorca, J.; Sixta, H. Furfural production in a biphasic system using a carbonaceous solid acid catalyst. Appl. Catal. A Gen. 2019, 585, 117180. [Google Scholar] [CrossRef]
Sample | YC (%) a | YS (%) b |
---|---|---|
AC/NiCl2 | 28.50 | 77.70 |
AC/ZnCl2 | 24.90 | 72.20 |
AC/CuCl2 | 38.90 | 53.20 |
Samples | SBET a (m2 g−1) | Smicro b (m2 g−1) | Smeso c (m2 g−1) | Vtot d (cm3 g−1) | Vmicro e (cm3 g−1) | Vmeso f (cm3 g−1) | dp g (nm) | Smicro/SBET h (%) | Vmicro/Vtot i (%) |
---|---|---|---|---|---|---|---|---|---|
AC/NiCl2 | 295.91 | 224.74 | 71.17 | 0.226 | 0.115 | 0.111 | 3.06 | 76 | 51 |
AC-S/NiCl2 | 291.83 | 246.31 | 45.52 | 0.200 | 0.140 | 0.060 | 2.74 | 84 | 70 |
AC/ZnCl2 | 1108.84 | 756.11 | 352.73 | 0.600 | 0.398 | 0.202 | 2.15 | 68 | 66 |
AC-S/ZnCl2 | 1055.62 | 729.97 | 325.65 | 0.607 | 0.440 | 0.167 | 2.30 | 69 | 72 |
AC/CuCl2 | 300.82 | 264.75 | 36.07 | 0.185 | 0.129 | 0.056 | 2.46 | 88 | 69 |
AC-S/CuCl2 | 440.00 | 383.22 | 56.78 | 0.318 | 0.212 | 0.106 | 2.89 | 87 | 66 |
Samples | %C | %H | %N | %S | %O | %Si * | % Cl * | %Ni * | %Zn * | %Cu * | Total Acidity mmol g−1 | -SO3H mmol g−1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
AC/NiCl2 | 47.81 | 1.06 | 0.19 | 0.21 | 29.23 | - | 0.16 | 21.34 | - | - | 0.02 ± 0.001 | - |
AC-S/NiCl2 | 52.52 | 1.94 | 0.23 | 3.63 | 27.46 | 0.15 | - | 14.07 | - | - | 0.30 ± 0.001 | 0.28 ± 0.001 |
AC/ZnCl2 | 65.40 | 1.02 | 0.30 | 0.19 | 26.35 | 0.19 | 0.49 | - | 6.06 | - | 0.04 ± 0.002 | - |
AC-S/ZnCl2 | 61.03 | 1.25 | 0.40 | 0.54 | 36.29 | 0.22 | 0.27 | - | - | - | 0.09 ± 0.002 | 0.05 ± 0.002 |
AC/CuCl2 | 41.40 | 0.76 | 0.23 | 0.13 | 38.75 | - | 0.51 | - | - | 18.22 | N.D. | - |
AC-S/CuCl2 | 63.71 | 2.10 | 0.42 | 1.94 | 29.22 | 0.39 | 0.44 | - | - | 1.78 | 0.33 ± 0.001 | 0.33 ± 0.001 |
Samples | C (%) | Y (%) | S (%) |
---|---|---|---|
No catalyst | 48.84 | 28.75 | 58.86 |
AC/NiCl2 | 75.00 | 22.72 | 30.79 |
AC-S/NiCl2 | 89.15 | 48.63 | 54.54 |
AC/ZnCl2 | 90.00 | 10.00 | 11.11 |
AC-S/ZnCl2 | 71.43 | 31.27 | 43.00 |
AC/CuCl2 | 80.00 | 35.67 | 44.60 |
AC-S/CuCl2 | 66.67 | 55.96 | 83.93 |
Catalyst | Solvent | T a (°C) | T b (min) | C c (%) | Y d (%) | S e (%) | Reference |
---|---|---|---|---|---|---|---|
AC-S/CuCl2 | Water | 180 | 120 | 66.67 | 55.96 | 83.93 | This study |
NbPO4 | Water | 160 | 60 | 44.10 | 17.40 | 39.50 | [97] |
Amberlyst 70 | Water | 160 | 100 | - | 18.00 | - | [98] |
l-12Nb | Water/Toluene | 160 | 240 | 62.00 | 36.60 | 59.00 | [99] |
Si-12Nb | Water/Toluene | 160 | 240 | 42.00 | 33.60 | 80.00 | |
s-MWCNTs | Water | 170 | 180 | 62.70 | 35.80 | 57.10 | [27] |
AC(Zn)/S | Water | 180 | 120 | ~20.00 | ~10.00 | 50.00 | [33] |
Starbon®-SO3H | Water/ Methoxycyclopentane | 150 | 750 | 78.50 | 54.40 | 69.20 | [50] |
Starbon®-SO3H | Water/ Methoxycyclopentane | 200 | 750 | 100 | 50.30 | 50.30 | |
Starbon®-SO3H | Water/ Methoxycyclopentane | 200 | 1140 | 100 | 21.00 | 21.00 | |
Amberlyst 70 | Water | 200 | 960 | 71.80 | 28.80 | 40.11 | [100] |
M-20 | Water | 200 | 480 | 52.50 | 25.40 | 48.40 | |
M-20 | Water | 200 | 960 | 87.60 | 44.20 | 50.45 | |
M-20 | Water/Toluene | 200 | 960 | 75.80 | 42.60 | 56.20 | |
ZSM-5-30 | Water | 200 | 480 | 57.70 | 19.90 | 34.50 | |
ZSM-5-30 | Water | 200 | 960 | 82.50 | 34.10 | 41.33 | |
mNb-bc | Water | 140 | 120 | 41.20 | 31.80 | 77.10 | [20] |
Nb2O5 | Water | 160 | 360 | 76.80 | 46.16 | 60.10 | [101] |
Nb2O5 | Water/Isopropanol | 160 | 360 | 99.00 | 34.05 | 34.40 | |
Nb2O5/Al2O3 | Water | 160 | 360 | 87.40 | 30.68 | 35.10 | |
Nb2O5/Al2O3 | Water/Isopropanol | 160 | 360 | 91.10 | 20.22 | 22.20 | |
OMC-SO3H | Water | 200 | 45 | 8.90 | 2.50 | 28.08 | [102] |
Activating Agent | Biomass/Activating Agent Ratio (m:m) | Carbonization Temperature | Nomenclature of Activated Carbon |
---|---|---|---|
NiCl2. 6H2O | 1:1 | 550 °C | AC/NiCl2 |
ZnCl2 | 1:1 | 550 °C | AC/ZnCl2 |
CuCl2. 2H2O | 1:1 | 550 °C | AC/CuCl2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, T.A.L.; da Silva, A.C.; Pasquini, D. Synthesis and Characterization of Acid-Activated Carbon Prepared from Sugarcane Bagasse for Furfural Production in Aqueous Media. Catalysts 2023, 13, 1372. https://doi.org/10.3390/catal13101372
Silva TAL, da Silva AC, Pasquini D. Synthesis and Characterization of Acid-Activated Carbon Prepared from Sugarcane Bagasse for Furfural Production in Aqueous Media. Catalysts. 2023; 13(10):1372. https://doi.org/10.3390/catal13101372
Chicago/Turabian StyleSilva, Thiago Alves Lopes, Adilson Candido da Silva, and Daniel Pasquini. 2023. "Synthesis and Characterization of Acid-Activated Carbon Prepared from Sugarcane Bagasse for Furfural Production in Aqueous Media" Catalysts 13, no. 10: 1372. https://doi.org/10.3390/catal13101372
APA StyleSilva, T. A. L., da Silva, A. C., & Pasquini, D. (2023). Synthesis and Characterization of Acid-Activated Carbon Prepared from Sugarcane Bagasse for Furfural Production in Aqueous Media. Catalysts, 13(10), 1372. https://doi.org/10.3390/catal13101372