Catalytic Oxidation of Phosphine by Aqueous Copper–Ammonia Complexes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Testing of Oxidation of Phosphine by Aqueous Copper–Ammonia Complexes
2.2. Chemistry of Phosphine Oxidation by Aqueous Copper–Ammonia Complexes
3. Materials and Methods
3.1. Materials
3.2. Preparation of Phosphine
3.3. Preparation of Aqueous Copper–Ammonia Solution
3.4. Testing
3.5. Analysis of Products and Calculation Methods
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, Z.; Gao, H. Experimental Study on Combustion Characteristic of Yellow Phosphorus Tail Gas. Energy Procedia 2012, 16, 763–768. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Chen, W.; Niu, X.; Fan, Y. The relationship between phosphine, methane, and ozone over paddy field in Guangzhou, China. Glob. Ecol. Conserv. 2019, 17, e00581. [Google Scholar] [CrossRef]
- Bao, J.; Wang, X.; Li, K.; Wang, F.; Wang, C.; Song, X.; Sun, X.; Ning, P. Reaction Mechanism of Simultaneous Removal of H2S and PH3 Using Modified Manganese Slag Slurry. Catalysts 2020, 10, 1384. [Google Scholar] [CrossRef]
- Xueqian, W.; Ping, N.; Wei, C. Studies on purification of yellow phosphorus off-gas by combined washing, catalytic oxidation, and desulphurization at a pilot scale. Sep. Purif. Technol. 2011, 80, 519–525. [Google Scholar] [CrossRef]
- Ting, L.; Shugen, L.; Xiaofei, Y. Addition of reactive oxygen scavenger to enhance PH3 biopurification: Process and mechanism. Process Saf. Environ. Prot. 2020, 142, 118–125. [Google Scholar] [CrossRef]
- Habibi-Yangjeh, A.; Basharnavaz, H.; Kamali, S.H.; Nematollahzadeh, A. A first-principles investigation of PH3 gas adsorption on the graphitic carbon nitride sheets modified with V/P, Nb/P, and Ta/P elements. Mater. Chem. Phys. 2021, 269, 124–282. [Google Scholar] [CrossRef]
- Xu, X.; Huang, G.; Qi, S. Properties of AC and 13X zeolite modified with CuCl2 and Cu(NO3)2 in phosphine removal and the adsorptive mechanisms. J. Chem. Eng. 2017, 316, 563–572. [Google Scholar] [CrossRef]
- Xu, X.; Huang, G. Effect of 13X Zeolite Modified with CuCl2 and ZnCl2 for Removing Phosphine from Circular Hydrogen of a Polysilicon Chemical Vapor Deposition Stove. Ind. Eng. Chem. Res. 2016, 55, 1380–1386. [Google Scholar] [CrossRef]
- Gosteva, A.N.; Efremov, S.A.; Nikolaev, V.G. Catalytic Carbon-Containing Composition for Phosphine Oxidation. Mater. Sci. Eng. 2021, 1079, 062014. [Google Scholar] [CrossRef]
- Feng, J.; Wang, F.; Wang, C.; Li, K.; Sun, X.; Ning, P. Cu/HZSM-5 Sorbent Treated by NH3 Plasma for Low-Temperature Simultaneous Adsorption−Oxidation of H2S and PH3. ACS Appl. Mater. Interfaces 2021, 13, 24670−24681. [Google Scholar] [CrossRef] [PubMed]
- Dorfman, Y.A. Liquid Phase Catalysis; Science of KazSSR: Almaty, Kazakhstan, 1981; p. 364. (In Russian) [Google Scholar]
- Yu, Q.; Li, M.; Ning, P.; Yi, H.; Tang, X. Characterization of Metal Oxide-modified Walnut-shell Activated Carbon and Its Application for Phosphine Adsorption: Equilibrium, Regeneration, and Mechanism Studies. J. Wuhan Univ. Technol. Mater. 2019, 34, 487–495. [Google Scholar] [CrossRef]
- Yi, H.; Yu, Q.; Tang, X.; Ning, P.; Yang, L.; Ye, Z.; Song, J. Phosphine Adsorption Removal from Yellow Phosphorus Tail Gas over CuO−ZnO−La2O3/Activated Carbon. Ind. Eng. Chem. Res. 2011, 50, 3960–3965. [Google Scholar] [CrossRef]
- Ma, L.; Ning, P.; Zhang, Y.; Wang, X.Q. Experimental and modelling of fixed-bed reactor for yellow phosphorous tail gas purification over impregnated activated carbon. J. Chem. Eng. 2016, 137, 471–479. [Google Scholar] [CrossRef]
- Li, S.; Hao, J.; Ning, P.; Wang, C.; Li, K.; Tang, L.; Sun, X.; Zhang, D.; Mei, Y.; Wang, Y. Preparation of Cu-Fe nanocomposites loaded diatomite and their excellent performance in simultaneous adsorption/oxidation of hydrogen sulfide and phosphine at low temperature. Sep. Purif. Technol. 2017, 180, 23–35. [Google Scholar] [CrossRef]
- Tang, X.; Xue, J.; Xing, C. Catalytic decomposition of toxic phosphine gas on the developed nickel ferrite nanocrystals supported by Halloysite nanotubes. Appl. Surf. Sci. 2020, 530, 147–264. [Google Scholar] [CrossRef]
- Tang, X.J.; Xiu, Z.; Han, C.; Zhang, B. Toxic PH3 Catalytic Decomposition and High Purity Phosphorus Production by Amorphous Co-Based Alloy Nanomaterials. ACS Symp. Ser. 2013, 11, 181–199. [Google Scholar] [CrossRef]
- Wang, Y.; Lin, Q.; Ning, P.; Wang, C.; Sun, X.; Li, K. Preparation of Ce0.6. Cu60/Al40-[O] Catalyst and Role of CeO2/CuO in Simultaneous Removal of H2S and PH3. J. Taiwan Inst. Chem. Eng. 2018, 87, 44–53. [Google Scholar] [CrossRef]
- Zhou, Y.; He, T.; Liu, S.; Huang, G. Adsorption of Trace Phosphine in Circular Hydrogen of a Polysilicon Chemical Vapor Deposition Stove by Cu/γ-Al2O3. Ind. Eng. Chem. Res. 2018, 57, 15122–15131. [Google Scholar] [CrossRef]
- Temkin, O.N. Homogeneous Metal Complex Catalysis. Kinetic Aspects; ICC “Akademkniga”: Moscow, Russia, 2008; p. 918, (In Russian). [Google Scholar] [CrossRef]
- Polimbetova, G.S.; Borangazieva, A.K.; Ibraimova, Z.U.; Bugubaeva, G.O.; Keyinbai, S. Oxidative alkoxylation of phosphine in alcohol solutions of copper halides. Russ. J. Phys. Chem. A 2016, 90, 1539–1544. [Google Scholar] [CrossRef]
- Polimbetova, G.S.; Borangazieva, A.K.; Ibraimova, Z.U.; Ergozhin, E.E.; Mukhitdinova, B.A. Oxidative hydroxylation of phosphine in aqueous alcohol solutions of p-benzoquinone. Russ. J. Phys. Chem. A 2014, 88, 764–767. [Google Scholar] [CrossRef]
- Ibraimova, Z.U.; Polimbetova, G.S.; Borangazieva, A.K.; Itkulova, S.S.; Boleubaev, E.A. Catalytic purification and ways for utilization of furnace gas of phosphorus production. Rep. NAS RK 2021, 5, 136–143. [Google Scholar] [CrossRef]
- Ren, Z.; Quan, S.; Zhu, Y.; Chen, L.; Deng, W.; Zhang, B. Purification of Yellow Phosphorus Tail Gas for the Removal of PH3 on the Spot with Flower-Shaped CuO/AC. RSC Adv. 2015, 5, 29734–29740. [Google Scholar] [CrossRef]
- Kravtsov, V.I. Equilibrium and kinetics of electrode reactions of metal complexes; Chemistry Publ., USSR: Moscow, Russia, 1985; p. 208. (In Russian) [Google Scholar]
- Hartley, F.; Berges, K.; Alcock, R. Equilibrium in Solution; Mir: Moscow, Russia, 1983; p. 345. (In Russian) [Google Scholar]
- Velásquez-Yévenes, L.; Ram, R. The aqueous chemistry of the copper-ammonia system and its implications for the sustainable recovery of copper. Clean. Eng. Technol. 2022, 9, 100515. [Google Scholar] [CrossRef]
- Demchuk, O.M.; Jasinski, R.; Strzelecka, D.; Dziuba, K.; Kula, K.; Chrzanowski, J.; Krasowska, D. A clean and simple method for deprotection of phosphines from borane complexes. Pure Appl. Chem. 2018, 90, 49–62. [Google Scholar] [CrossRef]
- Gusarova, N.K.; Verkhoturova, S.L.; Kazantseva, T.L.; Mikhailenko, V.L.; Arbuzova, S.N.; Trofimov, B.A. Free-radical addition of phosphine to vinyl ethers: Atom-economic synthesis of tris(2-organyloxyethyl) phosphines and their derivatives. Mendeleev Commun. 2011, 21, 17–18. [Google Scholar] [CrossRef]
- Librando, I.L.; Mahmoud, A.G.; Carabineiro, S.A.C.; Guedes da Silva, M.F.C.; Geraldes, C.F.G.C.; Pombeiro, A.J.L. The Catalytic Activity of Carbon-Supported Cu(I)-Phosphine Complexes for the Microwave-Assisted Synthesis of 1,2,3-Triazoles. Catalysts 2021, 11, 185. [Google Scholar] [CrossRef]
- Averill, B.A.; Eldredge, P. General Chemistry: Principles, Patterns, and Applications; Saylor Academy: Washington, DC, USA, 2012; Volume 14. [Google Scholar]
Composition of Catalytic Solution, mol/L | Content of PH3, mg/m3 | Purification, % | ||
---|---|---|---|---|
CuSO4 | NH4OH | Inlet | Outlet | |
0.4 | 0 | 18,750 | 1875.0 | 90.0 |
0.4 | 0.65 | 18,750 | 937.5 | 95.0 |
0.4 | 1.3 | 18,750 | 3375.0 | 82.0 |
0.4 | 2.6 | 18,750 | 3750.0 | 80.0 |
Composition of Catalytic Solution, mol/L | Content of PH3, mg/m3 | Purification, % | ||
---|---|---|---|---|
CuSO4 | NH4OH | Inlet | Outlet | |
0.2 | 0.65 | 18,750 | 750.0 | 96.0 |
0.4 | 0.65 | 18,750 | 937.5 | 95.0 |
0.6 | 0.65 | 18,750 | 375.0 | 98.0 |
0.8 | 0.65 | 18,750 | 375.0 | 98.0 |
Composition of Catalytic Solution, mol/L | t, °C | Content of PH3, mg/m3 | Purification, % | ||
---|---|---|---|---|---|
CuSO4 | NH4OH | Inlet | Outlet | ||
0.4 | 0.65 | 30 | 18,750 | 750.0 | 96.0 |
0.4 | 0.65 | 40 | 18,750 | 375.0 | 98.0 |
0.4 | 0.65 | 50 | 18,750 | 937.5 | 95.0 |
0.4 | 0.65 | 60 | 18,750 | 5250.0 | 72.0 |
Composition of Catalytic Solution, mol/L | Content of PH3, mg/m3 | Purification, % | ||
---|---|---|---|---|
CuSO4 | NH4OH | Inlet | Outlet | |
0.2 | 0.65 | 18,750 | 375.0 | 98.0 |
0.2 | 0.65 | 10,000 | 400.0 | 96.0 |
Composition of Catalytic Solution, mol/L | Content of PH3, mg/m3 | Purification, % | |||
---|---|---|---|---|---|
CuSO4 | NH4OH | H3PO4 | Inlet | Outlet | |
0.4 | 1.3 | 0 | 18,750 | 3375.0 | 82.0 |
0.4 | 1.3 | 0.95 | 18,750 | 375.0 | 98.0 |
0.4 | 1.3 | 1.9 | 18,750 | 375.0 | 98.0 |
0.6 | 1.3 | 1.9 | 18,750 | 187.5 | 99.0 |
0.2 | 2.6 | 1.9 | 18,750 | 187.5 | 99.0 |
Number of Cycle | maxWph3, (mmol/L × min) | Q PH3, (mmol/L) | Content of PH3out, mg/m3 | Purification, % |
---|---|---|---|---|
1 | 0.5 | 1.8 | 50.0 | 98 |
2 | 0.5 | 1.8 | 50.0 | 98 |
3 | 0.5 | 1.7 | 75.0 | 97 |
4 | 0.5 | 1.8 | 100.0 | 96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borangazieva, A.K.; Boleubayev, Y.A.; Ibraimova, Z.U.; Itkulova, S.S.; Polimbetova, G.S. Catalytic Oxidation of Phosphine by Aqueous Copper–Ammonia Complexes. Catalysts 2023, 13, 271. https://doi.org/10.3390/catal13020271
Borangazieva AK, Boleubayev YA, Ibraimova ZU, Itkulova SS, Polimbetova GS. Catalytic Oxidation of Phosphine by Aqueous Copper–Ammonia Complexes. Catalysts. 2023; 13(2):271. https://doi.org/10.3390/catal13020271
Chicago/Turabian StyleBorangazieva, Akbope K., Yerzhan A. Boleubayev, Zhuldyz U. Ibraimova, Sholpan S. Itkulova, and Gulshara S. Polimbetova. 2023. "Catalytic Oxidation of Phosphine by Aqueous Copper–Ammonia Complexes" Catalysts 13, no. 2: 271. https://doi.org/10.3390/catal13020271
APA StyleBorangazieva, A. K., Boleubayev, Y. A., Ibraimova, Z. U., Itkulova, S. S., & Polimbetova, G. S. (2023). Catalytic Oxidation of Phosphine by Aqueous Copper–Ammonia Complexes. Catalysts, 13(2), 271. https://doi.org/10.3390/catal13020271