Green and Efficient Acquirement of Unsaturated Ether from Direct and Selective Hydrogenation Coupling Unsaturated Aldehyde with Alcohol by Bi-Functional Al-Ni-P Heterogeneous Catalysts
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure Feature of Al-Ni-P Catalysts
2.2. Catalytic Performance of System
2.3. Catalytic Origin of AlPO4/Ni2P Composites
2.4. Application Potential of Present Catalytic Systems
3. Materials and Methods
3.1. Materials
3.2. Preparation of Catalysts
3.3. Characterizations
3.4. Catalytic Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, S.; Hao, Y.; Wang, J.; Wang, H.; Zheng, Y.; Tian, H.; Liu, Y.; Sun, B. Selective catalytic dehydration of furfuryl alcohol to 2, 2’-difurfuryl ether using a polyoxometalate catalyst. Sci. Rep. 2017, 7, 12954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhenova, A.; Pellis, A.; Milescu, R.A.; McElroy, C.R.; White, R.J.; Clark, J.H. Solvent Applications of Short-Chain Oxymethylene Dimethyl Ether Oligomers. ACS Sustain. Chem. Eng. 2019, 7, 14834–14840. [Google Scholar] [CrossRef]
- Li, R.; Huang, Y.; Lin, J. Distinct effects of general anesthetics on lung metastasis mediated by IL-6/JAK/STAT3 pathway in mouse models. Nat. Commun. 2020, 11, 642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosh, A.K.; Cheng, X.; Bai, R.; Hamel, E. Total Synthesis of Potent Antitumor Macrolide, (-)-Zampanolide: An Oxidative Intramolecular Cyclization-Based Strategy. Eur. J. Org. Chem. 2012, 2012, 4130–4139. [Google Scholar] [CrossRef] [PubMed]
- Trost, B.M.; Thiel, O.R.; Tsui, H.-C. DYKAT of Baylis−Hillman Adducts: Concise Total Synthesis of Furaquinocin E. J. Am. Chem. Soc. 2002, 124, 11616–11617. [Google Scholar] [CrossRef]
- Clementson, S.; Jessing, M.; Pedersen, H.; Vital, P.; Kristensen, J.L. Enantioselective Total Synthesis of (+)-Dihydro-beta-erythroidine. J. Am. Chem. Soc. 2019, 141, 8783–8786. [Google Scholar] [CrossRef]
- Fuhrmann, E.; Talbiersky, J. Synthesis of Alkyl Aryl Ethers by Catalytic Williamson Ether Synthesis with Weak Alkylation Agents. Org. Process Res. Dev. 2005, 9, 206–211. [Google Scholar] [CrossRef]
- Mandal, S.; Biswas, S.; Mondal, M.H.; Saha, B. Green Methodology Development for the Surfactant Assisted Williamson Synthesis of 4-Benzyloxy Benzoic Acid (Ether) in Aqueous Media. Tenside Surfactants Deterg. 2020, 57, 115–121. [Google Scholar] [CrossRef]
- Chmely, S.C.; Kim, S.; Ciesielski, P.N.; Jiménez-Osés, G.; Paton, R.S.; Beckham, G.T. Mechanistic Study of a Ru-Xantphos Catalyst for Tandem Alcohol Dehydrogenation and Reductive Aryl-Ether Cleavage. ACS Catal. 2013, 3, 963–974. [Google Scholar] [CrossRef]
- Ahsan Usman, M.; Naeem, M.; Saeed, M.; Zaheer, M. Catalytic C–O bond cleavage in a β-O-4 lignin model through intermolecular hydrogen transfer. Inorg. Chim. Acta 2021, 521, 120305. [Google Scholar] [CrossRef]
- Milone, C.; Trapani, M.C.; Galvagno, S. Synthesis of cinnamyl ethyl ether in the hydrogenation of cinnamaldehyde on Au/TiO2 catalysts. Appl. Catal. A Gen. 2008, 337, 163–167. [Google Scholar] [CrossRef]
- Shaikh, M.N.; Aziz, M.A.; Yamani, Z.H. Facile hydrogenation of cinnamaldehyde to cinnamyl ether by employing a highly re-usable “dip-catalyst” containing Pt nanoparticles on a green support. Catal. Sci. Technol. 2020, 10, 6544–6551. [Google Scholar] [CrossRef]
- Liu, Z.; Takeuchi, T.; Pluta, R.; Arteaga Arteaga, F.; Kumagai, N.; Shibasaki, M. Direct Catalytic Asymmetric Aldol Reaction of alpha-Alkylamides. Org. Lett. 2017, 19, 710–713. [Google Scholar] [CrossRef] [PubMed]
- Cotta, R.F.; da Silva Rocha, K.A.; Kozhevnikova, E.F.; Kozhevnikov, I.V.; Gusevskaya, E.V. Heteropoly acid catalysts in upgrading of biorenewables: Cycloaddition of aldehydes to monoterpenes in green solvents. Appl. Catal. B Environ. 2017, 217, 92–99. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Dai, B.; Zhao, D.; Zhang, D.H.; Xu, M.X.; He, X.H.; Chen, C. Promotion effects of PrPO4 for the hydrogenation transformation of biomass-derived compounds over Pr–Ni–P composites. Mater. Adv. 2021, 2, 3927–3939. [Google Scholar] [CrossRef]
- Liu, G.; He, D.; Yao, R.; Zhao, Y.; Li, J. Enhancing the water oxidation activity of Ni2P nanocatalysts by iron-doping and electrochemical activation. Electrochim. Acta 2017, 253, 498–505. [Google Scholar] [CrossRef]
- Appapillai, A.T.; Mansour, A.N.; Cho, J.; Shao-Horn, Y. Microstructure of LiCoO2 with and without “AlPO4” Nanoparticle Coating: Combined STEM and XPS Studies. Chem. Mater. 2007, 19, 5748–5757. [Google Scholar] [CrossRef]
- Liu, J.; Manthiram, A. Understanding the Improvement in the Electrochemical Properties of Surface Modified 5 V LiMn1.42Ni0.42Co0.16O4 Spinel Cathodes in Lithium-ion Cells. Chem. Mater. 2009, 21, 1695–1707. [Google Scholar] [CrossRef]
- Lou, J.C.; Li, J.Y.; Sun, W.W.; Wu, B. Metal-Free Oxidation of Trichloroacetimidates to Aldehydes. Asian J. Org. Chem. 2019, 8, 265–268. [Google Scholar] [CrossRef]
- Xing, Q.Y.; Pei, W.; Xu, R.Q.; Pei, J. Basic Organic Chemistry, 3rd ed.; Higher Education Press: Beijing, China, 2005; Volume 1, pp. 175–176. [Google Scholar]
- Hudson, R.L.; Ferrante, R.F. Mid-infrared spectra of dipropargyl ether ices revisited. Spectrochim Acta A Mol. Biomol. Spectrosc. 2020, 233, 118206. [Google Scholar] [CrossRef] [PubMed]
- Bec, K.B.; Grabska, J.; Ozaki, Y.; Hawranek, J.P.; Huck, C.W. Influence of Non-fundamental Modes on Mid-infrared Spectra: Anharmonic DFT Study of Aliphatic Ethers. J. Phys. Chem. A 2017, 121, 1412–1424. [Google Scholar] [CrossRef] [PubMed]
- Catizzone, E.; Aloise, A.; Migliori, M.; Giordano, G. The effect of FER zeolite acid sites in methanol-to-dimethyl-ether catalytic dehydration. J. Energy Chem. 2017, 26, 406–415. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Song, F.; Zhou, C.; Wan, X.; Jin, Y.; Dai, Y.; Zheng, J.; Yao, S.; Yang, Y. Lattice-water-induced acid sites in tungsten oxide hydrate for catalyzing fructose dehydration. Catal. Commun. 2021, 149, 106254. [Google Scholar] [CrossRef]
- Shi, J.J.; Feng, H.J.; Qv, C.L.; Zhao, D.; Hong, S.G.; Zhang, N. One-pot synthesized CePO4/Ni2P nanocomposites as general hydrogenation catalysts: The attractive contribution of CePO4. Appl. Catal. A Gen. 2018, 561, 127–136. [Google Scholar] [CrossRef]
- Mochalov, S.S.; Fedotov, A.N.; Trofimova, E.V. Synthesis of symmetrical α-alkyl- and α-arylalkylbenzyl and diarylmethyl ethers by HCl-catalyzed intermolecular dehydration. Russ. J. Org. Chem. 2017, 53, 1514–1519. [Google Scholar] [CrossRef]
- Bunrit, A.; Srifa, P.; Rukkijakan, T.; Dahlstrand, C.; Huang, G.P.; Samec, J.S.M. H3PO2− Catalyzed Intramolecular Stereospecific Substitution of the Hydroxyl Group in Enantioenriched Secondary Alcohols by N-, O-, and S-Centered Nucleophiles to Generate Heterocycles. ACS Catal. 2020, 10, 1344–1352. [Google Scholar] [CrossRef]
- Gao, Z.K.; Hong, Y.C.; Hu, Z.; Xu, B.Q. Transfer hydrogenation of cinnamaldehyde with 2-propanol on Al2O3 and SiO2–Al2O3 catalysts: Role of Lewis and Brønsted acidic sites. Catal. Sci. Technol. 2017, 7, 4511–4519. [Google Scholar] [CrossRef]
- Li, G.; Gao, L.; Sheng, Z.Z.; Zhan, Y.L. A Zr-Al-Beta zeolite with open Zr(iv) sites: An efficient bifunctional Lewis-Bronsted acid catalyst for a cascade reaction. Catal. Sci. Technol. 2019, 9, 4055–4065. [Google Scholar] [CrossRef]
Catalysts | Surface Composition (Al:Ni) | NHA (μmol/gcat) | NAcid (μmol/gcat) | Cinnamyl N-Propyl Ether Yield (%) | Cinnamyl Isopropyl Ether Yield (%) |
---|---|---|---|---|---|
AlPO4 | a 1.2 | 11.6 | 1164.1 | - | - |
(AlPO4)0.2/Ni2P | 2.3 | - | - | 61.9 | 59.2 |
(AlPO4)0.1/Ni2P | 0.9 | 16.6 | 729.7 | 97.1 | 77.4 |
(AlPO4)0.05/Ni2P | 0.3 | - | - | 64.1 | 64.0 |
Ni2P | - | 0 | 244.0 | 14.6 | 24.2 |
Catalysts | Reaction Conditions | Solvent | Conv./% | Sel./% | Ref. |
---|---|---|---|---|---|
Au/TiO2 | 333 K, 0.1 MPa, 5 h | ethanol | 50 | 33 | [11] |
Pt@GS | 408 K, 3 MPa, 3 h | n-propanol | 99 | 97 | [12] |
isopropanol | 37 | 33 | |||
(AlPO4)0.1/Ni2P | 393 K, 0.1 MPa, 2 h | n-propanol | 99 | 97.1 | This work |
393 K, 0.1 MPa, 2 h | isopropanol | 99 | 77.4 |
Entry | Reactant | Reaction Solvent | Conditions | Con. (%) | Sel. (%) | UE Yield (%) | ||
---|---|---|---|---|---|---|---|---|
HCAL | HCOL | UE | ||||||
1 | Cinnamic aldehyde | n-hexane | 0.1 MPa, 393 K, 2 h | 21.2 | 99 | - | - | - |
2 | water | 0.1 MPa, 393 K, 2 h | >99 | 99 | - | - | - | |
3 | 2.0 MPa, 393 K, 2 h | >99 | - | 99 | - | - | ||
4 | Me-OH | 0.1 MPa, 393 K, 2 h | >99 | - | - | 98.3 a | - | |
5 | Et-OH | 0.1 MPa, 393 K, 2 h | >99 | 2.3 | - | 97.7 | 97.7 | |
6 | n-Pr-OH | 0.1 MPa, 393 K, 2 h | >99 | 2.9 | - | 97.1 | 97.1 | |
7 | i-Pr-OH | 0.1 MPa, 393 K, 4 h | >99 | 20.8 | 1.8 | 77.4 | 77.4 | |
8 | n-Bu-OH | 0.1 MPa, 393 K, 4 h | >99 | 3.3 | - | 96.7 | 96.7 | |
9 | s-Bu-OH | 0.1 MPa, 393 K, 4 h | >99 | 44.3 | 4.5 | 51.2 | 51.2 | |
10 | n-Am-OH | 0.1 MPa, 393 K, 4 h | >99 | 18.4 | 1.6 | 80.0 | 80.0 | |
11 | 2-Am-OH | 0.1 MPa, 393 K, 4 h | 63.2 | 85.5 | - | 14.5 | 9.2 | |
12 b | n-Pr-OH | 0.1 MPa, 393 K, 2 h | - | - | - | - | - |
Entry | Reactant | Reaction Solvent | Conditions | Con. (%) | Sel. (%) | UE Yield (%) | ||
---|---|---|---|---|---|---|---|---|
HCAL | HCOL | UE | ||||||
1 | Citral | Me-OH | 0.1 MPa, 393 K, 2 h | >99 | 4.7 | 2.2 | 93.2 | 93.2 |
2 | Et-OH | 0.1 MPa, 393 K, 2 h | >99 | 12.9 | 4.2 | 83.0 | 83.0 | |
3 | n-Pr-OH | 0.1 MPa, 393 K, 2 h | >99 | 18.5 | 2.6 | 78.9 | 78.9 | |
4 | i-Pr-OH | 0.1 MPa, 393 K, 4 h | >99 | 57.4 | 2.7 | 39.8 | 39.8 | |
5 | n-Bu-OH | 0.1 MPa, 393 K, 4 h | >99 | 21.9 | 5.2 | 72.9 | 72.9 | |
6 | s-Bu-OH | 0.1 MPa, 393 K, 4 h | >99 | 73.8 | 7.7 | 18.5 | 18.5 | |
7 | n-Am-OH | 0.1 MPa, 393 K, 4 h | >99 | 26.1 | 3.6 | 70.3 | 70.3 | |
8 | 2-Am-OH | 0.1 MPa, 393 K, 4 h | 68.1 | 87.3 | - | 12.7 | 11.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Zeng, H.; Zhao, D.; Wang, S.; Ding, S.; Chen, C. Green and Efficient Acquirement of Unsaturated Ether from Direct and Selective Hydrogenation Coupling Unsaturated Aldehyde with Alcohol by Bi-Functional Al-Ni-P Heterogeneous Catalysts. Catalysts 2023, 13, 439. https://doi.org/10.3390/catal13020439
Xu Y, Zeng H, Zhao D, Wang S, Ding S, Chen C. Green and Efficient Acquirement of Unsaturated Ether from Direct and Selective Hydrogenation Coupling Unsaturated Aldehyde with Alcohol by Bi-Functional Al-Ni-P Heterogeneous Catalysts. Catalysts. 2023; 13(2):439. https://doi.org/10.3390/catal13020439
Chicago/Turabian StyleXu, Yan, Huiqing Zeng, Dan Zhao, Shuhua Wang, Shunmin Ding, and Chao Chen. 2023. "Green and Efficient Acquirement of Unsaturated Ether from Direct and Selective Hydrogenation Coupling Unsaturated Aldehyde with Alcohol by Bi-Functional Al-Ni-P Heterogeneous Catalysts" Catalysts 13, no. 2: 439. https://doi.org/10.3390/catal13020439
APA StyleXu, Y., Zeng, H., Zhao, D., Wang, S., Ding, S., & Chen, C. (2023). Green and Efficient Acquirement of Unsaturated Ether from Direct and Selective Hydrogenation Coupling Unsaturated Aldehyde with Alcohol by Bi-Functional Al-Ni-P Heterogeneous Catalysts. Catalysts, 13(2), 439. https://doi.org/10.3390/catal13020439