Catalytic Characterization of Synthetic K+ and Na+ Sodalite Phases by Low Temperature Alkali Fusion of Kaolinite during the Transesterification of Spent Cooking Oil: Kinetic and Thermodynamic Properties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the Catalysts
2.2. Transesterification Results
2.2.1. Effect of the Experimental Variables
Effect of Transesterification Intervals at Different Temperatures
Effects of the Catalysts Dosages on FAME Yield
Effect of Methanol-to Oil Molar Ratio
Recyclability of Na.SD and K.SD Catalysts
2.2.2. Physical and Chemical Properties of The Obtained Biodiesel
2.2.3. The Suggested Mechanism
2.2.4. Kinetics and Thermodynamics
Kinetic Studies
- The Reactions Rate Constants
- The Reaction Activation Energy and Pre-Exponential Values
The Thermodynamic Functions (Enthalpy, Entropy, and Gibb’s Free Energy)
2.2.5. Comparison Study
3. Experimental Work
3.1. Materials
3.2. Synthesis of Sodalite Catalysts
3.3. Characterization Techniques
3.4. Transesterification System
3.5. Analysis of the FAME Samples
3.6. Kinetics Studies
3.6.1. Adsorption of Triglyceride by Active Sites of Sodalite
3.6.2. Surface Reaction
3.6.3. Desorption of Glycerol
3.7. The Activation Energy (Ea) and Thermodynamic Functions
3.8. The Thermodynamic Functions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sayed, M.A.; Ahmed, S.A.; Othman, S.I.; Allam, A.A.; Al Zoubi, W.; Ajarem, J.S.; Abukhadra, M.R.; Bellucci, S. Kinetic, Thermodynamic, and Mechanistic Studies on the Effect of the Preparation Method on the Catalytic Activity of Synthetic Zeolite-A during the Transesterification of Waste Cooking Oil. Catalysts 2023, 13, 30. [Google Scholar] [CrossRef]
- Rezania, S.; Oryani, B.; Park, J.; Hashemi, B.; Yadav, K.K.; Kwon, E.E.; Hur, J.; Cho, J. Review on transesterification of non-edible sources for biodiesel production with a focus on economic aspects, fuel properties and by-product applications. Energy Convers. Manag. 2019, 201, 112155. [Google Scholar] [CrossRef]
- Orege, J.I.; Oderinde, O.; Kifle, G.A.; Ibikunle, A.A.; Raheem, S.A.; Ejeromedoghene, O.; Okeke, E.S.; Olukowi, O.M.; Orege, O.B.; Fagbohun, E.O.; et al. Recent advances in heterogeneous catalysis for green biodiesel production by transesterification. Energy Convers. Manag. 2022, 258, 115406. [Google Scholar] [CrossRef]
- Ali, R.M.; Elkatory, M.R.; Hamad, H.A. Highly active and stable magnetically recyclable CuFe2O4 as a heterogenous catalyst for efficient conversion of waste frying oil to biodiesel. Fuel 2020, 268, 117297. [Google Scholar] [CrossRef]
- Papargyriou, D.; Broumidis, E.; de Vere-Tucker, M.; Gavrielides, S.; Hilditch, P.; Irvine, J.; Bonaccorso, A.D. Investigation of solid base catalysts for biodiesel production from fish oil. Renew. Energy 2019, 139, 661–669. [Google Scholar] [CrossRef] [Green Version]
- Kiehbadroudinezhad, M.; Merabet, A.; Hosseinzadeh-Bandbafha, H. A life cycle assessment perspective on biodiesel production from fish wastes for green microgrids in a circular bioeconomy. Bioresour. Technol. Rep. 2023, 21, 101303. [Google Scholar] [CrossRef]
- Karmakar, G.; Ghosh, P.; Sharma, B.K. Chemically modifying vegetable oils to prepare green lubricants. Lubricants 2017, 5, 44. [Google Scholar] [CrossRef] [Green Version]
- Danov, S.M.; Kazantsev, O.A.; Esipovich, A.L.; Belousov, A.S.; Rogozhin, A.E.; Kanakov, E.A. Recent advances in the field of selective epoxidation of vegetable oils and their derivatives: A review and perspective. Catal. Sci. Technol. 2017, 7, 3659–3675. [Google Scholar] [CrossRef]
- Pleissner, D.; Lau, K.Y.; Zhang, C.; Lin, C.S.K. Plasticizer and surfactant formation from food-waste- and algal biomass-derived lipids. ChemSusChem 2015, 8, 1686–1691. [Google Scholar] [CrossRef]
- Karis, D.; Cain, R.; Young, K.; Shand, A.; Holm, T.; Springer, E. Non-fuel uses for fatty acid methyl esters. Biofuels Bioprod. Biorefining 2022, 16, 1893–1908. [Google Scholar] [CrossRef]
- Belousov, A.S.; Esipovich, A.L.; Kanakov, E.A.; Otopkova, K.V. Recent advances in sustainable production and catalytic transformations of fatty acid methyl esters. Energy Fuels 2021, 5, 4512–4545. [Google Scholar] [CrossRef]
- Sayed, M.R.; Abukhadra, M.R.; Ahmed, S.A.; Shaban, M.; Javed, U.; Betiha, M.A.; Shim, J.-J.; Rabie, A.M. Synthesis of advanced MgAl-LDH based geopolymer as a potential catalyst in the conversion of waste sunflower oil into biodiesel: Response surface studies. Fuel 2020, 282, 118865. [Google Scholar] [CrossRef]
- Basyouny, M.G.; Abukhadra, M.R.; Alkhaledi, K.; El-Sherbeeny, A.M.; El-Meligy, M.A.; Soliman, A.T.A.; Luqman, M. Insight into the catalytic transformation of the waste products of some edible oils (corn oil and palm oil) into biodiesel using MgO/clinoptilolite green nanocomposite. Mol. Catal. 2021, 500, 111340. [Google Scholar] [CrossRef]
- Pirouzmand, M.; Anakhatoon, M.M.; Ghasemi, Z. One-step biodiesel production from waste cooking oils over metal incorporated MCM-41; positive effect of template. Fuel 2018, 216, 296–300. [Google Scholar] [CrossRef]
- Murta, A.L.S.; De Freitas, M.A.V.; Ferreira, C.G.; Peixoto, M.M.D.C.L. The use of palm oil biodiesel blends in locomotives: An economic, social and environmental analysis. Renew. Energy 2021, 164, 521–530. [Google Scholar] [CrossRef]
- Malhotra, R.; Ali, A. 5-Na/ZnO doped mesoporous silica as reusable solid catalyst for biodiesel production via transesterification of virgin cottonseed oil. Renew. Energy 2019, 133, 606–619. [Google Scholar] [CrossRef]
- Sai, B.A.V.S.L.; Subramaniapillai, N.; Mohamed, M.S.B.K.; Narayanan, A. Optimization of continuous biodiesel production from rubber seed oil (RSO) using calcined eggshells as heterogeneous catalyst. J. Environ. Chem. Eng. 2020, 8, 103603. [Google Scholar] [CrossRef]
- Hoseini, S.; Najafi, G.; Sadeghi, A. Chemical characterization of oil and biodiesel from Common Purslane (Portulaca) seed as novel weed plant feedstock. Ind. Crops Prod. 2019, 140, 111582. [Google Scholar] [CrossRef]
- Ibrahim, M.L.; Nik Abdul Khalil, N.N.A.; Islam, A.; Rashid, U.; Ibrahim, S.F.; Sinar Mashuri, S.I.; Taufiq-Yap, Y.H. Preparation of Na2O supported CNTs nanocatalyst for efficient biodiesel production from waste-oil. Energy Convers. Manag. 2020, 205, 112445. [Google Scholar] [CrossRef]
- Bin Jumah, M.N.; Ibrahim, S.M.; Al-Huqail, A.A.; Bin-Murdhi, N.S.; Allam, A.A.; Abu-Taweel, G.M.; Altoom, N.; Al-Anazi, K.M.; Abukhadra, M.R. Enhancing the catalytic performance of NiO during the transesterification of waste cooking oil using a diatomite carrier and an integrated Ni0Metal: Response surface studies. ACS Omega 2021, 6, 12318–12330. [Google Scholar] [CrossRef]
- Banković-Ilić, I.B.; Stamenković, O.S.; Veljković, V.B. Biodiesel production from non-edible plant oils. Renew. Sustain. Energy Rev. 2012, 16, 3621–3647. [Google Scholar] [CrossRef]
- Takase, M.; Zhang, M.; Feng, W.; Chen, Y.; Zhao, T.; Cobbina, S.J.; Yang, L.; Wu, X. Application of zirconia modified with KOH as heterogeneous solid base catalyst to new non-edible oil for biodiesel. Energy Convers. Manag. 2014, 80, 117–125. [Google Scholar] [CrossRef]
- Sharma, Y.C.; Singh, B.; Korstad, J. Latest developments on application of heterogenous basic catalysts for an efficient and eco friendly synthesis of biodiesel: A review. Fuel 2011, 90, 1309–1324. [Google Scholar] [CrossRef]
- Mukhtar, A.; Saqib, S.; Lin, H.; Shah, M.U.H.; Ullah, S.; Younas, M.; Rezakazemi, M.; Ibrahim, M.; Mahmood, A.; Asif, S.; et al. Current status and challenges in the heterogeneous catalysis for biodiesel production. Renew. Sustain. Energy Rev. 2022, 157, 112012. [Google Scholar] [CrossRef]
- Lee, J.-S.; Saka, S. Biodiesel production by heterogeneous catalysts and supercritical technologies. Bioresour. Technol. 2010, 101, 7191–7200. [Google Scholar] [CrossRef]
- Brahma, S.; Basumatary, B.; Basumatary, S.F.; Das, B.; Brahma, S.; Rokhum, S.L.; Basumatary, S. Biodiesel production from quinary oil mixture using highly efficient Musa chinensis based heterogeneous catalyst. Fuel 2023, 336, 127150. [Google Scholar] [CrossRef]
- Fattahi, N.; Triantafyllidis, K.; Luque, R.; Ramazani, A. Zeolite-based catalysts: A valuable approach toward ester bond formation. Catalysts. 2019, 9, 758. [Google Scholar] [CrossRef] [Green Version]
- Otieno, S.O.; Kowenje, C.O.; Okoyo, A.; Onyango, D.M.; Amisi, K.O.; Nzioka, K.M. Optimizing production of biodiesel catalysed by chemically tuned natural zeolites. Mater. Today Proc. 2018, 5, 10561–10569. [Google Scholar] [CrossRef]
- Li, Z.; Ding, S.; Chen, C.; Qu, S.; Du, L.; Lu, J.; Ding, J. Recyclable Li/NaY zeolite as a heterogeneous alkaline catalyst for biodiesel production: Process optimization and kinetics study. Energy Convers. Manag. 2019, 192, 335–345. [Google Scholar] [CrossRef]
- Nasief, F.; Shaban, M.; Alamry, K.A.; Abu Khadra, M.R.; Khan, A.A.P.; Asiri, A.M.; El-Salam, H.A. Hydrothermal synthesis and mechanically activated zeolite material for utilizing the removal of Ca/Mg from aqueous and raw groundwater. J. Environ. Chem. Eng. 2021, 9, 105834. [Google Scholar] [CrossRef]
- Simanjuntak, W.; Pandiangan, K.D.; Sembiring, Z.; Simanjuntak, A.; Hadi, S. The effect of crystallization time on structure, microstructure, and catalytic activity of zeolite-A synthesized from rice husk silica and food-grade aluminum foil. Biomass Bioenergy 2021, 148, 106050. [Google Scholar] [CrossRef]
- Abukhadra, M.R.; Othman, S.I.; Allam, A.A.; Elfayoumi, H. Insight into the catalytic properties zeolitized kaolinite/diatomite geopolymer as an environmental catalyst for the sustainable conversion of spent cooking oil into biodiesel; optimization and kinetics. Sustain. Chem. Pharm. 2021, 22, 100473. [Google Scholar] [CrossRef]
- Rios, C.; Williams, C.; Fullen, M. Nucleation and growth history of zeolite LTA synthesized from kaolinite by two different methods. Appl. Clay Sci. 2009, 42, 446–454. [Google Scholar] [CrossRef]
- Mokrzycki, J.; Fedyna, M.; Marzec, M.; Panek, R.; Szerement, J.; Marcińska-Mazur, L.; Jarosz, R.; Bajda, T.; Franus, W.; Mierzwa-Hersztek, M. The influence of zeolite X ion-exchangeable forms and impregnation with copper nitrate on the adsorption of phosphate ions from aqueous solutions. J. Water Process Eng. 2022, 50, 103299. [Google Scholar] [CrossRef]
- Alismaeel, Z.T.; Al-Jadir, T.M.; Albayati, T.M.; Abbas, A.S.; Doyle, A.M. Modification of FAU zeolite as an active heterogeneous catalyst for biodiesel production and theoretical considerations for kinetic modeling. Adv. Powder Technol. 2022, 33, 103646. [Google Scholar] [CrossRef]
- Salam, M.A.; Abukhadra, M.R.; Mostafa, M. Effective decontamination of As(V), Hg(II), and U(VI) toxic ions from water using novel muscovite/zeolite aluminosilicate composite: Adsorption behavior and mechanism. Environ. Sci. Pollut. Res. 2020, 27, 13247–13260. [Google Scholar] [CrossRef]
- Ayele, L.; Pérez-Pariente, J.; Chebude, Y.; Díaz, I. Conventional versus alkali fusion synthesis of zeolite A from low grade kaolin. Appl. Clay Sci. 2016, 132–133, 485–490. [Google Scholar] [CrossRef]
- Altoom, N.; Adlii, A.; Othman, S.I.; Allam, A.A.; Alqhtani, H.A.; Al-Otaibi, F.S.; Abukhadra, M.R. Synthesis and characterization of β-cyclodextrin functionalized zeolite-A as biocompatible carrier for Levofloxacin drug; loading, release, cytotoxicity, and anti-inflammatory studies. J. Solid State Chem. 2022, 312, 123280. [Google Scholar] [CrossRef]
- Shaban, M.; Sayed, M.I.; Shahien, M.G.; Abukhadra, M.R.; Ahmed, Z.M. Adsorption behavior of inorganic- and organic-modified kaolinite for Congo red dye from water, kinetic modeling, and equilibrium studies. J. Sol-Gel Sci. Technol. 2018, 87, 427–441. [Google Scholar] [CrossRef]
- Sakızcı, M.; Özer, M. The characterization and methane adsorption of Ag-, Cu-, Fe-, and H-exchanged chabazite-rich tuff from Turkey. Environ. Sci. Pollut. Res. 2019, 26, 16616–16627. [Google Scholar] [CrossRef]
- Mostafa, M.; El-Meligy, M.A.; Sharaf, M.; Soliman, A.T.; AbuKhadra, M.R. Insight into chitosan/zeolite-A nanocomposite as an advanced carrier for levofloxacin and its anti-inflammatory properties; loading, release, and anti-inflammatory studies. Int. J. Biol. Macromol. 2021, 179, 206–216. [Google Scholar] [CrossRef]
- Abukhadra, M.R.; Sayed, M.A. K+ trapped kaolinite (Kaol/K+) as low cost and eco-friendly basic heterogeneous catalyst in the transesterification of commercial waste cooking oil into biodiesel. Energy Convers. Manag. 2018, 177, 468–476. [Google Scholar] [CrossRef]
- Arana, J.T.; Torres, J.J.; Acevedo, D.F.; Illanes, C.O.; Ochoa, N.A.; Pagliero, C.L. One-step synthesis of CaO-ZnO efficient catalyst for biodiesel production. Int. J. Chem. Eng. 2019, 2019, 1806017. [Google Scholar] [CrossRef]
- Roy, T.; Sahani, S.; Sharma, Y.C. Study on kinetics-thermodynamics and environmental parameter of biodiesel production from waste cooking oil and castor oil using potassium modified ceria oxide catalyst. J. Clean. Prod. 2020, 247, 119166. [Google Scholar] [CrossRef]
- Ayoub, M.; Bhat, A.H.; Ullah, S.; Ahmad, M.; Uemura, Y. Optimization of Biodiesel Production over Alkaline Modified Clay Catalyst. J. Japan Inst. Energy. 2017, 96, 456–462. [Google Scholar] [CrossRef] [Green Version]
- Seela, C.R.; Alagumalai, A.; Pugazhendhi, A. Evaluating the feasibility of diethyl ether and isobutanol added Jatropha Curcas biodiesel as environmentally friendly fuel blends. Sustain. Chem. Pharm. 2020, 18, 100340. [Google Scholar] [CrossRef]
- Ibrahim, S.M.; El-Sherbeeny, A.M.; Shim, J.-J.; AlHammadi, A.A.; Abukhadra, M.R. -SO3H-functionalization of sub-bituminous coal as a highly active acidic catalyst during the transesterification of spent sunflower oil; characterization, application, and mechanism. Energy Rep. 2021, 7, 8699–8710. [Google Scholar] [CrossRef]
- Salim, S.M.; Izriq, R.; Almaky, M.M.; Al-Abbassi, A.A. Synthesis and characterization of ZnO nanoparticles for the production of biodiesel by transesterification: Kinetic and thermodynamic studies. Fuel 2022, 321, 124135. [Google Scholar] [CrossRef]
- Gardy, J.; Rehan, M.; Hassanpour, A.; Lai, X.; Nizami, A.-S. Advances in nano-catalysts based biodiesel production from non-food feedstocks. J. Environ. Manag. 2019, 249, 109316. [Google Scholar] [CrossRef]
- Rabie, A.M.; Shaban, M.; Abukhadra, M.R.; Hosny, R.; Ahmed, S.A.; Negm, N.A. Diatomite supported by CaO/MgO nanocomposite as heterogeneous catalyst for biodiesel production from waste cooking oil. J. Mol. Liq. 2019, 279, 224–231. [Google Scholar] [CrossRef]
- Bhatia, S.K.; Gurav, R.; Choi, T.-R.; Kim, H.J.; Yang, S.-Y.; Song, H.-S.; Park, J.Y.; Park, Y.-L.; Han, Y.-H.; Choi, Y.-K.; et al. Conversion of waste cooking oil into biodiesel using heterogenous catalyst derived from cork biochar. Bioresour. Technol. 2020, 302, 122872. [Google Scholar] [CrossRef]
- Singh, V.; Bux, F.; Sharma, Y.C. A low cost one pot synthesis of biodiesel from waste frying oil (WFO) using a novel material, β-potassium dizirconate (β-K2Zr2O5). Appl. Energy 2016, 172, 23–33. [Google Scholar] [CrossRef]
- Abukhadra, M.R.; Soliman, S.R.; Bin Jumah, M.N.; Othman, S.I.; AlHammadi, A.A.; Alruhaimi, R.S.; Albohairy, F.M.; Allam, A.A. Insight into the sulfonation conditions on the activity of sub-bituminous coal as acidic catalyst during the transesterification of spent corn oil; effect of sonication waves. Sustain. Chem. Pharm. 2022, 27, 100691. [Google Scholar] [CrossRef]
- Bellucci, S.; Eid, M.H.; Fekete, I.; Péter, S.; Kovács, A.; Othman, S.I.; Ajarem, J.S.; Allam, A.A.; Abukhadra, M.R. Synthesis of K+ and Na+ Synthetic Sodalite Phases by Low-Temperature Alkali Fusion of Kaolinite for Effective Remediation of Phosphate Ions: The Impact of the Alkali Ions and Realistic Studies. Inorganics 2023, 11, 14. [Google Scholar] [CrossRef]
- Kamel, D.A.; Farag, H.A.; Amin, N.K.; Zatout, A.A.; Ali, R.M. Smart utilization of jatropha (Jatropha curcas Linnaeus) seeds for biodiesel production: Optimization and mechanism. Ind. Crops Prod. 2018, 111, 407–413. [Google Scholar] [CrossRef]
- Kouzu, M.; Kasuno, T.; Tajika, M.; Sugimoto, Y.; Yamanaka, S.; Hidaka, J. Calcium oxide as a solid base catalyst for transesterification of soybean oil and its application to biodiesel production. Fuel 2008, 87, 2798–2806. [Google Scholar] [CrossRef]
- Yang, X.-X.; Wang, Y.-T.; Yang, Y.-T.; Feng, E.-Z.; Luo, J.; Zhang, F.; Yang, W.-J.; Bao, G.-R. Catalytic transesterification to biodiesel at room temperature over several solid bases. Energy Convers. Manag. 2018, 164, 112–121. [Google Scholar] [CrossRef]
- Chen, G.; Shan, R.; Li, S.; Shi, J. A biomimetic silicification approach to synthesize CaO-SiO2 catalyst for the transesterification of palm oil into biodiesel. Fuel 2015, 153, 48–55. [Google Scholar] [CrossRef]
- Aghel, B.; Mohadesi, M.; Ansari, A.; Maleki, M. Pilot-scale production of biodiesel from waste cooking oil using kettle limescale as a heterogeneous catalyst. Renew. Energy 2019, 142, 207–214. [Google Scholar] [CrossRef]
- Babajide, O.; Musyoka, N.; Petrik, L.; Ameer, F. Novel zeolite Na-X synthesized from fly ash as a heterogeneous catalyst in biodiesel production. Catal. Today 2012, 190, 54–60. [Google Scholar] [CrossRef] [Green Version]
- Maneerung, T.; Kawi, S.; Wang, C.-H. Biomass gasification bottom ash as a source of CaO catalyst for biodiesel production via transesterification of palm oil. Energy Convers. Manag. 2015, 92, 234–243. [Google Scholar] [CrossRef]
- Amani, H.; Asif, M.; Hameed, B. Transesterification of waste cooking palm oil and palm oil to fatty acid methyl ester using cesium-modified silica catalyst. J. Taiwan Inst. Chem. Eng. 2016, 58, 226–234. [Google Scholar] [CrossRef]
- Abukhadra, M.R.; Dardir, F.M.; Shaban, M.; Ahmed, E.A.; Soliman, M.F. Spongy Ni/Fe carbonate-fluorapatite catalyst for efficient conversion of cooking oil waste into biodiesel. Environ. Chem. Lett. 2018, 16, 665–670. [Google Scholar] [CrossRef]
- Thushari, I.; Babel, S.; Samart, C. Biodiesel production in an autoclave reactor using waste palm oil and coconut coir husk derived catalyst. Renew. Energy 2019, 134, 125–134. [Google Scholar] [CrossRef]
- Lima, A.C.; Hachemane, K.; Ribeiro, A.E.; Queiroz, A.; Gomes, M.C.S.; Brito, P. Evaluation and kinetic study of alkaline ionic liquid for biodiesel production through transesterification of sunflower oil. Fuel 2022, 324, 124586. [Google Scholar] [CrossRef]
- Jain, S.; Sharma, M.; Rajvanshi, S. Acid base catalyzed transesterification kinetics of waste cooking oil. Fuel Process. Technol. 2011, 92, 32–38. [Google Scholar] [CrossRef]
- Hassan, W.A.; Ahmed, E.A.; Moneim, M.A.; Shaban, M.S.; El-Sherbeeny, A.M.; Siddiqui, N.; Shim, J.-J.; Abukhadra, M.R. Sulfonation of Natural Carbonaceous Bentonite as a Low-Cost Acidic Catalyst for Effective Transesterification of Used Sunflower Oil into Diesel; Statistical Modeling and Kinetic Properties. ACS Omega 2021, 6, 31260–31271. [Google Scholar] [CrossRef]
Sample | Surface Area | Total Pore Volume | Average Pore Size | Cation Exchange Capacity | Total Basicity |
---|---|---|---|---|---|
Kaolinite | 10 m2/g | 0.072 cm3/g | 43.2 nm | ----------- | ----------- |
K.SD | 217.6 m2/g | 0.214 cm3/g | 9.7 nm | 96.8 meq/100 g | 6.3 mmol OH/g |
Na.SD | 232.4 m2/g | 0.247 cm3/g | 7.4 nm | 126.4 meq/100 g | 5.4 mmol OH/g |
Contents | ASTM D-6751 | EN 14214 | Na.SD | K.SD |
---|---|---|---|---|
Viscosity (mm2/s) | 1.9–6 | 3.5–5 | 3.72 | 3.24 |
Moisture content (wt.(%)) | <0.05 | <0.05 | 0.041 | 0.032 |
Flash point (°C) | >93 | >120 | 134.2 | 129.8 |
Calorific value (MJ/kg) | -------- | >32.9 | 37.4 | 36.5 |
Cloud point (°C) | −3 to 15 | -------- | 5.7 | 5.33 |
Pour point (pp) | −5 to 10 | -------- | 6.2 | 5.7 |
Cetane number | ≥47 | ≥51 | 54.3 | 52.5 |
Density (g/cm3) | 0.82–0.9 | 0.86–0.9 | 0.87 | 0.84 |
Acid value (Mg/KOH/g) | ≤0.5 | ≤0.5 | 0.42 | 0.37 |
Catalyst | Temperature (°C) | Kc (min−1) | (R2) |
---|---|---|---|
Na.SD | 40 | 0.01723 | 0.97813 |
50 | 0.01958 | 0.99603 | |
60 | 0.03666 | 0.99031 | |
70 | 0.0397 | 0.99457 | |
K.SD | 40 | 0.01214 | 0.97264 |
50 | 0.02143 | 0.871 | |
60 | 0.02386 | 0.9912 | |
70 | 0.03353 | 0.97781 |
Parameters | Na.SD | K.SD |
---|---|---|
Slope | −3.36 | −3.40 |
Intercept | 6.63 | 6.534 |
Determination coefficient (R2) | 0.848 | 0.907 |
Activation energy (ΔE*) (kJ.mol−1) | 27.9 | 28.27 |
Pre-exponential value (A) (min−1) | 758.94 | 688.33 |
Thermodynamic Parameters | Na.SD | K.SD | |
---|---|---|---|
Slope | −3.03508 | −3.0734 | |
Intercept | −0.16003 | −0.25768 | |
R2 | 0.81843 | 0.88793 | |
ΔH* (kJ. mol−1) | 25.233 | 25.55 | |
ΔS* (J.K−1.mol−1) | −197.7 | −197.8 | |
(ΔG*) (kJ. mol−1) | 40 °C 50 °C 60 °C 70 °C | 61.905 63.882 65.859 67.836 | 61.936 63.914 65.892 67.87 |
Catalyst | Time | Temperature (°C) | Methanol/Oil Ratio | Dosage (wt.%) | Yield (%) | References |
---|---|---|---|---|---|---|
CaO/SiO2 | 3 h | 65 | 21:1 | 11 | 90.2 | [58] |
Kettle lime scale | 15 min | 61.7 | 3:1.7 | 8.9 | 93.4 | [59] |
Zeolite Na-X | 8 h | 65 | 6:1 | 3 | 83.5 | [60] |
CaO | 3 h | 65 | 20:1 | 5 | 95 | [61] |
Cesium modified silica | 3 h | 65 | 20:1 | 3 | 90 | [62] |
Ni/Fe carbonatefuorapatite | 2 h | 70 | 8:1 | 10 | 97.5 | [63] |
Coconut coir husk | 3 h | 130 | 12:1 | 10 | 89.8 | [64] |
Diatomite/CaO/MgO | 2 h | 90 | 15:1 | 6 | 96.4 | [50] |
Ni/NiO@ Diatomite | 117 min | 63.7 | 11.6:1 | 4 | 93.2 | [20] |
Na.SD | 90 min | 70 | 13:1 | 2.5 | 97.3 | This study |
K.SD | 75 min | 70 | 13:1 | 2.5 | 95.7 | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sayed, M.A.; Ajarem, J.S.; Allam, A.A.; Abukhadra, M.R.; Luo, J.; Wang, C.; Bellucci, S. Catalytic Characterization of Synthetic K+ and Na+ Sodalite Phases by Low Temperature Alkali Fusion of Kaolinite during the Transesterification of Spent Cooking Oil: Kinetic and Thermodynamic Properties. Catalysts 2023, 13, 462. https://doi.org/10.3390/catal13030462
Sayed MA, Ajarem JS, Allam AA, Abukhadra MR, Luo J, Wang C, Bellucci S. Catalytic Characterization of Synthetic K+ and Na+ Sodalite Phases by Low Temperature Alkali Fusion of Kaolinite during the Transesterification of Spent Cooking Oil: Kinetic and Thermodynamic Properties. Catalysts. 2023; 13(3):462. https://doi.org/10.3390/catal13030462
Chicago/Turabian StyleSayed, Mohamed Adel, Jamaan S. Ajarem, Ahmed A. Allam, Mostafa R. Abukhadra, Jianmin Luo, Chuanyi Wang, and Stefano Bellucci. 2023. "Catalytic Characterization of Synthetic K+ and Na+ Sodalite Phases by Low Temperature Alkali Fusion of Kaolinite during the Transesterification of Spent Cooking Oil: Kinetic and Thermodynamic Properties" Catalysts 13, no. 3: 462. https://doi.org/10.3390/catal13030462
APA StyleSayed, M. A., Ajarem, J. S., Allam, A. A., Abukhadra, M. R., Luo, J., Wang, C., & Bellucci, S. (2023). Catalytic Characterization of Synthetic K+ and Na+ Sodalite Phases by Low Temperature Alkali Fusion of Kaolinite during the Transesterification of Spent Cooking Oil: Kinetic and Thermodynamic Properties. Catalysts, 13(3), 462. https://doi.org/10.3390/catal13030462