DFT Investigations of the Reaction Mechanism of Dimethyl Carbonate Synthesis from Methanol and CO on Various Cu Species in Y Zeolites
Abstract
:1. Introduction
2. Results
3. Discussion
3.1. The Desorption and Dissociation of CH3OH
3.2. Insertion of CO into CH3O (Path I)
3.3. CH3O Reacts with CH3OCO to Form DMC (Path I)
3.4. Formation of (CH3O)2 Species (Path II)
3.5. Insertion of CO into (CH3O)2 to Form DMC (Path II)
3.6. Desorption of DMC
3.7. Rate-Limiting Reactions of DMC Formaction
4. Methodology
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kohli, K.; Sharma, B.K.; Panchal, C.B. Dimethyl Carbonate: Review of Synthesis Routes and Catalysts Used. Energies 2022, 15, 5133. [Google Scholar] [CrossRef]
- Shi, D.; Heyte, S.; Capron, M.; Paul, S. Catalytic processes for the direct synthesis of dimethyl carbonate from CO2 and methanol: A review. Green Chem. 2022, 24, 1067–1089. [Google Scholar] [CrossRef]
- Raza, A.; Ikram, M.; Guo, S.; Baiker, A.; Li, G. Green Synthesis of Dimethyl Carbonate from CO2 and Methanol: New Strategies and Industrial Perspective. Adv. Sustain. Syst. 2022, 6, 2200087. [Google Scholar] [CrossRef]
- Huo, L.; Wang, T.; Xuan, K.; Li, L.; Pu, Y.; Li, C.; Qiao, C.; Yang, H.; Bai, Y. Synthesis of Dimethyl Carbonate from CO2 and Methanol over Zr-Based Catalysts with Different Chemical Environments. Catalysts 2021, 11, 710. [Google Scholar] [CrossRef]
- Ohno, H.; Ikhlayel, M.; Tamura, M.; Nakao, K.; Suzuki, K.; Morita, K.; Kato, Y.; Tomishige, K.; Fukushima, Y. Direct dimethyl carbonate synthesis from CO2 and methanol catalyzed by CeO2 and assisted by 2-cyanopyridine: A cradle-to-gate greenhouse gas emission study. Green Chem. 2021, 23, 457–469. [Google Scholar] [CrossRef]
- Liu, K.; Liu, C. Synthesis of dimethyl carbonate from methanol and CO2 under low pressure. RSC Adv. 2021, 11, 35711–35717. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Yan, B.; Wang, S.; Ma, X. Recent advances in dialkyl carbonates synthesis and applications. Chem. Soc. Rev. 2015, 44, 3079–3116. [Google Scholar] [CrossRef]
- Wang, J.; Fu, T.; Meng, F.; Zhao, D.; Chuang, S.S.C.; Li, Z. Highly active catalysis of methanol oxidative carbonylation over nano Cu2O supported on micropore-rich mesoporous carbon. Appl. Catal. B Environ. 2022, 303, 120890. [Google Scholar] [CrossRef]
- Wang, C.; Liu, B.; Liu, P.; Huang, K.; Xu, N.; Guo, H.; Bai, P.; Ling, L.; Liu, X.; Mintova, S. Elucidation of the reaction mechanism of indirect oxidative carbonylation of methanol to dimethyl carbonate on Pd/NaY catalyst: Direct identification of reaction intermediates. J. Catal. 2022, 412, 30–41. [Google Scholar] [CrossRef]
- Al-Rabiah, A.A.; Almutlaq, A.M.; Bashth, O.S.; Alyasser, T.M.; Alshehri, F.A.; Alofai, M.S.; Alshehri, A.S. An Intensified Green Process for the Coproduction of DMC and DMO by the Oxidative Carbonylation of Methanol. Processes 2022, 10, 2094. [Google Scholar] [CrossRef]
- Almusaiteer, K.A.; Al-Mayman, S.I.; Mamedov, A.; Al-Zeghayer, Y.S. In Situ IR Studies on the Mechanism of Dimethyl Carbonate Synthesis from Methanol and Carbon Dioxide. Catalysts 2021, 11, 517. [Google Scholar] [CrossRef]
- Zhang, Z.; Che, H.; Wang, Y.; Gao, J.; Ping, Y.; Zhong, Z.; Su, F. Template-free synthesis of Cu@Cu2O core–shell microspheres and their application as copper-based catalysts for dimethyldichlorosilane synthesis. Chem. Eng. J. 2012, 211–212, 421–431. [Google Scholar] [CrossRef]
- Ai, Z.; Zhang, L.; Lee, S.; Ho, W. Interfacial Hydrothermal Synthesis of Cu@Cu2O Core−Shell Microspheres with Enhanced Visible-Light-Driven Photocatalytic Activity. J. Phys. Chem. C 2009, 113, 20896–20902. [Google Scholar] [CrossRef]
- Teng, F.; Yao, W.; Zheng, Y.; Ma, Y.; Teng, Y.; Xu, T.; Liang, S.; Zhu, Y. Synthesis of flower-like CuO nanostructures as a sensitive sensor for catalysis. Sensors Actuators B Chem. 2008, 134, 761–768. [Google Scholar] [CrossRef]
- Anderson, S.A.; Root, T.W. Investigation of the effect of carbon monoxide on the oxidative carbonylation of methanol to dimethyl carbonate over Cu+X and Cu+ZSM-5 zeolites. J. Mol. Catal. A Chem. 2004, 220, 247–255. [Google Scholar] [CrossRef]
- Shen, Y.; Meng, Q.; Huang, S.; Wang, S.; Gong, J.; Ma, X. Reaction mechanism of dimethyl carbonate synthesis on Cu/β zeolites: DFT and AIM investigations. RSC Adv. 2012, 2, 7109–7119. [Google Scholar] [CrossRef]
- Zhang, G.; Liang, J.; Yin, J.; Yan, L.; Narkhede, N.; Zheng, H.; Li, Z. An efficient strategy to improve the catalytic activity of CuY for oxidative carbonylation of methanol: Modification of NaY by H4EDTA-NaOH sequential treatment. Micropor. Mesopor. Mater. 2020, 307, 110500. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Z.; Tan, C.; Sun, H.; Li, Z. High catalytic activity of CuY catalysts prepared by high temperature anhydrous interaction for the oxidative carbonylation of methanol. RSC Adv. 2020, 10, 3293–3300. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Briggs, D.N.; De Smit, E.; Bell, A.T. Effects of zeolite structure and composition on the synthesis of dimethyl carbonate by oxidative carbonylation of methanol on Cu-exchanged Y, ZSM-5, and Mordenite. J. Catal. 2007, 251, 443–452. [Google Scholar] [CrossRef]
- King, S.T. Reaction Mechanism of Oxidative Carbonylation of Methanol to Dimethyl Carbonate in Cu–Y Zeolite. J. Catal. 1996, 161, 530–538. [Google Scholar] [CrossRef]
- Richter, M.; Fait, M.J.G.; Eckelt, R.; Schneider, M.; Radnik, J.; Heidemann, D.; Fricke, R. Gas-phase carbonylation of methanol to dimethyl carbonate on chloride-free Cu-precipitated zeolite Y at normal pressure. J. Catal. 2007, 245, 11–24. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Bell, A.T. The mechanism of dimethyl carbonate synthesis on Cu-exchanged zeolite Y. J. Catal. 2008, 255, 153–161. [Google Scholar] [CrossRef]
- Huang, S.Y.; Wang, Y.; Wang, Z.Z.; Yan, B.; Wang, S.P.; Gong, J.L.; Ma, X.B. Cu-doped zeolites for catalytic oxidative carbonylation: The role of Brønsted acids. Appl. Catal. A Gen. 2012, 417–418, 236–242. [Google Scholar] [CrossRef]
- Kieger, S.; Delahay, G.; Coq, B.; Neveu, B. Selective Catalytic Reduction of Nitric Oxide by Ammonia over Cu-FAU Catalysts in Oxygen-Rich Atmosphere. J. Catal. 1999, 183, 267–280. [Google Scholar] [CrossRef]
- Richter, M.; Fait, M.J.G.; Eckelt, R.; Schreier, E.; Schneider, M.; Pohl, M.-M.; Fricke, R. Oxidative gas phase carbonylation of methanol to dimethyl carbonate over chloride-free Cu-impregnated zeolite Y catalysts at elevated pressure. Appl. Catal. B Environ. 2007, 73, 269–281. [Google Scholar] [CrossRef]
- Engeldinger, J.; Domke, C.; Richter, M.; Bentrup, U. Elucidating the role of Cu species in the oxidative carbonylation of methanol to dimethyl carbonate on CuY: An in situ spectroscopic and catalytic study. Appl. Catal. A Gen. 2010, 382, 303–311. [Google Scholar] [CrossRef]
- Engeldinger, J.; Richter, M.; Bentrup, U. Mechanistic investigations on dimethyl carbonate formation by oxidative carbonylation of methanol over a CuY zeolite: An operando SSITKA/DRIFTS/MS study. Phys. Chem. Chem. Phys. 2012, 14, 2183–2191. [Google Scholar] [CrossRef]
- Zheng, H.-Y.; Wang, J.-Z.; Li, Z.; Yan, L.-F.; Wen, J.Z. Characterization and assessment of an enhanced CuY catalyst for oxidative carbonylation of methanol prepared by consecutive liquid-phase ion exchange and incipient wetness impregnation. Fuel Process. Technol. 2016, 152, 367–374. [Google Scholar] [CrossRef]
- Anderson, S.A.; Root, T.W. Kinetic studies of carbonylation of methanol to dimethyl carbonate over Cu+X zeolite catalyst. J. Catal. 2003, 217, 396–405. [Google Scholar] [CrossRef]
- Zheng, X.B.; Bell, A.T. A Theoretical Investigation of Dimethyl Carbonate Synthesis on Cu−Y Zeolite. J. Phys. Chem. C 2008, 112, 5043–5047. [Google Scholar] [CrossRef]
- Zheng, H.; Qi, J.; Zhang, R.; Li, Z.; Wang, B.; Ma, X. Effect of environment around the active center Cu+ species on the catalytic activity of CuY zeolites in dimethyl carbonate synthesis: A theoretical study. Fuel Process. Technol. 2014, 128, 310–318. [Google Scholar] [CrossRef]
- Shen, Y.; Meng, Q.; Huang, S.; Gong, J.; Ma, X. DFT investigations for the reaction mechanism of dimethyl carbonate synthesis on Pd (ii)/β zeolites. Phys. Chem. Chem. Phys. 2013, 15, 13116–13127. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Wang, W.; Wang, D.; Zuo, Z.; Lin, J.; Li, Z. A theoretical investigation on the mechanism of dimethyl carbonate formation on Cu/AC catalyst. Appl. Catal. A Gen. 2014, 472, 47–52. [Google Scholar] [CrossRef]
- Meng, Q.; Wang, Z.; Shen, Y.; Yan, B.; Wang, S.; Ma, X. DFT and DRIFTS studies of the oxidative carbonylation of methanol over γ-Cu2Cl(OH)3: The influence of Cl. RSC Adv. 2012, 2, 8752–8761. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, R.; Li, Z. Theoretical Studies on the Interaction of CO and CH3O on CuCl (111) Surface for Methanol Oxidative Carbonylation. Chem. J. China Univ. 2014, 35, 1926–1932. [Google Scholar]
- Zhang, R.G.; Song, L.Z.; Wang, B.J.; Li, Z. A density functional theory investigation on the mechanism and kinetics of dimethyl carbonate formation on Cu2O catalyst. J. Comput. Chem. 2012, 33, 1101–1110. [Google Scholar] [CrossRef]
- Doornkamp, C.; Ponec, V. The universal character of the Mars and Van Krevelen mechanism. J. Mol. Catal. A Chem. 2000, 162, 19–32. [Google Scholar] [CrossRef]
- Sherry, H.S. The Ion-Exchange Properties of Zeolites. I. Univalent Ion Exchange in Synthetic Faujasite. J. Phys. Chem. 1966, 70, 1158–1168. [Google Scholar] [CrossRef]
- Zheng, H.; Narkhede, N.; Zhang, G.; Li, Z. Role of metal co-cations in improving CuY zeolite performance for DMC synthesis: A theoretical study. Appl. Organomet. Chem. 2020, 34, e5832. [Google Scholar] [CrossRef]
- Berthomieu, D.; Ducéré, J.-M.; Goursot, A. A Theoretical Study of Cu(II) Sites in a Faujasite-Type Zeolite: Structures and Electron Paramagnetic Resonance Hyperfine Coupling Constants. J. Phys. Chem. B 2002, 106, 7483–7488. [Google Scholar] [CrossRef]
- Drake, I.J.; Zhang, Y.H.; Briggs, D.; Lim, B.; Chau, T.; Bell, A.T. The Local Environment of Cu+ in Cu−Y Zeolite and Its Relationship to the Synthesis of Dimethyl Carbonate. J. Phys. Chem. B 2006, 110, 11654–11664. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Li, J.; Wang, B. The effect of Si/Al ratios on the catalytic activity of CuY zeolites for DMC synthesis by oxidative carbonylation of methanol: A theoretical study. RSC Adv. 2013, 3, 12287–12298. [Google Scholar] [CrossRef]
- Yang, G.; Wang, Y.; Zhou, D.; Liu, X.; Han, X.; Bao, X. Density functional theory calculations on various M/ZSM-5 zeolites: Interaction with probe molecule H2O and relative hydrothermal stability predicted by binding energies. J. Mol. Catal. A Chem. 2005, 237, 36–44. [Google Scholar] [CrossRef]
- Rejmak, P.; Sierka, M.; Sauer, J. Theoretical studies of Cu(i) sites in faujasite and their interaction with carbon monoxide. Phys. Chem. Chem. Phys. 2007, 9, 5446–5456. [Google Scholar] [CrossRef]
- Campana, L.; Selloni, A.; Weber, J.; Goursot, A. Cation Siting and Dynamical Properties of Zeolite Offretite from First-Principles Molecular Dynamics. J. Phys. Chem. B 1997, 101, 9932–9939. [Google Scholar] [CrossRef]
- Hill, J.-R.; Freeman, C.M.; Delley, B. Bridging Hydroxyl Groups in Faujasite: Periodic vs. Cluster Density Functional Calculations. J. Phys. Chem. A 1999, 103, 3772–3777. [Google Scholar] [CrossRef]
- Kang, L.; Zhang, J.; Zhang, R.; Ling, L.; Wang, B. Insight into the formation mechanism and kinetics for the oxidative carbonylation of methanol to dimethyl carbonate over CuO catalyst: Effects of Cu valence state and solvent environment. Mol. Catal. 2018, 449, 38–48. [Google Scholar] [CrossRef]
- Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 2000, 113, 7756–7764. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 1990, 92, 508–517. [Google Scholar] [CrossRef]
Y Zeolite with Different Size | Eint/kJ·mol−1 | Eads/kJ·mol−1 |
---|---|---|
6T | 2713.62 | 91.45 |
12T | 2588.76 | 83.33 |
24T | 2529.59 | 83.08 |
42T | 2454.44 | 83.27 |
60T | 2442.61 | 82.88 |
The Distribution of Al Atoms | Esub/kJ·mol−1 | Ebind/Ha |
---|---|---|
1-11-12-22 | 27.31 | 21.0454 |
2-11-12-22 | 31.16 | 21.0440 |
3-11-12-22 | 45.15 | 21.0387 |
4-11-12-22 | 0.28 | 21.0557 |
5-11-12-22 | 37.72 | 21.0415 |
8-11-12-22 | 31.96 | 21.0436 |
9-11-12-22 | 122.11 | 21.0093 |
11-12-14-22 | 107.60 | 21.0148 |
11-12-17-22 | 210.52 | 20.9756 |
11-12-20-22 | 129.81 | 21.0064 |
11-12-22-24 | 125.49 | 21.0080 |
Catalyst | (CH3OH)* + O*→(CH3O)*(OH)* | (CH3O)* + CO*→(CH3OCO)* | (CH3OCO)* + (CH3O)*→(DMC)* | (CH3O)*(OH)* + CH3OH→(CH3O) 2* + H2O | (CH3O)2* + CO→(DMC)* | Ref. |
---|---|---|---|---|---|---|
Cu2O | -- | 161.9 | 98.8 | 68.3 | 308.5 | [36] |
Cu2O-Y | 23.56 | 60.01 | 40.90 | 116.38 | 253.96 | This study |
Cu+Y | -- | 63.73 | 28.27 | 93.86 | 201.68 | This study |
Cu2+Y | 66.73 | 64.45 | 37.95 | 89.49 | 164.95 | This study |
CuO-Y | 39.94 | 104.64 | 15.95 | 115.29 | 210.74 | This study |
CuO | -- | 114.5 | 200.9 | 25.7 | 109.1 | [47] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Zhang, G.; Song, Y.; Yu, S.; Zhao, J.; Zheng, H. DFT Investigations of the Reaction Mechanism of Dimethyl Carbonate Synthesis from Methanol and CO on Various Cu Species in Y Zeolites. Catalysts 2023, 13, 477. https://doi.org/10.3390/catal13030477
Zhou Y, Zhang G, Song Y, Yu S, Zhao J, Zheng H. DFT Investigations of the Reaction Mechanism of Dimethyl Carbonate Synthesis from Methanol and CO on Various Cu Species in Y Zeolites. Catalysts. 2023; 13(3):477. https://doi.org/10.3390/catal13030477
Chicago/Turabian StyleZhou, Yuan, Guoqiang Zhang, Ya Song, Shirui Yu, Jingjing Zhao, and Huayan Zheng. 2023. "DFT Investigations of the Reaction Mechanism of Dimethyl Carbonate Synthesis from Methanol and CO on Various Cu Species in Y Zeolites" Catalysts 13, no. 3: 477. https://doi.org/10.3390/catal13030477
APA StyleZhou, Y., Zhang, G., Song, Y., Yu, S., Zhao, J., & Zheng, H. (2023). DFT Investigations of the Reaction Mechanism of Dimethyl Carbonate Synthesis from Methanol and CO on Various Cu Species in Y Zeolites. Catalysts, 13(3), 477. https://doi.org/10.3390/catal13030477