Photocatalytic Removal of Thiamethoxam and Flonicamid Pesticides Present in Agro-Industrial Water Effluents
Abstract
:1. Introduction
2. Results
2.1. Photocatalytic Degradation and Reaction Kinetics of Pesticides
2.2. Effect of Solution pH
2.3. Effect of Additives as Quenchers
3. Discussion
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Díez, A.; Sanromán, M.; Pazos, M. New approaches on the agrochemicals degradation by UV oxidation processes. J. Chem. Eng. 2019, 376, 120026. [Google Scholar] [CrossRef]
- Regulation (EC) no 1107/2009 of the European Parliament and of the Council of 21 October 2009. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:309:0001:0050:en:PDF (accessed on 24 February 2023).
- Commission Implementing Decision (EU) 2018/840 of 5 June 2018. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018D0840 (accessed on 24 February 2023).
- Žabar, R.; Komel, T.; Fabjan, J.; Kralj, M.; Trebše, P. Photocatalytic degradation with immobilised TiO2 of three selected neonicotinoid insecticides: Imidacloprid, thiamethoxam and clothianidin. Chemosphere 2012, 89, 293–301. [Google Scholar] [CrossRef]
- Banić, N.; Šojić, D.; Krstić, J.; Abramović, B. Photodegradation of Neonicotinoid Active Ingredients and Their Commercial Formulations in Water by Different Advanced Oxidation Processes. Wat. Air Soil Pollut. 2014, 225, 1954. [Google Scholar] [CrossRef]
- Mir, N.; Khan, A.; Muneer, M.; Vijayalakhsmi, S. Photocatalytic degradation of a widely used insecticide Thiamethoxam in aqueous suspension of TiO2: Adsorption, kinetics, product analysis and toxicity assessment. Sci. Total Environ. 2013, 458–460, 388–398. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Liu, H.; Hu, Z.; Liang, J.; Pang, H.; Yi, B. Consideration on degradation kinetics and mechanism of thiamethoxam by reactive oxidative species (ROSs) during photocatalytic process. J. Chem. Eng. 2014, 245, 24–33. [Google Scholar] [CrossRef]
- Serrano, E.; Munoz, M.; de Pedro, Z.; Casas, J. Fast oxidation of the neonicotinoid pesticides listed in the EU Decision 2018/840 from aqueous solutions. Sep. Purif. Technol. 2020, 235, 116168. [Google Scholar] [CrossRef]
- Šojic, D.; Despotovic, V.; Orcic, D.; Szabó, E.; Arany, E.; Armakovic, S.; Illés, E.; Gajda-Schrantz, K.; Dombi, A.; Alapi, T.; et al. Degradation of thiamethoxam and metoprolol by UV, O3 and UV/O3 hybrid processes: Kinetics, degradation intermediates and toxicity. J. Hydrol. 2012, 472–473, 314–327. [Google Scholar] [CrossRef]
- Zhao, Y.; Guo, L.; Wang, L.; Jiang, N.; Chen, K.; Dai, Y. Biodegradation of the pyridine carboxamide insecticide flonicamid by Microvirga flocculans and characterization of two novel amidases involved. Ecotox. Environ. Saf. 2021, 220, 112384. [Google Scholar] [CrossRef]
- Ayare, S.; Gogate, P. Sonochemical, Photocatalytic and sonophotocatalytic oxidation of flonicamid pesticide solution using different catalysts. Chem. Eng. Process. 2020, 154, 108040. [Google Scholar] [CrossRef]
- Hao, C.; Morse, D.; Zhao, X.; Sui, L. Liquid chromatography/tandem mass spectrometry analysis of neonicotinoids in environmental water. Rapid Commun. Mass Spectrom. 2015, 29, 2225–2232. [Google Scholar] [CrossRef]
- Li, H.; Zhong, Q.; Wang, X.; Luo, F.; Zhou, L.; Sun, H.; Yang, M.; Lou, Z.; Chen, Z.; Zhang, X. The degradation and metabolism of chlorfluazuron and flonicamid in tea: A risk assessment from tea garden to cup. Sci. Total Environ. 2021, 754, 142070. [Google Scholar] [CrossRef]
- Calvo-Agudo, M.; Gonzalez-Cabrera, J.; Sadutto, D.; Pico, Y.; Urbaneja, A.; Dicke, M.; Tena, A. IPM-recommended insecticides harm beneficial insects through contaminated honeydew. Environ. Pollut. 2020, 267, 115581. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, X.; Li, Z.; Jin, H.; Lu, Z.; Yu, C.; Huang, Y.; Zhao, M. Simultaneous determination of nine neonicotinoids in human urine using isotope-dilution ultra-performance liquid chromatography-tandem mass spectrometry. Environ. Pollut. 2018, 240, 647–652. [Google Scholar] [CrossRef]
- Yamamuro, T.; Ohta, H.; Aoyama, M.; Watanabe, D. Simultaneous determination of neonicotinoid insecticides in human serum and urine using diatomaceous earth-assisted extraction and liquid chromatography–tandem mass spectrometry. J. Chromatogr. B 2014, 969, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Yuan, M.; Liu, X.; Li, C.; Yu, J.; Zhang, B.; Ma, Y. A higher efficiency removal of neonicotinoid insecticides by modified cellulose-based complex particle. Int. J. Bio. Macromol. 2019, 126, 857–866. [Google Scholar] [CrossRef]
- Alexander, J.; Hai, F.; Al-Aboud, T. Chemical coagulation-based processes for trace organic contaminant removal: Current state and future potential. J. Environ. Manag. 2012, 111, 195–207. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Lu, H.; Wang, B.; Zhang, Z.; Lin, X.; Chen, Z. Removal of imidacloprid and acetamiprid from tea infusions by microfiltration membrane. Int. J. Food Sci. Technol. 2015, 50, 1397–1404. [Google Scholar] [CrossRef]
- Humbert, H.; Gallard, H.; Suty, H.; Croué, J. Natural organic matter (NOM) and pesticides removal using a combination of ion exchange resin and powdered activated carbon (PAC). Water Res. 2008, 42, 1635–1643. [Google Scholar] [CrossRef] [PubMed]
- de Urzedo, A.; Nascentes, C.; Augusti, R. Degradation of the insecticides thiamethoxam and imidacloprid in aqueous solution as promoted by an innovative Fe/Fe3O4 composite. J. Braz. Chem. Soc. 2009, 20, 51–56. [Google Scholar] [CrossRef] [Green Version]
- Banic, N.; Abramovic, B.; Šojica, D.; Krstic, J.; Fincur, N.; Bockovic, I. Efficiency of neonicotinoids photocatalytic degradation by using annular slurry reactor. J. Chem. Eng. 2016, 286, 184–190. [Google Scholar] [CrossRef]
- Athanasekou, C.; Likodimos, V.; Falaras, P. Recent developments of TiO2 photocatalysis involving advanced oxidation and reduction reactions in water. J. Environ. Chem. Eng. 2018, 6, 7386–7394. [Google Scholar] [CrossRef]
- Arfanis, M.; Athanasekou, C.; Sakellis, E.; Boukos, N.; Ioannidis, N.; Likodimos, V.; Sygellou, L.; Bouroushian, M.; Kontos, A.; Falaras, P. Photocatalytic properties of copper—Modified core-shell titania Nanocomposites. J. Photochem. Photobiol. A 2019, 370, 145–155. [Google Scholar] [CrossRef]
- Arfanis, M.; Adamou, P.; Moustakas, N.; Triantis, T.; Kontos, A.; Falaras, P. Photocatalytic degradation of salicylic acid and caffeine emerging contaminants using titania nanotubes. J. Chem. Eng. 2017, 310, 525–536. [Google Scholar] [CrossRef]
- Moles, S.; Mosteo, R.; Gómez, J.; Szpunar, J.; Gozzo, S.; Castillo, J.; Ormad, M. Towards the Removal of Antibiotics Detected in Wastewaters in the POCTEFA Territory: Occurrence and TiO2 Photocatalytic Pilot-Scale Plant Performance. Water 2020, 12, 1453. [Google Scholar] [CrossRef]
- Mahy, J.; Wolfs, C.; Mertes, A.; Vreuls, C.; Drot, S.; Smeets, S.; Dircks, S.; Boergers, A.; Tuerkd, J.; Lambert, S. Advanced photocatalytic oxidation processes for micropollutant elimination from municipal and industrial water. J. Environ. Manag. 2019, 250, 109561. [Google Scholar] [CrossRef] [PubMed]
- Fenoll, J.; Garrido, I.; Flores, P.; Hellín, P.; Vela, N.; Navarro, G.; García-García, J.; Navarro, S. Implementation of a new modular facility to detoxify agro-wastewater polluted with neonicotinoid insecticides in farms by solar photocatalysis. Energy 2019, 175, 722–729. [Google Scholar] [CrossRef]
- Athanasiou, D.; Romanos, G.; Falaras, P. Design and optimization of a photocatalytic reactor for water purification combining optical fiber and membrane technologies. J. Chem. Eng. 2016, 305, 92–103. [Google Scholar] [CrossRef]
- Papageorgiou, S.; Katsaros, F.; Favvas, E.; Romanos, G.; Athanasekou, C.; Beltsios, K.; Tzialla, O.; Falaras, P. Alginate fibers as photocatalyst immobilizing agents applied in hybrid photocatalytic/ultrafiltration water treatment processes. Water Res. 2012, 46, 1858–1872. [Google Scholar] [CrossRef]
- Garrido, I.; Pastor-Belda, M.; Campillo, N.; Viñas, P.; Yañez, M.; Vela, N.; Navarro, S.; Fenoll, J. Photooxidation of insecticide residues by ZnO and TiO2 coated magnetic nanoparticles under natural sunlight. J. Photochem. Photobiol. A 2019, 372, 245–253. [Google Scholar] [CrossRef]
- Guettaï, N.; Amar, H. Photocatalytic oxidation of methyl orange in presence of titanium dioxide in aqueous suspension. Part II: Kinetics study. Desalination 2005, 185, 439–448. [Google Scholar] [CrossRef]
- Chan, Y.; Chen, J.; Lu, M. Intermediate inhibition in the heterogeneous UV-catalysis using a TiO2 suspension system. Chemosphere 2001, 45, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, X.; Shen, J.; Lang, H.; Dong, S.; Zhang, L.; Fang, H.; Yu, Y. Uptake, translocation, and metabolism of thiamethoxam in soil by leek plants. Environ. Res. 2022, 211, 113084. [Google Scholar] [CrossRef]
- Suttiponparnit, K.; Jiang, J.; Sahu, M.; Suvachittanont, S.; Charinpanitkul, T.; Biswas, P. Role of surface area, primary particle size, and crystal phase on titanium dioxide nanoparticle dispersion properties. Nanoscale Res. Lett. 2011, 6, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Karmakar, R.; Singh, S.; Kulshrestha, G. Kinetics and mechanism of the hydrolysis of thiamethoxam. J. Environ. Sci. Health B 2009, 44, 435–441. [Google Scholar] [CrossRef]
- Liang, R.; Tang, F.; Wang, J.; Yue, Y. Photo-degradation dynamics of five neonicotinoids: Bamboo vinegar as a synergistic agent for improved functional duration. PLoS ONE 2019, 14, e0223708. [Google Scholar] [CrossRef] [Green Version]
- MacBean, C. The e-Pesticide Manual, 15th ed.; Version 5.0.1; British Crop Protection Council. Flonicamid: Surrey, UK, 2010; p. 158062-67-0. [Google Scholar]
- Gole, V.; Gogate, P. Degradation of brilliant green dye using combined treatment strategies based on different irradiations. Sep. Purif. Technol. 2014, 133, 212–220. [Google Scholar] [CrossRef]
- Ibrahim, I.; Belessiotis, G.; Antoniadou, M.; Kaltzoglou, A.; Sakellis, E.; Katsaros, F.; Sygellou, L.; Arfanis, M.; Salama, T.; Falaras, P. Silver decorated TiO2/g-C3N4 bifunctional nanocomposites for photocatalytic elimination of water pollutants under UV and artificial solar light. Results Eng. 2022, 14, 100470. [Google Scholar] [CrossRef]
- Palominos, R.; Mondaca, M.; Giraldo, A.; Penuela, G.; Perez-Moya, M.; Mansilla, H. Photocatalytic oxidation of the antibiotic tetracycline on TiO2 and ZnO suspensions. Catal. Today 2009, 144, 100–105. [Google Scholar] [CrossRef]
- Li, S.; Cao, X.; Liu, L.; Ma, X. Degradation of thiamethoxam in water by the synergy effect between the plasma discharge and the TiO2 photocatalysis. Desalin. Water Treat. 2015, 53, 3018–3025. [Google Scholar] [CrossRef]
- Fenoll, J.; Garrido, I.; Hellín, P.; Flores, P.; Navarro, S. Photodegradation of neonicotinoid insecticides in water by semiconductor oxides. Environ. Sci. Pollut. Res. 2015, 22, 15055–15066. [Google Scholar] [CrossRef]
- Chen, Y.; Lu, W.; Shen, H.; Gu, Y.; Xu, T.; Zhu, Z.; Wang, G.; Chen, W. Solar-driven efficient degradation of emerging contaminants by g-C3N4 shielding polyester fiber/TiO2 composites. Appl. Catal. B-Environ. 2019, 258, 117960. [Google Scholar] [CrossRef]
- Aliste, M.; Lucas, G.; Vela, N.; Garrido, I.; Fenoll, J.; Navarro, S. Solar-driven photocatalytic treatment as sustainable strategy to remove pesticide residues from leaching water. Environ. Sci. Poll. Res. 2020, 27, 7222–7233. [Google Scholar] [CrossRef] [PubMed]
- Athanasekou, C.; Moustakas, N.; Morales-Torres, S.; Pastrana-Martínez, L.; Figueiredo, J.; Faria, J.; Silva, A.; Dona-Rodriguez, J.M.; Romanos, G.; Falaras, P. Ceramic photocatalytic membranes for water filtration under UV and visible light. Appl. Catal. B-Environ. 2015, 178, 12–19. [Google Scholar] [CrossRef] [Green Version]
- Theodorakopoulos, G.; Arfanis, M.; Pérez, J.S.; Agüera, A.; Aponte, F.X.C.; Markellou, E.; Romanos, G.; Falaras, P. Novel pilot-scale photocatalytic nanofiltration reactor for agricultural wastewater treatment. Membranes 2023, 13, 202. [Google Scholar] [CrossRef] [PubMed]
- Anagnostopoulos, C.; Miliadis, G.; Liapis, K.; Aplada-Sarlis, P. A multiresidue method for analysis of 56 pesticides in peaches using liquid chromatography with tandem mass spectrometry detection. Hell. Plan. Prot. J. 2009, 2, 75–90. [Google Scholar]
- EURL-SRM 2015, Analysis of Flonicamid-Metabolites TFNA and TFNG Using Acidified QuEChERS Method. Version 2. Available online: https://www.eurl-pesticides.eu/userfiles/file//EurlSRM/EurlSRM_meth_FlonicamidMetabolites.pdf (accessed on 24 February 2023).
Thiamethoxam | Flonicamid | |||||||
---|---|---|---|---|---|---|---|---|
C0 (mg·L−1) | Kapp (min−1) | rr,0 (mg·L−1·min−1) | t1/2 (min) | t1/2′ (min) | Kapp (min−1) | rr,0 (mg L−1 min−1) | t1/2 (min) | t1/2′ (min) |
1.0 | 0.0998 | 0.091 | 6.81 | 6.95 | 0.0035 | 0.004 | 217.46 | 198.61 |
5.0 | 0.0848 | 0.397 | 8.56 | 8.17 | 0.0089 | 0.046 | 252.21 | 77.53 |
10.0 | 0.0479 | 0.368 | 11.10 | 14.48 | 0.0052 | 0.054 | 295.64 | 132.03 |
20.0 | 0.0399 | 0.849 | 16.47 | 17.38 | 0.0061 | 0.120 | 379.89 | 114.00 |
Photocatalyst | Catalyst Amount (g/L) | Pesticide/Concentration (ppm) | Light Intensity (mW/cm2) | Removal Efficiency (%) | Reference |
---|---|---|---|---|---|
CuO | 1 | FND/75 ppm (pH = 2) | High-pressure mercury UVA lamp (125 W), n/a | 52.73% (COD), 2 h | [11] |
ZnO | 0.75 | FND/75 ppm (pH = 2) | High-pressure mercury UVA lamp (125 W), n/a | 60.58% (COD), 2 h | [11] |
ZnO | 2 | TMX/~110 ppm (natural pH) | 1.75 | 77%, 2 h | [22] |
TiO2 onto glass slides | 0.24 (~10 mg on each slide) | TMX/100 ppm (pH n/a) | 42 | 90.1%, 2 h | [4] |
ZnO | 0.2 | TMX/0.1 ppm (pH = 7.1) | 8.5 | 97%, 2 h | [43] |
g-C3N4-TiO2@LMPET | 4.3 (130 mg PET fiber mat) | TMX/5.8 ppm (pH = 1) | Q-sun Xe-1 test chamber (solar irradiation), n/a | >97%, 3 h | [44] |
TiO2 | 0.1 | TMX/10 ppm (natural pH) | 0.5 | ~99%, 1.5 h | This work |
TiO2 | 0.1 | FND/10 ppm (natural pH) | 0.5 | ~48%, 1.5 h | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arfanis, M.K.; Theodorakopoulos, G.V.; Anagnostopoulos, C.; Georgaki, I.; Karanasios, E.; Romanos, G.E.; Markellou, E.; Falaras, P. Photocatalytic Removal of Thiamethoxam and Flonicamid Pesticides Present in Agro-Industrial Water Effluents. Catalysts 2023, 13, 516. https://doi.org/10.3390/catal13030516
Arfanis MK, Theodorakopoulos GV, Anagnostopoulos C, Georgaki I, Karanasios E, Romanos GE, Markellou E, Falaras P. Photocatalytic Removal of Thiamethoxam and Flonicamid Pesticides Present in Agro-Industrial Water Effluents. Catalysts. 2023; 13(3):516. https://doi.org/10.3390/catal13030516
Chicago/Turabian StyleArfanis, Michalis K., George V. Theodorakopoulos, Christos Anagnostopoulos, Irene Georgaki, Evangelos Karanasios, George Em. Romanos, Emilia Markellou, and Polycarpos Falaras. 2023. "Photocatalytic Removal of Thiamethoxam and Flonicamid Pesticides Present in Agro-Industrial Water Effluents" Catalysts 13, no. 3: 516. https://doi.org/10.3390/catal13030516
APA StyleArfanis, M. K., Theodorakopoulos, G. V., Anagnostopoulos, C., Georgaki, I., Karanasios, E., Romanos, G. E., Markellou, E., & Falaras, P. (2023). Photocatalytic Removal of Thiamethoxam and Flonicamid Pesticides Present in Agro-Industrial Water Effluents. Catalysts, 13(3), 516. https://doi.org/10.3390/catal13030516