Improving the Photocatalytic Performance of Porous Ceria under Visible Light Illumination via Mn Incorporation
Abstract
:1. Introduction
2. Results
2.1. Characterization Data
2.2. The Photocatalytic Study
2.3. The Photoluminescence Study
3. Discussion
4. Experimental
4.1. Synthesis
4.2. Characterization
4.3. Photocatalysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Im, J.K.; Sohn, E.J.; Kim, S.; Jang, M.; Son, A.; Zoh, K.D.; Yoon, Y. Review of MXene-based nanocomposites for photocatalysis. Chemosphere 2021, 270, 129478. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Guo, R.T.; Hong, L.F.; Ji, X.Y.; Li, Z.S.; Lin, Z.D.; Pan, W.G. Recent advances and perspectives of MoS2-based materials for photocatalytic dyes degradation: A review. Colloids Surf. A Physicochem. Eng. Asp. 2021, 61, 125836. [Google Scholar] [CrossRef]
- Pandey, S.; Mandari, K.K.; Kim, J.; Kang, M.; Fosso-Kankeu, E. Recent advancement in visible-light-responsive photocatalysts in heterogeneous photocatalytic water treatment technology. Photocatal. Adv. Oxid. Process. Wastewater Treat. 2020, 6, 167–196.–196. [Google Scholar]
- Sleiman, M.; Vildozo, D.; Ferronato, C.; Chovelon, J.-M. Photocatalytic degradation of azo dye Metanil Yellow: Optimization and kinetic modeling using a chemometric approach. Appl. Catal. B Environ. 2007, 77, 1. [Google Scholar] [CrossRef]
- Pham, H.H.; You, S.J.; Wang, Y.F.; Cao, M.T.; Pham, V.V. Activation of potassium peroxymonosulfate for rhodamine B photocatalytic degradation over visible-light-driven conjugated polyvinyl chloride/Bi2O3 hybrid structure. Sustain. Chem. Pharm. 2021, 9, 100367. [Google Scholar] [CrossRef]
- Sabzehmeidani, M.M.; Karimi, H.; Ghaedi, M. CeO2 Nanofibers-CdS Nanostructures n–n Junction with Enhanced Visible-Light Photocatalytic Activity. Arab. J. Chem. 2020, 13, 7583–7597. [Google Scholar] [CrossRef]
- Acar, C.; Dincer, I. Photoactive Materials. Compr. Energy Syst. 2018, 2, 524–572. [Google Scholar]
- Sha, M.A.; Mohanan, G.; Elias, L.; Bhagya, T.C.; Shibli, S.M.A. Boosting charge separation of CeO2–MnO2 nanoflake with heterojunctions for enhanced photocatalytic hydrogen generation. Mater. Chem. Phys. 2023, 294, 127019. [Google Scholar] [CrossRef]
- Ahmad, A.; Javed, M.S.; Khan, S.; Almutairi, T.M.; Mohammed, A.A.; Luque, R. Green synthesized Ag decorated CeO2 nanoparticles: Efficient photocatalysts and potential antibacterial agents. Chemosphere 2023, 310, 136841. [Google Scholar] [CrossRef]
- Belousov, A.S.; Suleimanov, E.V.; Parkhacheva, A.A.; Fukina, D.G.; Koryagin, A.V.; Koroleva, A.V.; Gorshkov, A.P. Regulating of MnO2 photocatalytic activity in degradation of organic dyes by polymorphic engineering. Solid State Sci. 2022, 132, 106997. [Google Scholar] [CrossRef]
- Chao, Y.; Zhang, G.; Meng, Y.; Pan, G.; Ni, Z.; Xia, S. Direct Z-scheme CeO@LDH core–shell heterostructure for photodegradation of Rhodamine B by synergistic persulfate activation. J. Hazard. Mater. 2021, 408, 124908. [Google Scholar]
- Yang, H.; Xu, B.; Zhang, Q.; Yuan, S.; Zhang, Z.; Liu, Y.; Nan, Z.; Zhang, M.; Ohno, T. Boosting visible-light-driven photocatalytic performance of waxberry-like CeO2 by samarium doping and silver QDs anchoring. Appl. Catal. B Environ. 2021, 286, 119845. [Google Scholar] [CrossRef]
- Escudero, M.J.; Maffiotte, C.A.; Serrano, J.L. Long-term operation of a solid oxide fuel cell with MoNi–CeO2 as anode directly fed by biogas containing simultaneously sulphur and siloxane. J. Power Sources 2021, 481, 229048. [Google Scholar] [CrossRef]
- Wang, H.; Guan, J.; Li, J.; Li, X.; Ma, C.; Huo, P.; Yan, Y. Fabricated g-C3N4/Ag/m-CeO2 composite photocatalyst for enhanced photoconversion of CO2. Appl. Surf. Sci. 2020, 506, 144931. [Google Scholar] [CrossRef]
- Wang, H.; Liao, B.; Lu, T.; Ai, Y.; Liu, G. Enhanced visible-light photocatalytic degradation of tetracycline by a novel hollow BiOCl@CeO2 heterostructured microspheres: Structural characterization and reaction mechanism. J. Hazard Mater. 2020, 385, 121552. [Google Scholar] [CrossRef]
- Zhao, R.; Huan, L.; Gu, P.; Guo, R.; Chen, M.; Diao, G. Yb,Er-doped CeO2 nanotubes as an assistant layer for photoconversion-enhanced dye-sensitized solar cells. J. Power Sources 2016, 331, 527–534. [Google Scholar] [CrossRef]
- Labhane, K.; Sonawane, G.H. Fabrication of raspberry-shaped reduced graphene oxide labelled Fe/CeO2 ternary heterojunction with an enhanced photocatalytic performance. Inorg. Chem. Commun. 2020, 113, 107809. [Google Scholar] [CrossRef]
- Bui, H.T.; Weon, S.; Bae, J.W.; Kim, E.J.; Kim, B.; Ahn, Y.Y.; Kim, K.; Lee, H.; Kim, W. Oxygen vacancy engineering of cerium oxide for the selective photocatalytic oxidation of aromatic pollutants. J. Hazard Mater. 2021, 404, 123976. [Google Scholar] [CrossRef]
- Alsalme, A.; AlFawaz, A.; Glal, A.H.; Messih, M.A.; Soltan, A.; Ahmed, M.A. S-scheme AgIO4/CeO2 heterojunction nanocomposite photocatalyst for degradation of rhodamine B dye. J. Photochem. Photobiol. A Chem. 2023, 114596. [Google Scholar] [CrossRef]
- Lin, H.; Tang, X.; Wang, J.; Zeng, Q.; Chen, H.; Ren, W.; Sun, J.; Zhang, H. Enhanced visible-light photocatalysis of clofibric acid using graphitic carbon nitride modified by cerium oxide nanoparticles. J. Hazard Mater. 2020, 405, 124204. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.J.; Niu, C.G.; Ruan, M.; Zhang, L.; Zeng, G.M. AgI nanoparticles-decorated CeO2 microsheets photocatalyst for the degradation of organic dye and tetracycline under visible-light irradiation. J. Colloid Interface Sci. 2017, 497, 368–377. [Google Scholar] [CrossRef]
- Choudhary, S.; Sahu, K.; Bisht, A.; Singhal, R.; Mohapatra, S. Template-free and surfactant-free synthesis of CeO2 nanodiscs with enhanced photocatalytic activity. Appl. Surf. Sci. 2020, 503, 144102. [Google Scholar] [CrossRef]
- Fang, S.; Xin, Y.; Ge, L.; Han, C.; Qiu, P.; Wu, L. Facile synthesis of CeO2 hollow structures with controllable morphology by template-engaged etching of Cu2O and their visible light photocatalytic performance. Appl. Catal. B Environ. 2015, 179, 458–467. [Google Scholar] [CrossRef]
- Kumar, P.; Kumar, P.; Kumar, A.; Meena, R.C.; Tomar, R.; Chand, F.; Asokan, K. Structural, morphological, electrical and dielectric properties of Mn doped CeO2. J. Alloys Compd. 2016, 672, 543–548. [Google Scholar] [CrossRef]
- Shkir, M.; Khan, A.; El-Toni, A.M.; Aldalbahi, A.; Yahia, I.S.; AlFaify, S. Structural, morphological, opto-nonlinear-limiting studies on Dy: PbI2/FTO thin films derived facilely by spin coating technique for optoelectronic technology. J. Phys. Chem. Solids 2019, 130, 189–196. [Google Scholar] [CrossRef]
- Zeb, A.; Arfan, M.; Shahid, T.; Masood, T.B.; Wattoo, A.G.; Song, Z.; Shahzad, M.; Ansari, S.M. Tailoring of pyramid cobalt doped nickel oxide nanostructures by composite-hydroxide-mediated approach. Mater. Chem. Phys. 2020, 239, 122036. [Google Scholar] [CrossRef]
- Zhang, T.; Hing, P.; Huang, H.; Kilner, J. Sintering study on commercial CeO2 powder with small amount of MnO2 doping. Mater. Lett. 2002, 57.2, 507–512. [Google Scholar] [CrossRef]
- Hassan, T.A.; Rangari, V.K.; Rana, R.K.; Jeelani, S. Sonochemical effect on size reduction of CaCO3 nanoparticles derived from waste eggshells. Ultrason. Sonochemistry 2013, 20.5, 1308–1315. [Google Scholar] [CrossRef]
- Shi, X.; Zhang, X.; Bi, F.; Zheng, Z.; Sheng, L.; Xu, J.; Wang, Z.; Yang, Y. Effective toluene adsorption over defective UiO-66-NH2: An experimental and computational exploration. J. Mol. Liq. 2020, 316, 113812. [Google Scholar] [CrossRef]
- Kibasomba, P.M.; Dhlamini, S.; Maaza, M.; Liu, C.P.; Rashad, M.M.; Rayan, D.A.; Mwakikunga, B.W. Strain and grain size of TiO2 nanoparticles from TEM, Raman spectroscopy and XRD: The revisiting of the Williamson-Hall plot method. Results Phys. 2018, 9, 628–635. [Google Scholar] [CrossRef]
- Khan, A.; Shkir, M.; Ashraf, I.M.; El-Toni, A.M.; Aldalbahi, A.; AlFaify, S. One-step straightforward synthesis of Tb-doped NiO nanocomposites using flash combustion method: Structural, optical, luminescent, and electrical switching properties. Ceram. Int. 2020, 46.8, 10678–10690. [Google Scholar] [CrossRef]
- Hamdy, M.S.; Chandekar, K.V.; Shkir, M.; AlFaify, S.; Ibrahim, E.H.; Ahmad, Z.; Kilany, M.; Al-Shehri, B.M.; Al-Namshah, K.S. Novel Mg@ ZnO nanoparticles synthesized by facile one-step combustion route for anti-microbial, cytotoxicity and photocatalysis applications. J. Nanostructure Chem. 2021, 11, 147–163. [Google Scholar] [CrossRef]
- Aghabeygi, S.; Khademi-Shamami, M. ZnO/ZrO2 nanocomposite: Sonosynthesis, characterization and its application for wastewater treatment. Ultrason. Sonochemistry 2018, 41, 458–465. [Google Scholar] [CrossRef] [PubMed]
- Ando, K.; Saito, H.; Jin, Z.; Fukumura, T.; Kawasaki, M.; Matsumoto, Y.; Koinuma, H. Magneto-optical properties of ZnO-based diluted magnetic semiconductors. J. Appl. Phys. 2001, 89.11, 284–7286. [Google Scholar] [CrossRef]
- Atran, A.A.; Ibrahim, F.A.; Awwad, N.S.; Shkir, M.; Hamdy, M.S. Facial one-pot synthesis, characterization and photocatalytic performance of porous ceria. Catalysts 2023, 13, 240. [Google Scholar] [CrossRef]
- Narayana, B.L.; Mukri, B.D.; Ch, S. Mn ion substituted CeO2 nano spheres for low temperature CO oxidation: The promoting effect of Mn ions. ChemistrySelect 2016, 1, 3150–3158. [Google Scholar] [CrossRef]
- Antony, D.; Yadav, R. Facile fabrication of green nano pure CeO2 and Mn-decorated CeO2 with Cassia angustifolia seed extract in water refinement by optimal photodegradation kinetics of malachite green. Environ. Sci. Pollut. Res. 2021, 28, 18589–18603. [Google Scholar] [CrossRef]
- Vazirov, R.A.; Sokovnin, S.Y.; Ilves, V.G.; Bazhukova, I.N.; Pizurova, N.; Kuznetsov, M.V. Physicochemical characterization and antioxidant properties of cerium oxide nanoparticles. J. Phys. 2018, 1115, 032094. [Google Scholar] [CrossRef]
- Channei, D.; Inceesungvorn, B.; Wetchakun, N.; Ukritnukun, S.; Nattestad, A.; Chen, J.; Phanichphant, S.J.S.R. Photocatalytic degradation of methyl orange by CeO2 and Fe–doped CeO2 films under visible light irradiation. Sci. Rep. 2014, 4, 5757. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Zhou, W.; Chen, Y. Structure and photocatalytic properties of Mn-doped TiO2 loaded on wood-based activated carbon fiber composites. Materials 2017, 10, 631. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Lin, Y.; Xie, T.; Shi, S.; Fan, H.; Wang, D. Enhancement of visible-light-driven photoresponse of Mn/ZnO system: Photogenerated charge transfer properties and photocatalytic activity. Nanoscale 2012, 4, 6393–6400. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wu, M.; Wang, Y.; Zhao, X.; Leung, D.Y. Low-cost and efficient Mn/CeO2 catalyst for photocatalytic VOCs degradation via scalable colloidal solution combustion synthesis method. J. Mater. Sci. Technol. 2022, 116, 169–179. [Google Scholar] [CrossRef]
- Li, P.; Zhang, W.; Zhang, X.; Wang, Z.; Wang, X.; Ran, S.; Lv, Y. Synthesis, characterization, and photocatalytic properties of flower-like Mn-doped ceria. Mater. Res. 2018, 21. [Google Scholar] [CrossRef]
- Chatterjee, P.; Mukherjee, D.; Sarkar, A.; Chakraborty, A.K. Mn-doped CeO2-CNT nanohybrid for removal of water soluble organic dyes. Appl. Nanosci. 2022, 12, 3031–3043. [Google Scholar] [CrossRef]
- Low, J.Y.J.; Jaroniec, M.; Wageh, S. Al-Ghamdi, A. Heterojunction photocatalysts. Adv. Mater. 2017, 29, 1601694. [Google Scholar] [CrossRef]
- Ismael, M. Structure, properties, and characterization of mullite-type materials Bi2M4O9 and their applications in photocatalysis: A review. J. Environ. Chem. Eng. 2022, 10, 108640. [Google Scholar] [CrossRef]
- Pu, X.; Wang, C.; Chen, X.; Jin, J.; Li, W.; Chen, F. Synthesis and Photocatalytic Degradation of Water to Produce Hydrogen from Novel Cerium Dioxide and Silver-Doped Cerium Dioxide Fiber Membranes by the Electrospinning Method. Front. Mater. 2021, 8, 776817. [Google Scholar] [CrossRef]
- Bawazeer, T.M.; Alsoufi, M.S.; Shkir, M.; Al-Shehri, B.M.; Hamdy, M.S. Excellent improvement in photocatalytic nature of ZnO nanoparticles via Fe doping content. Inorg. Chem. Commun. 2021, 130, 108668. [Google Scholar] [CrossRef]
- Al-Namshah, K.S.; Shkir, M.; Ibrahim, F.A.; Hamdy, M.S. Auto combustion synthesis and characterization of Co doped ZnO nanoparticles with boosted photocatalytic performance. Phys. B Condens. Matter. 2022, 625, 413459. [Google Scholar] [CrossRef]
Sample | Ce/Mn Ratio (Synthesis Gel) | Ce/Mn Ratio (Final Product) | Accuracy (%) |
---|---|---|---|
Porous Ce | - | - | - |
Mn-CeO2(1%) | 100 | 98.6 | 98.6% |
Mn-CeO2(2.5%) | 40 | 39.1 | 97.7% |
Mn-CeO2(5%) | 20 | 19.7 | 98.5% |
Mn-CeO2(10%) | 10 | 9.96 | 99.6% |
Samples | d111 (Å) | d200 (Å) | a = b = c (Å) | V (Å)3 |
---|---|---|---|---|
JCPDS#34-0394 | 3.12344 | 2.70564 | 5.4113 | 158.46 |
Porous CeO2 | 3.10853 | 1.90845 | 5.3841319 | 156.079933 |
Mn-CeO2(1%) | 3.10007 | 1.90406 | 5.36947875 | 154.809063 |
Mn-CeO2(2.5%) | 3.10836 | 1.90713 | 5.38383745 | 156.054328 |
Mn-CeO2(5%) | 3.11704 | 1.91072 | 5.39887165 | 157.365312 |
Mn-CeO2(10%) | 3.09375 | 1.90187 | 5.35853219 | 153.864182 |
Samples | Scherrer Cal. Lave (nm) | δave (nm−2) | ρx-ray (g/cm3) | S (m2/g) | W–H Plot Data | |
---|---|---|---|---|---|---|
Lave (nm) | εave | |||||
Porous CeO2 | 34.52998388 | 8.565 × 10−4 | 7.324546474 | 23.72325 | 46.53 | 3.032 × 10−3 |
Mn-CeO2(1%) | 10.22887532 | 9.607 × 10−3 | 7.384675683 | 79.43135 | 9.549 | 1.031 × 10−2 |
Mn-CeO2(2.5%) | 8.440025906 | 1.410 × 10−2 | 7.325748305 | 97.04105 | 8.506 | 1.247 × 10−2 |
Mn-CeO2(5%) | 7.909808453 | 1.604 × 10−2 | 7.264718686 | 104.4159 | 6.943 | 1.344 × 10−2 |
Mn-CeO2(10%) | 6.258203389 | 2.56 × 10−2 | 7.430025071 | 129.0361 | 6.75 | 1.666 × 10−2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atran, A.A.; Hamdy, M.S. Improving the Photocatalytic Performance of Porous Ceria under Visible Light Illumination via Mn Incorporation. Catalysts 2023, 13, 523. https://doi.org/10.3390/catal13030523
Atran AA, Hamdy MS. Improving the Photocatalytic Performance of Porous Ceria under Visible Light Illumination via Mn Incorporation. Catalysts. 2023; 13(3):523. https://doi.org/10.3390/catal13030523
Chicago/Turabian StyleAtran, Amal A., and Mohamed S. Hamdy. 2023. "Improving the Photocatalytic Performance of Porous Ceria under Visible Light Illumination via Mn Incorporation" Catalysts 13, no. 3: 523. https://doi.org/10.3390/catal13030523
APA StyleAtran, A. A., & Hamdy, M. S. (2023). Improving the Photocatalytic Performance of Porous Ceria under Visible Light Illumination via Mn Incorporation. Catalysts, 13(3), 523. https://doi.org/10.3390/catal13030523