Enhanced Cyclopentanone Yield from Furfural Hydrogenation: Promotional Effect of Surface Silanols on Ni-Cu/m-Silica Catalyst
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization Results
2.2. Catalytic Activity
3. Experimental Study
3.1. Materials and Methods
3.2. Catalyst Preparation
3.3. Catalyst Characterization
3.4. Catalytic Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Baral, N.R.; Sundstrom, E.R.; Das, L.; Gladden, J.; Eudes, A.; Mortimer, J.C.; Singer, S.W.; Mukhopadhyay, A.; Scown, C.D. Approaches for More Efficient Biological Conversion of Lignocellulosic Feedstocks to Biofuels and Bioproducts. ACS Sustain. Chem. Eng. 2019, 7, 9062–9079. [Google Scholar] [CrossRef]
- Khemthong, P.; Yimsukanan, C.; Narkkun, T.; Srifa, A.; Witoon, T.; Pongchaiphol, S.; Kiatphuengporn, S.; Faungnawakij, K. Advances in Catalytic Production of Value-Added Biochemicals and Biofuels via Furfural Platform Derived Lignocellulosic Biomass. Biomass Bioenergy 2021, 148, 106033. [Google Scholar] [CrossRef]
- Kalong, M.; Srifa, A.; Hongmanorom, P.; Cholsuk, C.; Klysubun, W.; Ratchahat, S.; Koo-amornpattana, W.; Khemthong, P.; Assabumrungrat, S.; Kawi, S. Catalytic Transfer Hydrogenation of Furfural to Furfuryl Alcohol and 2-Methylfuran over CuFe Catalysts: Ex Situ Observation of Simultaneous Structural Phase Transformation. Fuel Process. Technol. 2022, 231, 107256. [Google Scholar] [CrossRef]
- Putrakumar, B.; Seelam, P.K.; Srinivasarao, G.; Rajan, K.; Rajesh, R.; Ramachandra Rao, K.; Liang, T. High Performance and Sustainable Copper-Modified Hydroxyapatite Catalysts for Catalytic Transfer Hydrogenation of Furfural. Catalysts 2020, 10, 1045. [Google Scholar] [CrossRef]
- Balla, P.; Seelam, P.K.; Balaga, R.; Rajesh, R.; Perupogu, V.; Liang, T.X. Immobilized Highly Dispersed Ni Nanoparticles over Porous Carbon as an Efficient Catalyst for Selective Hydrogenation of Furfural and Levulinic Acid. J. Environ. Chem. Eng. 2021, 9, 106530. [Google Scholar] [CrossRef]
- Renz, M. Ketonization of Carboxylic Acids by Decarboxylation: Mechanism and Scope. European J. Org. Chem. 2005, 2005, 979–988. [Google Scholar] [CrossRef]
- Sudarsanam, P.; Katta, L.; Thrimurthulu, G.; Reddy, B.M. Vapor Phase Synthesis of Cyclopentanone over Nanostructured Ceria-Zirconia Solid Solution Catalysts. J. Ind. Eng. Chem. 2013, 19, 1517–1524. [Google Scholar] [CrossRef]
- Van De Vyver, S.; Román-Leshkov, Y. Emerging Catalytic Processes for the Production of Adipic Acid. Catal. Sci. Technol. 2013, 3, 1465–1479. [Google Scholar] [CrossRef] [Green Version]
- Dutta, S.; Bhat, N.S. Catalytic Transformation of Biomass-Derived Furfurals to Cyclopentanones and Their Derivatives: A Review. ACS Omega 2021, 6, 35145–35172. [Google Scholar] [CrossRef]
- Hronec, M.; Fulajtarová, K. Selective Transformation of Furfural to Cyclopentanone. Catal. Commun. 2012, 24, 100–104. [Google Scholar] [CrossRef]
- Hronec, M.; Fulajtarová, K.; Liptaj, T. Effect of Catalyst and Solvent on the Furan Ring Rearrangement to Cyclopentanone. Appl. Catal. A Gen. 2012, 437–438, 104–111. [Google Scholar] [CrossRef]
- Zhang, G.S.; Zhu, M.M.; Zhang, Q.; Liu, Y.M.; He, H.Y.; Cao, Y. Towards Quantitative and Scalable Transformation of Furfural to Cyclopentanone with Supported Gold Catalysts. Green Chem. 2016, 18, 2155–2164. [Google Scholar] [CrossRef]
- Fang, R.; Liu, H.; Luque, R.; Li, Y. Efficient and Selective Hydrogenation of Biomass-Derived Furfural to Cyclopentanone Using Ru Catalysts. Green Chem. 2015, 17, 4183–4188. [Google Scholar] [CrossRef]
- Jia, P.; Lan, X.; Li, X.; Wang, T. Highly Selective Hydrogenation of Furfural to Cyclopentanone over a NiFe Bimetallic Catalyst in a Methanol/Water Solution with a Solvent Effect. ACS Sustain. Chem. Eng. 2019, 7, 15221–15229. [Google Scholar] [CrossRef]
- Li, Y.; Guo, X.; Liu, D.; Mu, X.; Chen, X.; Shi, Y. Selective Conversion of Furfural to Cyclopentanone or Cyclopentanol Using Co-Ni Catalyst in Water. Catalysts 2018, 8, 193. [Google Scholar] [CrossRef] [Green Version]
- Fan, Z.; Zhang, J.; Wu, D. Highly Efficient NiCu/SiO2 Catalyst Induced by Ni(Cu)-Silica Interaction for Aqueous-Phase Furfural Hydrogenation. Catal. Lett. 2022. [Google Scholar] [CrossRef]
- Yang, Y.; Du, Z.; Huang, Y.; Lu, F.; Wang, F.; Gao, J.; Xu, J. Conversion of Furfural into Cyclopentanone over Ni-Cu Bimetallic Catalysts. Green Chem. 2013, 15, 1932–1940. [Google Scholar] [CrossRef]
- Zhang, S.; Ma, H.; Sun, Y.; Liu, X.; Zhang, M.; Luo, Y. Selective Tandem Hydrogenation and Rearrangement of Furfural to Cyclopentanone over CuNi Bimetallic Catalyst in Water. Chin. J. Catal. 2021, 42, 2216–2224. [Google Scholar] [CrossRef]
- Sitthisa, S.; Sooknoi, T.; Ma, Y.; Balbuena, P.B.; Resasco, D.E. Kinetics and Mechanism of Hydrogenation of Furfural on Cu/SiO2 Catalysts. J. Catal. 2011, 277, 1–13. [Google Scholar] [CrossRef]
- Wang, Z.; Jiang, Y.; Zhang, Y.; Shi, J.; Stampfl, C.; Hunger, M.; Huang, J. Identification of Vicinal Silanols and Promotion of Their Formation on MCM-41 via Ultrasonic Assisted One-Step Room-Temperature Synthesis for Beckmann Rearrangement. Ind. Eng. Chem. Res. 2018, 57, 5550–5557. [Google Scholar] [CrossRef]
- Niu, P.; Xi, H.; Ren, J.; Lin, M.; Wang, Q.; Jia, L.; Hou, B.; Li, D. High Selectivity for N-Dodecane Hydroisomerization over Highly Siliceous ZSM-22 with Low Pt Loading. Catal. Sci. Technol. 2017, 7, 5055–5068. [Google Scholar] [CrossRef]
- Sun, X.; Xu, D.; Dai, P.; Liu, X.; Tan, F.; Guo, Q. Efficient Degradation of Methyl Orange in Water via Both Radical and Non-Radical Pathways Using Fe-Co Bimetal-Doped MCM-41 as Peroxymonosulfate Activator. Chem. Eng. J. 2020, 402, 125881. [Google Scholar] [CrossRef]
- Bouchikhi, N.; Adjdir, M.; Bendeddouche, C.K.; Ramdani, A.; Guezzen, B.; Tabti, H.A.; Lakhache, E.M.; Chami, N. The Influence of the Incorporation Method and Mass Ratio of Copper on the Antibacterial Activity of MCM-41. Silicon 2021, 13, 4473–4480. [Google Scholar] [CrossRef]
- Qin, J.; Li, B.; Zhang, W.; Lv, W.; Han, C.; Liu, J. Synthesis, Characterization and Catalytic Performance of Well-Ordered Mesoporous Ni-MCM-41 with High Nickel Content. Microporous Mesoporous Mater. 2015, 208, 181–187. [Google Scholar] [CrossRef]
- Liu, D.; Quek, X.Y.; Cheo, W.N.E.; Lau, R.; Borgna, A.; Yang, Y. MCM-41 Supported Nickel-Based Bimetallic Catalysts with Superior Stability during Carbon Dioxide Reforming of Methane: Effect of Strong Metal-Support Interaction. J. Catal. 2009, 266, 380–390. [Google Scholar] [CrossRef]
- Li, Y.; Wang, J.; Ding, C.; Ma, L.; Xue, Y.; Guo, J.; Wang, S.; Meng, Y.; Zhang, K.; Liu, P. Effect of Cobalt Addition on the Structure and Properties of Ni-MCM-41 for the Partial Oxidation of Methane to Syngas. RSC Adv. 2019, 9, 25508–25517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Tian, Y.; Wu, R.; Li, H.; Yao, B.; Zhao, Y.; Xiao, T. Bimetallic Synergy Effects of Phyllosilicate-Derived NiCu@SiO2 Catalysts for 1,4-Butynediol Direct Hydrogenation to 1,4-Butanediol. ChemCatChem 2019, 11, 4777–4787. [Google Scholar] [CrossRef]
- Balaga, R.; Ramineni, K.; Zhang, X.; Yan, P.; Marri, M.R.; Perupogu, V.; Zhang, Z.C. Spillover Hydrogen on Electron-Rich Ni/m-TiO2 for Hydrogenation of Furfural to Tetrahydrofurfuryl Alcohol. Catalysts 2022, 12, 1286. [Google Scholar] [CrossRef]
- Balaga, R.; Yan, P.; Ramineni, K.; Du, H.; Xia, Z.; Marri, M.R.; Zhang, Z.C. The Role and Performance of Isolated Zirconia Sites on Mesoporous Silica for Aldol Condensation of Furfural with Acetone. Appl. Catal. A Gen. 2022, 648, 118901. [Google Scholar] [CrossRef]
- Putrakumar, B.; Seelam, P.K.; Srinivasarao, G.; Rajan, K.; Harishekar, M.; Riitta, K.; Liang, T.X. A Comparison of Structure–Activity of Cu-Modified Over Different Mesoporous Silica Supports for Catalytic Conversion of Levulinic Acid. Waste Biomass Valorization 2022, 13, 67–79. [Google Scholar] [CrossRef]
- Hierl, R.; Knözinger, H.; Urbach, H.P. Surface Properties and Reduction Behavior of Calcined CuO Al2O3 and CuO-NiO Al2O3 Catalysts. J. Catal. 1981, 69, 475–486. [Google Scholar] [CrossRef]
- Van Der Meer, J.; Bardez-Giboire, I.; Mercier, C.; Revel, B.; Davidson, A.; Denoyel, R. Mechanism of Metal Oxide Nanoparticle Loading in SBA-15 by the Double Solvent Technique. J. Phys. Chem. C 2010, 114, 3507–3515. [Google Scholar] [CrossRef]
- Lehmann, T.; Wolff, T.; Hamel, C.; Veit, P.; Garke, B.; Seidel-Morgenstern, A. Physico-Chemical Characterization of Ni/MCM-41 Synthesized by a Template Ion Exchange Approach. Microporous Mesoporous Mater. 2012, 151, 113–125. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Q.; Shishido, T.; Takehira, K. Characterizations of Iron-Containing MCM-41 and Its Catalytic Properties in Epoxidation of Styrene with Hydrogen Peroxide. J. Catal. 2002, 209, 186–196. [Google Scholar] [CrossRef]
- Pendem, S.; Mondal, I.; Shrotri, A.; Rao, B.S.; Lingaiah, N.; Mondal, J. Unraveling the Structural Properties and Reactivity Trends of Cu-Ni Bimetallic Nanoalloy Catalysts for Biomass-Derived Levulinic Acid Hydrogenation. Sustain. Energy Fuels 2018, 2, 1516–1529. [Google Scholar] [CrossRef]
- Weerachawanasak, P.; Krawmanee, P.; Inkamhaeng, W.; Cadete Santos Aires, F.J.; Sooknoi, T.; Panpranot, J. Development of Bimetallic Ni-Cu/SiO2 Catalysts for Liquid Phase Selective Hydrogenation of Furfural to Furfuryl Alcohol. Catal. Commun. 2021, 149, 106221. [Google Scholar] [CrossRef]
- Singh, G.; Khan, T.S.; Samanta, C.; Bal, R.; Bordoloi, A. Single-Step Synthesis of 2-Pentanone from Furfural over Cu–Ni @SBA-15. Biomass Bioenergy 2022, 156, 106321. [Google Scholar] [CrossRef]
- Zelin, J.; Regenhardt, S.A.; Meyer, C.I.; Duarte, H.A.; Sebastian, V.; Marchi, A.J. Selective Aqueous-Phase Hydrogenation of D-Fructose into D-Mannitol Using a Highly Efficient and Reusable Cu-Ni/SiO2 Catalyst. Chem. Eng. Sci. 2019, 206, 315–326. [Google Scholar] [CrossRef]
- Gao, B.; Zhang, J.; Yang, J.-H. Bimetallic Cu-Ni/MCM-41 Catalyst for Efficiently Selective Transfer Hydrogenation of Furfural into Furfural Alcohol. Mol. Catal. 2022, 517, 112065. [Google Scholar] [CrossRef]
- Liu, M.; Li, S.; Fan, G.; Yang, L.; Li, F. Hierarchical Flower-like Bimetallic NiCu Catalysts for Catalytic Transfer Hydrogenation of Ethyl Levulinate into γ-Valerolactone. Ind. Eng. Chem. Res. 2019, 58, 10317–10327. [Google Scholar] [CrossRef]
- Rath, D.; Parida, K.M. Copper and Nickel Modified MCM-41 An Efficient Catalyst for Hydrodehalogenation of Chlorobenzene at Room Temperature. Ind. Eng. Chem. Res. 2011, 50, 2839–2849. [Google Scholar] [CrossRef]
- Ungureanu, A.; Dragoi, B.; Chirieac, A.; Ciotonea, C.; Royer, S.; Duprez, D.; Mamede, A.S.; Dumitriu, E. Composition-Dependent Morphostructural Properties of Ni-Cu Oxide Nanoparticles Confined within the Channels of Ordered Mesoporous SBA-15 Silica. ACS Appl. Mater. Interfaces 2013, 5, 3010–3025. [Google Scholar] [CrossRef] [PubMed]
- Ang, M.L.; Miller, J.T.; Cui, Y.; Mo, L.; Kawi, S. Bimetallic Ni-Cu Alloy Nanoparticles Supported on Silica for the Water-Gas Shift Reaction: Activating Surface Hydroxyls: Via Enhanced CO Adsorption. Catal. Sci. Technol. 2016, 6, 3394–3409. [Google Scholar] [CrossRef]
- Yuan, E.; Ni, P.; Xie, J.; Jian, P.; Hou, X.; Hashemi, A.; Bahari, A.; Prusik, K. Structural and Dielectric Characteristic of Povidone–Silica Nanocomposite Films on the Si (n) Substrate. Appl. Phys. A Mater. Sci. Process. 2017, 123, 15716–15731. [Google Scholar] [CrossRef]
- Prusik, K. Tuning Physical Properties of NiFe2O4 and NiFe2O4 @SiO2 Nanoferrites by Thermal Treatment. Metall. Mater. Trans. A 2022, 53, 1208–1230. [Google Scholar]
- Heitmann, G.P.; Dahlhoff, G.; Hölderich, W.F. Catalytically Active Sites for the Beckmann Rearrangement of Cyclohexanone Oxime to ε-Caprolactam. J. Catal. 1999, 186, 12–19. [Google Scholar] [CrossRef]
- Li, X.L.; Deng, J.; Shi, J.; Pan, T.; Yu, C.G.; Xu, H.J.; Fu, Y. Selective Conversion of Furfural to Cyclopentanone or Cyclopentanol Using Different Preparation Methods of Cu-Co Catalysts. Green Chem. 2015, 17, 1038–1046. [Google Scholar] [CrossRef]
- Hronec, M.; Fulajtárova, K.; Mičušik, M. Influence of Furanic Polymers on Selectivity of Furfural Rearrangement to Cyclopentanone. Appl. Catal. A Gen. 2013, 468, 426–431. [Google Scholar] [CrossRef]
- Tian, H.; Gao, G.; Xu, Q.; Gao, Z.; Zhang, S.; Hu, G.; Xu, L.; Hu, X. Facilitating Selective Conversion of Furfural to Cyclopentanone via Reducing Availability of Metallic Nickel Sites. Mol. Catal. 2021, 510, 111697. [Google Scholar] [CrossRef]
- Gao, G.; Shao, Y.; Gao, Y.; Wei, T.; Gao, G.; Zhang, S.; Wang, Y.; Chen, Q.; Hu, X. Synergetic Effects of Hydrogenation and Acidic Sites in Phosphorus-Modified Nickel Catalysts for the Selective Conversion of Furfural to Cyclopentanone. Catal. Sci. Technol. 2021, 11, 575–593. [Google Scholar] [CrossRef]
- Wang, D.; Al-Mamun, M.; Gong, W.; Lv, Y.; Chen, C.; Lin, Y.; Wang, G.; Zhang, H.; Zhao, H. Converting Co2+-Impregnated g-C3N4 into N-Doped CNTs-Confined Co Nanoparticles for Efficient Hydrogenation Rearrangement Reactions of Furanic Aldehydes. Nano Res. 2021, 14, 2846–2852. [Google Scholar] [CrossRef]
- Zhu, H.; Zhou, M.; Zeng, Z.; Xiao, G.; Xiao, R. Selective Hydrogenation of Furfural to Cyclopentanone over Cu-Ni-Al Hydrotalcite-Based Catalysts. Korean J. Chem. Eng. 2014, 31, 593–597. [Google Scholar] [CrossRef]
- Hu, N.; Rao, Y.; Sun, S.; Hou, L.; Wu, P.; Fan, S.; Ye, B. Structural Evolution of Silica Gel and Silsesquioxane Using Thermal Curing. Appl. Spectrosc. 2016, 70, 1328–1338. [Google Scholar] [CrossRef] [PubMed]
S.No | Catalysts | Nominal a (wt.%) | ICP b (wt.%) | Crystallite Size c (nm) | |||
---|---|---|---|---|---|---|---|
Ni | Cu | Ni | Cu | Ni | Cu | ||
1 | Ni20/m-SiO2 | 20 | 0 | - | - | <4 | - |
2 | Ni15Cu5/m-SiO2 | 15 | 5 | 14.6 | 4.4 | n.d | 15.4 |
3 | Ni10Cu10/m-SiO2 | 10 | 10 | 9.2 | 10.1 | n.d | 13.08 |
4 | Ni5Cu15/m-SiO2 | 5 | 15 | 5.1 | 14.6 | n.d | 11.10 |
5 | Cu20/m-SiO2 | 0 | 20 | - | - | - | 10.70 |
6 | Ni5Cu15/C-SiO2 | 5 | 15 | - | - | 7.2 | 28.80 |
S.No | Catalysts | SEM-EDX | BET (m2/g) | Vpore (cm3/g) | Dpore (nm) | H2 Consumption (mmol/g) # | |
---|---|---|---|---|---|---|---|
Ni | Cu | ||||||
1 | m-SiO2 | - | 841.2 | 0.9 | 3.18 | - | |
2 | Ni20/m-SiO2 | - | 510.0 | 0.55 | 4.57 | 2.77 | |
3 | Ni15Cu5/m-SiO2 | 13.4 | 5.9 | 496.0 | 0.77 | 6.63 | 4.03 |
4 | Ni10Cu10/m-SiO2 | 10.0 | 11.2 | 567.2 | 0.74 | 5.62 | 3.65 |
5 | Ni5Cu15/m-SiO2 | 4.3 | 13.5 | 613.4 | 0.66 | 4.59 | 4.05 |
6 | Cu20/m-SiO2 | - | 571.9 | 0.80 | 6.07 | 3.19 |
S.No | Catalysts | Total Metal 10−1 (g) | PH2 (MPa) | T * (°C) & Time (h) | Rate # | XFAL (%) | YCPO (%) | Ref. |
---|---|---|---|---|---|---|---|---|
1 | Pt/C | - | 8 | 160 & 0.5 | - | 99.9 | 76.5 | [10] |
2 | Au/TiO2 | - | 4 | 160 & 15 | - | 99.9 | 99 | [12] |
3 | Ni/SiO2 | 0.008 | 3 | 160 & 2 | 3.38 | 99.9 | 83.5 | [49] |
4 | Ni-Fe/SBA-15 | 0.75 | 3.4 | 160 & 6 | 6.25 | 99.9 | 90 | [14] |
5 | 10Ni-10Co/TiO2 | 0.6 | 4 | 150 & 4 | 4.86 | 99.9 | 53.3 | [15] |
6 | 15Ni-10P/Al2O3 | 0.06 | 3 | 150 & 2 | 4.9 | 99.9 | 85.8 | [50] |
7 | Co-Ni/N-CNTs | 0.31 | 0.5 | 160 & 8 | 12.5 | 99.9 | 95 | [51] |
8 | Cu-Ni-Al-HT | 2.25 | 4 | 140 & 8 | 5.2 | 99.9 | 95.8 | [52] |
9 | Ni-Cu-50/SBA-15 | 2 | 4 | 160 & 4 | 11.7 | 99.9 | 62 | [17] |
10 | Ni-Cu/Al-MCM-41 | 0.03 | 2 | 160 & 5 | 16.6 | 98.3 | 67.7 | [18] |
11 | Ni5Cu15/m-SiO2 | 0.34 | 3 | 140 & 4 | 15.2 | 99.9 | 89.6 | pw |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balaga, R.; Balla, P.; Zhang, X.; Ramineni, K.; Du, H.; Lingalwar, S.; Perupogu, V.; Zhang, Z.C. Enhanced Cyclopentanone Yield from Furfural Hydrogenation: Promotional Effect of Surface Silanols on Ni-Cu/m-Silica Catalyst. Catalysts 2023, 13, 580. https://doi.org/10.3390/catal13030580
Balaga R, Balla P, Zhang X, Ramineni K, Du H, Lingalwar S, Perupogu V, Zhang ZC. Enhanced Cyclopentanone Yield from Furfural Hydrogenation: Promotional Effect of Surface Silanols on Ni-Cu/m-Silica Catalyst. Catalysts. 2023; 13(3):580. https://doi.org/10.3390/catal13030580
Chicago/Turabian StyleBalaga, Ravi, Putrakumar Balla, Xiaoqiang Zhang, Kishore Ramineni, Hong Du, Shrutika Lingalwar, Vijayanand Perupogu, and Zongchao Conrad Zhang. 2023. "Enhanced Cyclopentanone Yield from Furfural Hydrogenation: Promotional Effect of Surface Silanols on Ni-Cu/m-Silica Catalyst" Catalysts 13, no. 3: 580. https://doi.org/10.3390/catal13030580
APA StyleBalaga, R., Balla, P., Zhang, X., Ramineni, K., Du, H., Lingalwar, S., Perupogu, V., & Zhang, Z. C. (2023). Enhanced Cyclopentanone Yield from Furfural Hydrogenation: Promotional Effect of Surface Silanols on Ni-Cu/m-Silica Catalyst. Catalysts, 13(3), 580. https://doi.org/10.3390/catal13030580