Sonocatalytic Degradation of Chrysoidine R Dye Using Ultrasonically Synthesized NiFe2O4 Catalyst
Abstract
:1. Introduction
2. Results and Discussions
2.1. Characterization of Nickel Ferrite Oxide Catalyst
2.1.1. Particle Size Analysis
2.1.2. X-ray Diffraction Analysis
2.2. Ultrasound-Assisted Chrysoidine R Dye Degradation Studies
2.2.1. Effect of pH on the Degradation of Chrysoidine R Dye
2.2.2. Ultrasonic Duty Cycle Effect on Degradation of Chrysoidine R Dye
2.2.3. Effect of Catalyst Dosage
2.2.4. Effect of Power of Sonication
2.2.5. Comparison of Degradation Using Conventionally and Ultrasonically Prepared NiFe2O4 Catalyst
2.2.6. Effect of Using H2O2 Combined with the SonoCatalytic Degradation
3. Materials & Methods
3.1. Materials
3.2. Experimental Methodology for Catalyst Synthesis
3.2.1. Synthesis of Nickel Ferrite Oxide
3.2.2. Experimental Methodology for Degradation Study
3.3. UV-Visible Spectroscopy Analysis for Dye Concentration
3.4. Characterization of Nickel Ferrite Oxide Catalyst
3.4.1. Particle Size Analysis
3.4.2. X-ray Diffraction Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nirmal, P.; Paulraj, R.; Ramasamy, P.; Vijayan, N. One Step Synthesis of Tin Oxide Nanomaterials and Their Sintering Effect in Dye Degrdation. Optik 2017, 135, 434–445. [Google Scholar] [CrossRef]
- Zhang, N.; Zhang, G.; Chong, S.; Zhao, H.; Huang, T.; Zhu, J. Ultrasonic Impregnation of MnO2/CeO2 and Its Application in Catalytic Sono-Degradation of Methyl Orange. J. Environ. Manag. 2018, 205, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Khataee, A.; Mohamadi, F.T.; Rad, T.S.; Vahid, B. Heterogeneous Sonocatalytic Degradation of Anazolene Sodium by Synthesized Dysprosium Doped CdSe Nanostructures. Ultrason. Sonochem. 2018, 40, 361–372. [Google Scholar] [CrossRef]
- Saemian, T.; Hossaini Sadr, M.; Tavakkoli Yaraki, M.; Gharagozlou, M.; Soltani, B. Synthesis and Characterization of CoFe2O4/SiO2/Cu-MOF for Degradation of Methylene Blue through Catalytic Sono-Fenton-like Reaction. Inorg. Chem. Commun. 2022, 138, 109305. [Google Scholar] [CrossRef]
- Chen, X.; Mao, J.; Liu, C.; Chen, C.; Cao, H.; Yu, L. An Unexpected Generation of Magnetically Separable Se/Fe3O4 for Catalytic Degradation of Polyene Contaminants with Molecular Oxygen. Chinese Chem. Lett. 2020, 31, 3205–3208. [Google Scholar] [CrossRef]
- Mukhopadhyay, A.; Tripathy, B.K.; Debnath, A.; Kumar, M. Enhanced Persulfate Activated Sono-Catalytic Degradation of Brilliant Green Dye by Magnetic CaFe2O4 Nanoparticles: Degradation Pathway Study, Assessment of Bio-Toxicity and Cost Analysis. Surf. Interfaces 2021, 26, 101412. [Google Scholar] [CrossRef]
- JothiRamalingam, R.; Periyasami, G.; Ouladsmane, M.; ALOthman, Z.A.; Arunachalam, P.; Altalhi, T.; Radhika, T.; Alanazi, A.G. Ultra-Sonication Assisted Metal Chalcogenide Modified Mesoporous Nickel-Cobalt Doped Manganese Oxide Nanocomposite Fabrication for Sono-Catalytic Dye Degradation and Mechanism Insights. J. Alloys Compd. 2021, 875, 160072. [Google Scholar] [CrossRef]
- Lazarova, T.; Georgieva, M.; Tzankov, D.; Voykova, D.; Aleksandrov, L.; Cherkezova-Zheleva, Z.; Kovacheva, D. Influence of the Type of Fuel Used for the Solution Combustion Synthesis on the Structure, Morphology and Magnetic Properties of Nanosized NiFe2O4. J. Alloys Compd. 2017, 700, 272–283. [Google Scholar] [CrossRef]
- Kodama, R.H.; Berkowitz, A.E.; McNiff, E.J.; Foner, S. Surface Spin Disorder in Ferrite Nanoparticles. Mater. Sci. Forum 1997, 235–238, 643–650. [Google Scholar] [CrossRef]
- Wang, J.; Ren, F.; Jia, B.; Liu, X. Solvothermal Synthesis and Characterization of NiFe2O4 Nanospheres with Adjustable Sizes. Solid State Commun. 2010, 150, 1141–1144. [Google Scholar] [CrossRef]
- Liu, J.; Yang, H.; Xue, X. Structure, Morphology, and Magnetic Properties of NiFe2O4 Powder Prepared by Molten Salt Method. Powder Technol. 2019, 355, 708–715. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, W.; Yu, C.; Liu, Z.; Yu, X.; Meng, F. Synthesis, Structure and Supercapacitive Behavior of Spinel NiFe2O4 and NiO@NiFe2O4 Nanoparticles. Ceram. Int. 2021, 47, 10063–10071. [Google Scholar] [CrossRef]
- Taha, T.A.; Azab, A.A.; Sebak, M.A. Glycerol-Assisted Sol-Gel Synthesis, Optical, and Magnetic Properties of NiFe2O4 Nanoparticles. J. Mol. Struct. 2019, 1181, 14–18. [Google Scholar] [CrossRef]
- Maaz, K.; Karim, S.; Mumtaz, A.; Hasanain, S.K.; Liu, J.; Duan, J.L. Synthesis and Magnetic Characterization of Nickel Ferrite Nanoparticles Prepared by Co-Precipitation Route. J. Magn. Magn. Mater. 2009, 321, 1838–1842. [Google Scholar] [CrossRef]
- Feng, S.; Yang, W.; Wang, Z. Synthesis of Porous NiFe2O4 Microparticles and Its Catalytic Properties for Methane Combustion. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2011, 176, 1509–1512. [Google Scholar] [CrossRef]
- Gherca, D.; Pui, A.; Cornei, N.; Cojocariu, A.; Nica, V.; Caltun, O. Synthesis, Characterization and Magnetic Properties of MFe 2O4 (M=Co, Mg, Mn, Ni) Nanoparticles Using Ricin Oil as Capping Agent. J. Magn. Magn. Mater. 2012, 324, 3906–3911. [Google Scholar] [CrossRef]
- Vardikar, H.S.; Bhanvase, B.A.; Rathod, A.P.; Sonawane, S.H. Sonochemical Synthesis, Characterization and Sorption Study of Kaolin-Chitosan-TiO2 Ternary Nanocomposite: Advantage over Conventional Method. Mater. Chem. Phys. 2018, 217, 457–467. [Google Scholar] [CrossRef]
- Díez-García, M.I.; Manzi-Orezzoli, V.; Jankulovska, M.; Anandan, S.; Bonete, P.; Gómez, R.; Lana-Villarreal, T. Effects of Ultrasound Irradiation on the Synthesis of Metal Oxide Nanostructures. Phys. Procedia 2015, 63, 85–90. [Google Scholar] [CrossRef] [Green Version]
- Dalvi, P.; Dey, A.; Gogate, P.R. Ultrasound-Assisted Synthesis of a N-TiO2/Fe3O4@ZnO Complex and Its Catalytic Application for Desulfurization. Sustainability 2022, 14, 16201. [Google Scholar] [CrossRef]
- Shetty, K.; Renuka, L.; Nagaswarupa, H.P.; Nagabhushana, H.; Anantharaju, K.S.; Rangappa, D.; Prashantha, S.C.; Ashwini, K. A Comparative Study on CuFe2O4, ZnFe2O4 and NiFe2O4: Morphology, Impedance and Photocatalytic Studies. Mater. Today Proc. 2017, 4, 11806–11815. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H.; Yang, Y.; Xin, B. Magnetic NiFe2O4 3D Nanosphere Photocatalyst: Glycerol-Assisted Microwave Solvothermal Synthesis and Photocatalytic Activity under Microwave Electrodeless Discharge Lamp. Ceram. Int. 2021, 47, 14594–14602. [Google Scholar] [CrossRef]
- Hariani, P.L.; Said, M.; Rachmat, A.; Riyanti, F.; Pratiwi, H.C.; Rizki, W.T. Preparation of NiFe2O4 Nanoparticles by Solution Combustion Method as Photocatalyst of Congo Red. Bull. Chem. React. Eng. Catal. 2021, 16, 481–490. [Google Scholar] [CrossRef]
- Liu, S.Q.; Feng, L.R.; Xu, N.; Chen, Z.G.; Wang, X.M. Magnetic Nickel Ferrite as a Heterogeneous Photo-Fenton Catalyst for the Degradation of Rhodamine B in the Presence of Oxalic Acid. Chem. Eng. J. 2012, 203, 432–439. [Google Scholar] [CrossRef]
- Vijay, S.; Balakrishnan, R.M.; Rene, E.R.; Priyanka, U. Photocatalytic Degradation of Irgalite Violet Dye Using Nickel Ferrite Nanoparticles. J. Water Supply Res. Technol.-AQUA 2019, 68, 666–674. [Google Scholar] [CrossRef]
- Mahmoodi, N.M. Photocatalytic Degradation of Textile Dyes Using Ozonation and Magnetic Nickel Ferrite Nanoparticle. Prog. Color. Color. Coatings 2016, 9, 163–171. [Google Scholar] [CrossRef]
- Gogate, P.R. Cavitation: An Auxiliary Technique in Wastewater Treatment Schemes. Adv. Environ. Res. 2002, 6, 335–358. [Google Scholar] [CrossRef]
- Thakare, Y.D. Reduction of COD of Textile Industry Waste Water by Using Acoustic Cavitation Coupled with Advanced Oxidation Processes. Int. J. Res. Appl. Sci. Eng. Technol. 2018, 6, 686–697. [Google Scholar] [CrossRef]
- Pang, Y.L.; Abdullah, A.Z. Fe3+ Doped TiO2 Nanotubes for Combined Adsorption-Sonocatalytic Degradation of Real Textile Wastewater. Appl. Catal. B Environ. 2013, 129, 473–481. [Google Scholar] [CrossRef]
- Eren, Z.; Ince, N.H. Sonolytic and Sonocatalytic Degradation of Azo Dyes by Low and High Frequency Ultrasound. J. Hazard. Mater. 2010, 177, 1019–1024. [Google Scholar] [CrossRef]
- Bose, S.; Kumar Tripathy, B.; Debnath, A.; Kumar, M. Boosted Sono-Oxidative Catalytic Degradation of Brilliant Green Dye by Magnetic MgFe2O4 Catalyst: Degradation Mechanism, Assessment of Bio-Toxicity and Cost Analysis. Ultrason. Sonochem. 2021, 75, 105592. [Google Scholar] [CrossRef]
- Sobana, N.; Subash, B.; Swaminathan, M. Effect of Operational Parameters on Photodegradation of Direct Blue 53 by Silver Loaded-Titania under Ultraviolet and Solar Illumination. Mater. Sci. Semicond. Process. 2015, 36, 149–155. [Google Scholar] [CrossRef]
- Abdellah, M.H.; Nosier, S.A.; El-Shazly, A.H.; Mubarak, A.A. Photocatalytic Decolorization of Methylene Blue Using TiO2/UV System Enhanced by Air Sparging. Alexandria Eng. J. 2018, 57, 3727–3735. [Google Scholar] [CrossRef]
- Xu, D.; Ma, H. Degradation of Rhodamine B in Water by Ultrasound-Assisted TiO2 Photocatalysis. J. Clean. Prod. 2021, 313, 127758. [Google Scholar] [CrossRef]
- Kodavatiganti, S.; Bhat, A.P.; Gogate, P.R. Intensified Degradation of Acid Violet 7 Dye Using Ultrasound Combined with Hydrogen Peroxide, Fenton, and Persulfate. Sep. Purif. Technol. 2021, 279, 119673. [Google Scholar] [CrossRef]
- Potle, V.D.; Shirsath, S.R.; Bhanvase, B.A.; Saharan, V.K. Sonochemical Preparation of Ternary RGO-ZnO-TiO2 Nanocomposite Photocatalyst for Efficient Degradation of Crystal Violet Dye. Optik 2020, 208, 164555. [Google Scholar] [CrossRef]
- Sancheti, S.V.; Saini, C.; Ambati, R.; Gogate, P.R. Synthesis of Ultrasound Assisted Nanostuctured Photocatalyst (NiO Supported over CeO2) and Its Application for Photocatalytic as Well as Sonocatalytic Dye Degradation. Catal. Today 2018, 300, 50–57. [Google Scholar] [CrossRef]
- Satdeve, N.S.; Ugwekar, R.P.; Bhanvase, B.A. Ultrasound Assisted Preparation and Characterization of Ag Supported on ZnO Nanoparticles for Visible Light Degradation of Methylene Blue Dye. J. Mol. Liq. 2019, 291, 111313. [Google Scholar] [CrossRef]
- Aravindhan, R.; Fathima, N.N.; Rao, J.R.; Nair, B.U. Wet Oxidation of Acid Brown Dye by Hydrogen Peroxide Using Heterogeneous Catalyst Mn-Salen-Y Zeolite: A Potential Catalyst. J. Hazard. Mater. 2006, 138, 152–159. [Google Scholar] [CrossRef]
- Hassan, H.; Hameed, B.H. Oxidative Decolorization of Acid Red 1 Solutions by Fe-Zeolite Y Type Catalyst. Desalination 2011, 276, 45–52. [Google Scholar] [CrossRef]
- Prakash, L.V.; Gopinath, A.; Gandhimathi, R.; Velmathi, S.; Ramesh, S.T.; Nidheesh, P.V. Ultrasound Aided Heterogeneous Fenton Degradation of Acid Blue 15 over Green Synthesized Magnetite Nanoparticles. Sep. Purif. Technol. 2021, 266, 118230. [Google Scholar] [CrossRef]
- Deng, X.; Qian, R.; Zhou, H.; Yu, L. Organotellurium-catalyzed oxidative deoximation reactions using visible-light as the precise driving energy. Chin. Chem. Lett. 2021, 32, 1029–1032. [Google Scholar] [CrossRef]
- Li, W.; Wang, F.; Shi, Y.; Yu, L. Polyaniline-supported tungsten-catalyzed oxidative deoximation reaction with high catalyst turnover number. Chin. Chem. Lett. 2023, 34, 107505. [Google Scholar] [CrossRef]
pH | Degradation (%) | Second-Order Rate Constant (K × 10−5 mL−1min−1) | R2 |
---|---|---|---|
3 | 39.49 | 10.4 | 0.9824 |
4 | 34.03 | 9.5 | 0.9667 |
5 | 15.06 | 9.5 | 0.9667 |
9 | 5.08 | 4.2 | 0.9606 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gote, Y.M.; Sinhmar, P.S.; Gogate, P.R. Sonocatalytic Degradation of Chrysoidine R Dye Using Ultrasonically Synthesized NiFe2O4 Catalyst. Catalysts 2023, 13, 597. https://doi.org/10.3390/catal13030597
Gote YM, Sinhmar PS, Gogate PR. Sonocatalytic Degradation of Chrysoidine R Dye Using Ultrasonically Synthesized NiFe2O4 Catalyst. Catalysts. 2023; 13(3):597. https://doi.org/10.3390/catal13030597
Chicago/Turabian StyleGote, Yogesh M., Pankaj S. Sinhmar, and Parag R. Gogate. 2023. "Sonocatalytic Degradation of Chrysoidine R Dye Using Ultrasonically Synthesized NiFe2O4 Catalyst" Catalysts 13, no. 3: 597. https://doi.org/10.3390/catal13030597
APA StyleGote, Y. M., Sinhmar, P. S., & Gogate, P. R. (2023). Sonocatalytic Degradation of Chrysoidine R Dye Using Ultrasonically Synthesized NiFe2O4 Catalyst. Catalysts, 13(3), 597. https://doi.org/10.3390/catal13030597