Fe Single Atoms Reduced by NaBH4 Mediate g-C3N4 Electron Transfer and Effectively Remove 2-Mercaptobenzothiazole
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphology and Crystal Structure
2.2. Optical and Photoelectrochemical Properties
2.3. Photocatalytic Activity
2.4. Degradation Mechanism Analysis
2.5. Product Analysis
3. Experiment
3.1. Chemicals and Materials
3.2. Preparation of Catalyst
3.3. Characterization Method
3.4. Photocatalytic Experiments
3.4.1. Degradation of MBT
3.4.2. Cycle Experiment
3.4.3. Trapping Experiments of Radicals
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Johnson, A.C.; Jin, X.; Nakada, N.; Sumpter, J.P. Learning from the past and considering the future of chemicals in the environment. Science 2020, 367, 384–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, G.; Chen, M.; Zeng, Z. Risks of neonicotinoid pesticides. Science 2013, 340, 1403. [Google Scholar] [CrossRef] [PubMed]
- Larsen, T.A.; Hoffmann, S.; Luthi, C.; Truffer, B.; Maurer, M. Emerging solutions to the water challenges of an urbanizing world. Science 2016, 352, 928–933. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Zeng, G.; Tang, L.; Fan, C.; Zhang, C.; He, X.; He, Y. An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Res. 2015, 79, 128–146. [Google Scholar] [CrossRef]
- Luo, S.; Liu, Y.; Zhu, Y.; Niu, Q.; Cheng, M.; Ye, S.; Yi, H.; Shao, B.; Shen, M.; Wen, X.; et al. Perspectives on palladium-based nanomaterials: Green synthesis, ecotoxicity, and risk assessment. Environ. Sci. Nano 2021, 8, 20–36. [Google Scholar] [CrossRef]
- Ye, S.; Cheng, M.; Zeng, G.; Tan, X.; Wu, H.; Liang, J.; Shen, M.; Song, B.; Liu, J.; Yang, H.; et al. Insights into catalytic removal and separation of attached metals from natural-aged microplastics by magnetic biochar activating oxidation process. Water Res. 2020, 179, 115876. [Google Scholar] [CrossRef]
- Zhu, Z.; Fan, W.; Liu, Z.; Yu, Y.; Dong, H.; Huo, P.; Yan, Y. Fabrication of the metal-free biochar-based graphitic carbon nitride for improved 2-mercaptobenzothiazole degradation activity. J. Photochem. Photobiol. A Chem. 2018, 358, 284–293. [Google Scholar] [CrossRef]
- Luo, Y.; Lu, Z.; Jiang, Y.; Wang, D.; Yang, L.; Huo, P.; Da, Z.; Bai, X.; Xie, X.; Yang, P. Selective photodegradation of 1-methylimidazole-2-thiol by the magnetic and dual conductive imprinted photocatalysts based on TiO2/Fe3O4/MWCNTs. Chem. Eng. J. 2014, 240, 244–252. [Google Scholar] [CrossRef]
- Xie, K.; Fang, J.; Li, L.; Deng, J.; Chen, F. Progress of graphite carbon nitride with different dimensions in the photocatalytic degradation of dyes: A review. J. Alloys Compd. 2022, 901, 163589. [Google Scholar] [CrossRef]
- Ma, W.; Dong, X.A.; Wang, Y.; He, W.; Zhang, W.; Liang, Y.; Wang, Y.; Fu, W.; Liao, J.; Dong, F. Highly enhanced photocatalytic toluene degradation and in situ FT-IR investigation on designed Sn-doped biocl nanosheets. Appl. Surf. Sci. 2022, 578, 152002. [Google Scholar] [CrossRef]
- Chu, Y.; Zheng, X.; Fan, J. Preparation of sodium and boron co-doped graphitic carbon nitride for the enhanced production of H2O2 via two-electron oxygen reduction and the degradation of 2,4-DCP via photocatalytic oxidation coupled with Fenton oxidation. Chem. Eng. J. 2022, 431, 134020. [Google Scholar] [CrossRef]
- Xu, L.; Liu, L. Piezo-photocatalytic fuel cell with atomic Fe@MoS2 on CFC helical electrode has enhanced peroxymonosulfate activation, pollutant degradation and power generation. Appl. Catal. B Environ. 2022, 304, 120953. [Google Scholar] [CrossRef]
- Masih, D.; Ma, Y.; Rohani, S. Graphitic C3N4 based noble-metal-free photocatalyst systems: A review. Appl. Catal. B Environ. 2017, 206, 556–588. [Google Scholar] [CrossRef]
- Wang, W.; Niu, Q.; Zeng, G.; Zhang, C.; Huang, D.; Shao, B.; Zhou, C.; Yang, Y.; Liu, Y.; Guo, H.; et al. 1D porous tubular g-C3N4 capture black phosphorus quantum dots as 1D/0D metal-free photocatalysts for oxytetracycline hydrochloride degradation and hexavalent chromium reduction. Appl. Catal. B Environ. 2020, 273, 119051. [Google Scholar] [CrossRef]
- Song, Q.; Li, J.; Wang, L.; Qin, Y.; Pang, L.; Liu, H. Stable single-atom cobalt as a strong coupling bridge to promote electron transfer and separation in photoelectrocatalysis. J. Catal. 2019, 370, 176–185. [Google Scholar] [CrossRef]
- Zhao, G.-Q.; Zou, J.; Hu, J.; Long, X.; Jiao, F.-P. A critical review on graphitic carbon nitride (g-C3N4)-based composites for environmental remediation. Sep. Purif. Technol. 2021, 279, 119769. [Google Scholar] [CrossRef]
- Sher, M.; Javed, M.; Shahid, S.; Hakami, O.; Qamar, M.A.; Iqbal, S.; Al-Anazy, M.M.; Baghdadi, H.B. Designing of highly active g-C3N4/Sn doped ZnO heterostructure as a photocatalyst for the disinfection and degradation of the organic pollutants under visible light irradiation. J. Photochem. Photobiol. A Chem. 2021, 418, 113393. [Google Scholar] [CrossRef]
- Qamar, M.A.; Javed, M.; Shahid, S.; Iqbal, S.; Abubshait, S.A.; Abubshait, H.A.; Ramay, S.M.; Mahmood, A.; Ghaithan, H.M. Designing of highly active g-C3N4/Co@ZnO ternary nanocomposites for the disinfection of pathogens and degradation of the organic pollutants from wastewater under visible light. J. Environ. Chem. Eng. 2021, 9, 105534. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, J.; Fu, X.; Antonietti, M.; Wang, X. Fe-g-C3N4-catalyzed oxidation of benzene to phenol using hydrogen peroxide and visible light. J. Am. Chem. Soc. 2009, 131, 11658–11659. [Google Scholar] [CrossRef]
- Di, Y.; Wang, X.; Thomas, A.; Antonietti, M. Making metal-carbon nitride heterojunctions for improved photocatalytic hydrogen evolution with visible light. ChemCatChem 2010, 2, 834–838. [Google Scholar] [CrossRef]
- Yang, X.F.; Wang, A.; Qiao, B.; Li, J.; Liu, J.; Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Accounts Chem. Res. 2013, 46, 1740–1748. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.C.; Wang, Y.G.; Li, J. Toward rational design of oxide-supported single-atom catalysts: Atomic dispersion of gold on ceria. J. Am. Chem. Soc. 2017, 139, 6190–6199. [Google Scholar] [CrossRef]
- Sun, J.-F.; Xu, Q.-Q.; Qi, J.-L.; Zhou, D.; Zhu, H.-Y.; Yin, J.-Z. Isolated single atoms anchored on N-doped carbon materials as a highly efficient catalyst for electrochemical and organic reactions. ACS Sustain. Chem. Eng. 2020, 8, 14630–14656. [Google Scholar] [CrossRef]
- Fu, J.; Yu, J.; Jiang, C.; Cheng, B. g-C3N4-based heterostructured photocatalysts. Adv. Energy Mater. 2018, 8, 1701503. [Google Scholar] [CrossRef]
- Liu, J. Catalysis by supported single metal atoms. ACS Catal. 2016, 7, 34–59. [Google Scholar] [CrossRef]
- Liu, J.; Bunes, B.R.; Zang, L.; Wang, C. Supported single-atom catalysts: Synthesis, characterization, properties, and applications. Environ. Chem. Lett. 2017, 16, 477–505. [Google Scholar] [CrossRef]
- Wang, L.; Huang, L.; Liang, F.; Liu, S.; Wang, Y.; Zhang, H. Preparation, characterization and catalytic performance of single-atom catalysts. Chin. J. Catal. 2017, 38, 1528–1539. [Google Scholar] [CrossRef]
- Li, Y.; Kong, T.; Shen, S. Artificial photosynthesis with polymeric carbon nitride: When meeting metal nanoparticles, single atoms, and molecular complexes. Small 2019, 15, e1900772. [Google Scholar] [CrossRef]
- Chen, Z.; Mitchell, S.; Vorobyeva, E.; Leary, R.K.; Hauert, R.; Furnival, T.; Ramasse, Q.M.; Thomas, J.M.; Midgley, P.A.; Dontsova, D.; et al. Stabilization of single metal atoms on graphitic carbon nitride. Adv. Funct. Mater. 2017, 27, 1605785. [Google Scholar] [CrossRef] [Green Version]
- Cao, H.; Wang, J.; Kim, J.-H.; Guo, Z.; Xiao, J.; Yang, J.; Chang, J.; Shi, Y.; Xie, Y. Different roles of Fe atoms and nanoparticles on g-C3N4 in regulating the reductive activation of ozone under visible light. Appl. Catal. B Environ. 2021, 296, 120362. [Google Scholar] [CrossRef]
- Liu, W.; Chen, Y.; Qi, H.; Zhang, L.; Yan, W.; Liu, X.; Yang, X.; Miao, S.; Wang, W.; Liu, C.; et al. A durable nickel single-atom catalyst for hydrogenation reactions and cellulose valorization under harsh conditions. Angew. Chem. Int. Ed. Engl. 2018, 57, 7071–7075. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Dou, M.; Zhang, Z.; Wang, F. Template-free synthesis of two-dimensional Fe/N codoped carbon networks as efficient oxygen reduction reaction electrocatalysts. ACS Appl. Mater. Interfaces 2018, 10, 37079–37086. [Google Scholar] [CrossRef] [PubMed]
- Tian, S.; Fu, Q.; Chen, W.; Feng, Q.; Chen, Z.; Zhang, J.; Cheong, W.C.; Yu, R.; Gu, L.; Dong, J.; et al. Carbon nitride supported Fe2 cluster catalysts with superior performance for alkene epoxidation. Nat. Commun. 2018, 9, 2353. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Liu, Q.; Tan, K.M.; Wang, F.; Ng, H.Y. Insights into mechanisms, kinetics and pathway of continuous visible-light photodegradation of PPCPs via porous g-C3N4 with highly dispersed Fe(Ⅲ) active sites. Chem. Eng. J. 2021, 423, 130095. [Google Scholar] [CrossRef]
- Wu, X.; Wang, X.; Wang, F.; Yu, H. Soluble g-C3N4 nanosheets: Facile synthesis and application in photocatalytic hydrogen evolution. Appl. Catal. B Environ. 2019, 247, 70–77. [Google Scholar] [CrossRef]
- Tonda, S.; Kumar, S.; Kandula, S.; Shanker, V. Fe-doped and mediated graphitic carbon nitride nanosheets for enhanced photocatalytic performance under natural sunlight. J. Mater. Chem. A 2014, 2, 6772. [Google Scholar] [CrossRef]
- Peng, X.; Wu, J.; Zhao, Z.; Wang, X.; Dai, H.; Xu, L.; Xu, G.; Jian, Y.; Hu, F. Activation of peroxymonosulfate by single-atom Fe-g-C3N4 catalysts for high efficiency degradation of tetracycline via nonradical pathways: Role of high-valent iron-oxo species and Fe–Nx sites. Chem. Eng. J. 2021, 427, 130803. [Google Scholar] [CrossRef]
- Luo, T.; Hu, X.; She, Z.; Wei, J.; Feng, X.; Chang, F. Synergistic effects of Ag-doped and morphology regulation of graphitic carbon nitride nanosheets for enhanced photocatalytic performance. J. Mol. Liq. 2021, 324, 114772. [Google Scholar] [CrossRef]
- Li, Y.; Lv, K.; Ho, W.; Dong, F.; Wu, X.; Xia, Y. Hybridization of rutile TiO2 (rTiO2) with g-C3N4 quantum dots (CN QDs): An efficient visible-light-driven Z-scheme hybridized photocatalyst. Appl. Catal. B Environ. 2017, 202, 611–619. [Google Scholar] [CrossRef]
- Chang, F.; Li, C.; Luo, J.; Xie, Y.; Deng, B.; Hu, X. Enhanced visible-light-driven photocatalytic performance of porous graphitic carbon nitride. Appl. Surf. Sci. 2015, 358, 270–277. [Google Scholar] [CrossRef]
- Meng, Y.; Zhang, L.; Jiu, H.; Zhang, Q.; Zhang, H.; Ren, W.; Sun, Y.; Li, D. Construction of g-C3N4/ZIF-67 photocatalyst with enhanced photocatalytic CO2 reduction activity. Mater. Sci. Semicond. Process. 2019, 95, 35–41. [Google Scholar] [CrossRef]
- Xiao, J.; Xie, Y.; Nawaz, F.; Wang, Y.; Du, P.; Cao, H. Dramatic coupling of visible light with ozone on honeycomb-like porous g-C3N4 towards superior oxidation of water pollutants. Appl. Catal. B Environ. 2016, 183, 417–425. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, X.; Cao, D.; Wang, Y.; Zhu, Y. Peroxymonosulfate enhanced visible light photocatalytic degradation bisphenol a by single-atom dispersed Ag mesoporous g-C3N4 hybrid. Appl. Catal. B Environ. 2017, 211, 79–88. [Google Scholar] [CrossRef]
- Xiao, X.; Gao, Y.; Zhang, L.; Zhang, J.; Zhang, Q.; Li, Q.; Bao, H.; Zhou, J.; Miao, S.; Chen, N.; et al. A promoted charge separation/transfer system from Cu single atoms and C3N4 layers for efficient photocatalysis. Adv. Mater. 2020, 32, e2003082. [Google Scholar] [CrossRef]
- Gan, G.; Li, X.; Wang, L.; Fan, S.; Mu, J.; Wang, P.; Chen, G. Active sites in single-atom Fe-N(x)-C nanosheets for selective electrochemical dechlorination of 1,2-dichloroethane to ethylene. ACS Nano 2020, 14, 9929–9937. [Google Scholar] [CrossRef]
- Wu, Y.; Ding, Y.; Han, X.; Li, B.; Wang, Y.; Dong, S.; Li, Q.; Dou, S.; Sun, J.; Sun, J. Modulating coordination environment of Fe single atoms for high-efficiency all-pH-tolerated H2O2 electrochemical production. Appl. Catal. B Environ. 2022, 315, 121578. [Google Scholar] [CrossRef]
- Deng, L.; Qiu, L.; Hu, R.; Yao, L.; Zheng, Z.; Ren, X.; Li, Y.; He, C. Restricted diffusion preparation of fully-exposed Fe single-atom catalyst on carbon nanospheres for efficient oxygen reduction reaction. Appl. Catal. B Environ. 2022, 305, 121058. [Google Scholar] [CrossRef]
- Song, Y.; Zhu, S.; Zhang, S.; Fu, Y.; Wang, L.; Zhao, X.; Yang, B. Investigation from chemical structure to photoluminescent mechanism: A type of carbon dots from the pyrolysis of citric acid and an amine. J. Mater. Chem. C 2015, 3, 5976–5984. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, P.; An, W.; Liu, L.; Liang, Y.; Cui, W. In-situ Fe-doped g-C3N4 heterogeneous catalyst via photocatalysis-Fenton reaction with enriched photocatalytic performance for removal of complex wastewater. Appl. Catal. B Environ. 2019, 245, 130–142. [Google Scholar] [CrossRef]
- Zeng, Y.; Liu, X.; Liu, C.; Wang, L.; Xia, Y.; Zhang, S.; Luo, S.; Pei, Y. Scalable one-step production of porous oxygen-doped g-C3N4 nanorods with effective electron separation for excellent visible-light photocatalytic activity. Appl. Catal. B Environ. 2018, 224, 1–9. [Google Scholar] [CrossRef]
- Guo, H.; Niu, H.-Y.; Liang, C.; Niu, C.-G.; Liu, Y.; Tang, N.; Yang, Y.; Liu, H.-Y.; Yang, Y.-Y.; Wang, W.-J. Few-layer graphitic carbon nitride nanosheet with controllable functionalization as an effective metal-free activator for peroxymonosulfate photocatalytic activation: Role of the energy band bending. Chem. Eng. J. 2020, 401, 126072. [Google Scholar] [CrossRef]
- Ahmad, I. Comparative study of metal (Al, Mg, Ni, Cu and Ag) doped ZnO/g-C3N4 composites: Efficient photocatalysts for the degradation of organic pollutants. Sep. Purif. Technol. 2020, 251, 117372. [Google Scholar] [CrossRef]
- Bian, S.; Li, X.; Zhang, L.; Wang, L.; Wang, J.; Xu, Q.; Zang, L.; Zhang, Y.; Sun, L. Bimetal Cu and Fe modified g-C3N4 sheets grown on carbon skeleton for efficient and selective photocatalytic reduction of CO2 to CO. J. Environ. Chem. Eng. 2023, 11, 109319. [Google Scholar] [CrossRef]
- Chang, F.; Lei, B.; Yang, C.; Wang, J.; Hu, X. Ultra-stable Bi4O5Br2/Bi2S3 n-p heterojunctions induced simultaneous generation of radicals ·OH and ·O2− and no conversion to nitrate/nitrite species with high selectivity under visible light. Chem. Eng. J. 2021, 413, 127443. [Google Scholar] [CrossRef]
- Zhu, Z.; Lu, Z.; Wang, D.; Tang, X.; Yan, Y.; Shi, W.; Wang, Y.; Gao, N.; Yao, X.; Dong, H. Construction of high-dispersed Ag/Fe3O4/g-C3N4 photocatalyst by selective photo-deposition and improved photocatalytic activity. Appl. Catal. B Environ. 2016, 182, 115–122. [Google Scholar] [CrossRef]
- Yan, S.; Shi, Y.; Tao, Y.; Zhang, H. Enhanced persulfate-mediated photocatalytic oxidation of bisphenol a using bioelectricity and a g-C3N4/Fe2O3 heterojunction. Chem. Eng. J. 2019, 359, 933–943. [Google Scholar] [CrossRef]
- Xia, P.; Zhu, B.; Cheng, B.; Yu, J.; Xu, J. 2D/2D g-C3N4/MnO2 nanocomposite as a direct Z-scheme photocatalyst for enhanced photocatalytic activity. ACS Sustain. Chem. Eng. 2017, 6, 965–973. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, C.; Huang, D.; Wang, W.; Zhai, Y.; Liang, Q.; Yang, Y.; Tian, S.; Luo, H.; Qin, D. Structure defined 2D Mo2C/2D g-C3N4 van der Waals heterojunction: Oriented charge flow in-plane and separation within the interface to collectively promote photocatalytic degradation of pharmaceutical and personal care products. Appl. Catal. B Environ. 2022, 301, 120749. [Google Scholar] [CrossRef]
- Zhu, Z.; Ma, C.; Yu, K.; Lu, Z.; Liu, Z.; Yan, Y.; Tang, X.; Huo, P. Fabrication of CoFe2O4-modified and HNTs-supported g-C3N4 heterojunction photocatalysts for enhancing MBT degradation activity under visible light. J. Mater. Sci. 2019, 55, 4358–4371. [Google Scholar] [CrossRef]
- Zhu, Z.; Yu, Y.; Dong, H.; Liu, Z.; Li, C.; Huo, P.; Yan, Y. Intercalation effect of attapulgite in g-C3N4 modified with Fe3O4 quantum dots to enhance photocatalytic activity for removing 2-mercaptobenzothiazole under visible light. ACS Sustain. Chem. Eng. 2017, 5, 10614–10623. [Google Scholar] [CrossRef]
- Zhu, Z.; Lu, Z.; Zhao, X.; Yan, Y.; Shi, W.; Wang, D.; Yang, L.; Lin, X.; Hua, Z.; Liu, Y. Surface imprinting of a g-C3N4 photocatalyst for enhanced photocatalytic activity and selectivity towards photodegradation of 2-mercaptobenzothiazole. RSC Adv. 2015, 5, 40726–40736. [Google Scholar] [CrossRef]
- Wu, H.; Wang, D.; Zhou, P.; Xie, M.; Jing, J.; Xu, Y.; Xie, J. Probing effective charge migration and highly improved photocatalytic activity on polyaniline/Zn3In2S6 nano-flower under long wavelength light. Sep. Purif. Technol. 2021, 274, 119004. [Google Scholar] [CrossRef]
- Zhu, Z.; Tang, X.; Wang, T.; Fan, W.; Liu, Z.; Li, C.; Huo, P.; Yan, Y. Insight into the effect of co-doped to the photocatalytic performance and electronic structure of g-C3N4 by first principle. Appl. Catal. B Environ. 2019, 241, 319–328. [Google Scholar] [CrossRef]
Sample | τ1 | A1 | τ2 | A2 | τ3 | A3 | τaverage |
---|---|---|---|---|---|---|---|
g-C3N4 | 1.7126 | 0.376 | 7.0426 | 0.429 | 48.0688 | 0.195 | 36.284 |
Fe(acac)3/g-C3N4 | 1.7263 | 0.449 | 7.2545 | 0.446 | 51.4631 | 0.105 | 32.222 |
Fe-SACs/g-C3N4 | 1.4582 | 0.451 | 6.2043 | 0.451 | 41.9526 | 0.098 | 25.248 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, C.; Hu, X.; Bai, Y.; Cai, B.; Li, Y. Fe Single Atoms Reduced by NaBH4 Mediate g-C3N4 Electron Transfer and Effectively Remove 2-Mercaptobenzothiazole. Catalysts 2023, 13, 619. https://doi.org/10.3390/catal13030619
Yang C, Hu X, Bai Y, Cai B, Li Y. Fe Single Atoms Reduced by NaBH4 Mediate g-C3N4 Electron Transfer and Effectively Remove 2-Mercaptobenzothiazole. Catalysts. 2023; 13(3):619. https://doi.org/10.3390/catal13030619
Chicago/Turabian StyleYang, Chen, Xuefeng Hu, Yaxing Bai, Beichuan Cai, and Yujie Li. 2023. "Fe Single Atoms Reduced by NaBH4 Mediate g-C3N4 Electron Transfer and Effectively Remove 2-Mercaptobenzothiazole" Catalysts 13, no. 3: 619. https://doi.org/10.3390/catal13030619
APA StyleYang, C., Hu, X., Bai, Y., Cai, B., & Li, Y. (2023). Fe Single Atoms Reduced by NaBH4 Mediate g-C3N4 Electron Transfer and Effectively Remove 2-Mercaptobenzothiazole. Catalysts, 13(3), 619. https://doi.org/10.3390/catal13030619