Preparation of Two-Dimensional Layered CeO2/Bi2O3 Composites for Efficient Photocatalytic Desulfurization
Abstract
:1. Introduction
2. Results and Discussion
2.1. XRD Analysis
2.2. Raman Spectra Analysis
2.3. SEM, TEM, HRTEM and EDS Analysis
2.4. Nitrogen Adsorption–Desorption Isotherm and Pore Size Distribution
2.5. XPS Analysis
2.6. DRS Analysis
2.7. Photocatalytic Activity
2.8. Photoelectrochemical and PL Analysis
2.9. Photocatalysis Mechanism
3. Experimental Section
3.1. Materials
3.2. Preparation of Samples
3.3. Characterization
3.4. Photocatalytic Desulfurization Measurement
3.5. Photoelectrochemical Measurements
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shindell, D.; Smith, C.J. Climate and air-quality benefits of a realistic phase-out of fossil fuels. Nature 2019, 573, 408–411. [Google Scholar] [CrossRef]
- Shen, N.; Wang, Y.F.; Peng, H.; Hou, Z.P. Renewable energy green innovation, fossil energy consumption, and air pollution-spatial empirical analysis based on China. Sustainability 2020, 12, 6397. [Google Scholar] [CrossRef]
- Tanimu, A.; Alhooshani, K. Advanced Hydrodesulfurization Catalysts: A Review of Design and Synthesis. Energy Fuels 2019, 33, 2810–2838. [Google Scholar] [CrossRef]
- Dedual, G.; MacDonald, M.J.; Alshareef, A.; Wu, Z.; Tsang, D.C.; Yip, A.C. Requirements for effective photocatalytic oxidative desulfurization of a thiophene-containing solution using TiO2. J. Environ. Chem. Eng. 2014, 2, 1947–1955. [Google Scholar] [CrossRef]
- Bhadra, B.N.; Jhung, S.H. Oxidative desulfurization and denitrogenation of fuels using metal-organic framework-based/-derived catalysts. Appl. Catal. B 2019, 259, 118021. [Google Scholar] [CrossRef]
- Yaseen, M.; Ullah, S.; Ahmad, W.; Subhan, S.; Subhan, F. Fabrication of Zn and Mn loaded activated carbon derived from corn cobs for the adsorptive desulfurization of model and real fuel oils. Fuel 2021, 284, 119102. [Google Scholar] [CrossRef]
- Makoś, P.; Boczkaj, G. Deep eutectic solvents based highly efficient extractive desulfurization of fuels—Eco-friendly approach. J. Mol. Liq. 2019, 296, 111916. [Google Scholar] [CrossRef]
- Manan, N.S.A.; Aldous, L.; Alias, Y.; Murray, P.; Yellowlees, L.J.; Lagunas, M.C.; Hardacre, C. Electrochemistry of Sulfur and Polysulfides in Ionic Liquids. J. Phys. Chem. B 2011, 115, 13873–13879. [Google Scholar] [CrossRef] [PubMed]
- Capecchi, E.; Piccinino, D.; Bizzarri, B.M.; Botta, L.; Crucianelli, M.; Saladino, R. Oxidative Bio-Desulfurization by Nanostructured Peroxidase Mediator System. Catalysts 2020, 10, 313. [Google Scholar] [CrossRef]
- Shafiq, I.; Shafique, S.; Akhter, P.; Ishaq, M.; Yang, W.; Hussain, M. Recent breakthroughs in deep aerobic oxidative desulfurization of petroleum refinery products. J. Clean. Prod. 2021, 294, 125731. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, T.; Liu, H.; Gao, X.; Wang, C.; Wang, G. Desulfurization through Photocatalytic Oxidation: A Critical Review. ChemSusChem 2021, 14, 492–511. [Google Scholar] [CrossRef] [PubMed]
- Shafiq; Shafique, S.; Akhter, P.; Abbas, G.; Qurashi, A.; Hussain, M. Efficient catalyst development for deep aerobic photocatalytic oxidative desulfurization: Recent advances, confines, and outlooks. Catal. Rev. Sci. Eng. 2022, 64, 789–834. [Google Scholar] [CrossRef]
- Gao, X.-M.; Fu, F.; Zhang, L.-P.; Li, W.-H. The preparation of Ag–BiVO4 metal composite oxides and its application in efficient photocatalytic oxidative thiophene. Phys. B Condens. Matter 2013, 419, 80–85. [Google Scholar] [CrossRef]
- Zarrabi, M.; Entezari, M.H.; Goharshadi, E.K. Photocatalytic oxidative desulfurization of dibenzothiophene by C/TiO2@MCM-41 nanoparticles under visible light and mild conditions. RSC Adv. 2015, 5, 34652–34662. [Google Scholar] [CrossRef]
- Boshagh, F.; Rahmani, M.; Rostami, K.; Yousefifar, M. Key Factors Affecting the Development of Oxidative Desulfurization of Liquid Fuels: A Critical Review. Energy Fuels 2021, 36, 98–132. [Google Scholar] [CrossRef]
- Kalantari, K.; Kalbasi, M.; Sohrabi, M.; Royaee, S.J. Synthesis and characterization of N-doped TiO2 nanoparticles and their application in photocatalytic oxidation of dibenzothiophene under visible light. Ceram. Int. 2016, 42, 14834–14842. [Google Scholar] [CrossRef]
- Shafiq, I.; Hussain, M.; Shafique, S.; Rashid, R.; Akhter, P.; Ahmed, A.; Jeon, J.-K.; Park, Y.-K. Oxidative desulfurization of refinery diesel pool fractions using LaVO4 photocatalyst. J. Ind. Eng. Chem. 2021, 98, 283–288. [Google Scholar] [CrossRef]
- Shafiq, I.; Hussain, M.; Rashid, R.; Shafique, S.; Akhter, P.; Yang, W.; Nawaz, Z.; Ahmed, A.; Park, Y.-K. Development of hierarchically porous LaVO4 for efficient visible-light-driven photocatalytic desulfurization of diesel. Chem. Eng. J. 2021, 420, 130529. [Google Scholar] [CrossRef]
- Mahboob, I.; Shafiq, I.; Shafique, S.; Akhter, P.; Hussain, M.; Park, Y.-K. Effect of active species scavengers in photocatalytic desulfurization of hydrocracker diesel using mesoporous Ag3VO4. Chem. Eng. J. 2022, 441, 136063. [Google Scholar] [CrossRef]
- Shafiq, I.; Hussain, M.; Shafique, S.; Akhter, P.; Ahmed, A.; Ashraf, R.S.; Khan, M.A.; Jeon, B.-H.; Park, Y.-K. Systematic Assessment of Visible-Light-Driven Microspherical V2O5 Photocatalyst for the Removal of Hazardous Organosulfur Compounds from Diesel. Nanomaterials 2021, 11, 2908. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, T.; Zhang, L.; Che, S.; Liu, H.; Liu, S.; Wang, C.; Su, D.; Teng, Z. Highly efficient Ag2O/Na-g-C3N4 heterojunction for photocatalytic desulfurization of thiophene in fuel under ambient air conditions. Appl. Catal. B 2022, 316, 121614. [Google Scholar] [CrossRef]
- Belousov, A.S.; Suleimanov, E.V.; Parkhacheva, A.A.; Fukina, D.G.; Koryagin, A.V.; Titaev, D.N.; Lazarev, M.A. Synthesis and Characterization of Bi2WxMo1-xO6 Solid Solutions and Their Application in Photocatalytic Desulfurization under Visible Light. Processes 2022, 10, 789. [Google Scholar] [CrossRef]
- Lu, X.W.; Chen, F.; Qian, J.Q.; Fu, M.; Jiang, Q.; Zhang, Q.F. Facile fabrication of CeF3/g-C3N4 heterojunction photocatalysts with upconversion properties for enhanced photocatalytic desulfurization performance. J. Rare Earths 2021, 39, 1204–1210. [Google Scholar] [CrossRef]
- Tran, D.P.; Pham, M.-T.; Bui, X.-T.; Wang, Y.-F.; You, S.-J. CeO2 as a photocatalytic material for CO2 conversion: A review. Sol. Energy 2022, 240, 443–466. [Google Scholar] [CrossRef]
- Mousavi-Kamazani, M.; Ashrafi, S. Single-step sonochemical synthesis of Cu2O-CeO2 nanocomposites with enhanced photocatalytic oxidative desulfurization. Ultrason. Sonochem. 2020, 63, 104948. [Google Scholar] [CrossRef]
- Radwan, M.S.; Aboutaleb, W.A.; El Naggar, A.M.; El Sayed, H.A.; Shehata, M.R.; Medany, S.S. Photo-oxidative extractive desulfurization of dibenzothiofene over Fe2O3-CeO2 nanocomposites at visible light irradiation. J. Photochem. Photobiol. A Chem. 2022, 433, 114137. [Google Scholar] [CrossRef]
- Lu, X.W.; Li, X.Z.; Qian, J.C.; Miao, N.M.; Yao, C.; Chen, Z.G. Synthesis and characterization of CeO2/TiO2 nanotube arrays and enhanced photocatalytic oxidative desulfurization performance. J. Alloys Compd. 2016, 661, 363–371. [Google Scholar] [CrossRef]
- He, B.W.; Wang, Z.L.; Xiao, P.; Chen, T.; Yu, J.G.; Zhang, L.Y. Cooperative Coupling of H2O2 Production and Organic Synthesis over a Floatable Polystyrene-Sphere-Supported TiO2/Bi2O3 S-Scheme Photocatalyst. Adv. Mater. 2022, 34, 2203225. [Google Scholar] [CrossRef]
- Dong, Y.; Ma, A.; Zhang, D.; Gao, Y.; Li, H. Preparation of high-performance α-Bi2O3 photocatalysts and their photocatalytic activity. Surf. Innov. 2020, 8, 295–303. [Google Scholar] [CrossRef]
- Gupta, G.; Kaur, M.; Kansal, S.K.; Umar, A.; Ibrahim, A.A. α-Bi2O3 nanosheets: An efficient material for sunlight-driven photocatalytic degradation of Rhodamine B. Ceram. Int. 2022, 48, 29580–29588. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, S.; Shi, R.; Waterhouse, G.I.; Tang, J.; Zhang, T. Two-dimensional photocatalyst design: A critical review of recent experimental and computational advances. Mater. Today 2020, 34, 78–91. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, Q.; Zou, Z. Recent advances in designing ZnIn2S4-based heterostructured photocatalysts for hydrogen evolution. J. Mater. Sci. Technol. 2023, 139, 167–188. [Google Scholar] [CrossRef]
- Lu, X.; Li, X.; Chen, F.; Chen, Z.; Qian, J.; Zhang, Q. Biotemplating synthesis of N-doped two-dimensional CeO2–TiO2 nanosheets with enhanced visible light photocatalytic desulfurization performance. J. Alloys Compd. 2020, 815, 152326. [Google Scholar] [CrossRef]
- Li, X.Z.; Zhang, Z.S.; Yao, C.; Lu, X.W.; Zhao, X.B.; Ni, C.Y. Attapulgite-CeO2/MoS2 ternary nanocomposite for photocatalytic oxidative desulfurization. Appl. Surf. Sci. 2016, 364, 589–596. [Google Scholar] [CrossRef]
- Shen, C.H.; Wen, X.J.; Fei, Z.H.; Liu, Z.T.; Mu, Q.M. Novel Z-scheme W18O49/CeO2 heterojunction for improved photocatalytic hydrogen evolution. J. Colloid Interface Sci. 2020, 579, 297–306. [Google Scholar] [CrossRef]
- Wu, Z.L.; Li, M.J.; Howe, J.; Meyer III, H.M.; Overbury, S.H. Probing defect sites on CeO2 nanocrystals with well-defined surface planes by Raman spectroscopy and O2 adsorption. Langmuir 2010, 2, 16595–16606. [Google Scholar] [CrossRef]
- Schmidt, S.; Kubaski, E.T.; Volanti, D.P.; Sequinel, T.; Bezzon, V.D.N.; Beltran, A.; Tebcherani, S.M.; Varela, J.A. Effect of pressure-assisted heat treatment on photoluminescence emission of α Bi2O3 needles. Inorg. Chem. 2015, 54, 10184–10191. [Google Scholar] [CrossRef]
- Ravikovitch, P.I.; Neimark, A.V. Characterization of nanoporous materials from adsorption and desorption isotherms. Colloids Surf. A 2001, 187–188, 11–21. [Google Scholar] [CrossRef]
- Anandan, C.; Bera, P. XPS studies on the interaction of CeO2 with silicon in magnetron sputtered CeO2 thin films on Si and Si3N4 substrates. Appl. Surf. Sci. 2013, 283, 297–303. [Google Scholar] [CrossRef]
- Maheshwaran, S.; Balaji, R.; Chen, S.-M.; Chang, Y.-S.; Tamilalagan, E.; Chandrasekar, N.; Ethiraj, S.; Kumar, M. Ultrasensitive electrochemical detection of furazolidone in biological samples using 1D-2D BiVO4@MoS2 hierarchical nano-heterojunction composites armed electrodes. Environ. Res. 2022, 205, 112515. [Google Scholar] [CrossRef]
- Shen, C.H.; Chen, Y.; Xu, X.J.; Li, X.Y.; Wen, X.J.; Liu, Z.T.; Xing, R.; Guo, H.; Fei, Z.H. Efficient photocatalytic H2 evolution and Cr (VI) reduction under visible light using a novel Z-scheme SnIn4S8/CeO2 heterojunction photocatalysts. J. Hazard. Mater. 2021, 416, 126217. [Google Scholar] [CrossRef] [PubMed]
- Han, N.; Xu, Q.; Beyene, G.; Zhang, Q.F. Enhanced photocatalytic activity over g-C3N4/(BiO)2(OH)xCl2−x Z-scheme heterojunction. Appl. Surf. Sci. 2020, 521, 146464. [Google Scholar] [CrossRef]
- Liu, C.; Xiao, W.; Yu, G.Y.; Wang, Q.; Hu, J.W.; Xu, C.B.; Du, X.Y.; Xu, J.G.; Zhang, Q.F.; Zou, Z.G. Interfacial engineering of Ti3C2 MXene/CdIn2S4 Schottky heterojunctions for boosting visible-light H2 evolution and Cr (VI) reduction. J. Colloid Interface Sci. 2023, 640, 851–863. [Google Scholar] [CrossRef] [PubMed]
- Yusuff, A.S.; Popoola, L.T.; Aderibigbe, E.I. Solar photocatalytic degradation of organic pollutants in textile industry wastewater by ZnO/pumice composite photocatalyst. J. Environ. Chem. Eng. 2020, 8, 103907. [Google Scholar] [CrossRef]
- Li, L.; Guo, C.; Ning, J.; Zhong, Y.; Chen, D.; Hu, Y. Oxygen-vacancy-assisted construction of FeOOH/CdS heterostructure as an efficient bifunctional photocatalyst for CO2 conversion and water oxidation. Appl. Catal. B Environ. 2022, 613, 764–774. [Google Scholar] [CrossRef]
- Banerjee, R.; Pal, A.; Ghosh, D.; Ghosh, A.B.; Nandi, M.; Biswas, P. Improved photocurrent response, photostability and photocatalytic hydrogen generation ability of CdS nanoparticles in presence of mesoporous carbon. Mater. Res. Bull. 2021, 134, 111085. [Google Scholar] [CrossRef]
- Li, X.Z.; Zhu, W.; Lu, X.W.; Zuo, S.X.; Yao, C.; Ni, C.Y. Integrated nanostructures of CeO2/attapulgite/g-C3N4 as efficient catalyst for photocatalytic desulfurization: Mechanism, kinetics and influencing factors. Chem. Eng. J. 2017, 326, 87–98. [Google Scholar] [CrossRef]
- Li, Y.; Wang, J.; Yao, H.; Dang, L.; Li, Z. Chemical etching preparation of BiOI/Bi2O3 heterostructures with enhanced photocatalytic activities. Catal. Commun. 2011, 12, 660–664. [Google Scholar] [CrossRef]
- Channei, D.; Inceesungvorn, B.; Wetchakun, N.; Ukritnukun, S.; Nattestad, A.; Chen, J.; Phanichphant, S.J.S.R. Photocatalytic Degradation of Methyl Orange by CeO2 and Fe–doped CeO2 Films under Visible Light Irradiation. Sci. Rep. 2014, 4, srep05757. [Google Scholar] [CrossRef]
- Wang, C.; Zhu, W.S.; Xu, Y.H.; Xu, H.; Zhang, M.; Chao, Y.H.; Yin, S.; Li, H.M.; Wang, J.G. Preparation of TiO2/g-C3N4 composites and their application in photocatalytic oxidative desulfurization. Ceram. Int. 2014, 40, 11627–11635. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, X.; Chen, W.; Hou, H.; Qian, J.; Zhang, Q. Preparation of Two-Dimensional Layered CeO2/Bi2O3 Composites for Efficient Photocatalytic Desulfurization. Catalysts 2023, 13, 821. https://doi.org/10.3390/catal13050821
Lu X, Chen W, Hou H, Qian J, Zhang Q. Preparation of Two-Dimensional Layered CeO2/Bi2O3 Composites for Efficient Photocatalytic Desulfurization. Catalysts. 2023; 13(5):821. https://doi.org/10.3390/catal13050821
Chicago/Turabian StyleLu, Xiaowang, Wenxuan Chen, Haijun Hou, Junchao Qian, and Qinfang Zhang. 2023. "Preparation of Two-Dimensional Layered CeO2/Bi2O3 Composites for Efficient Photocatalytic Desulfurization" Catalysts 13, no. 5: 821. https://doi.org/10.3390/catal13050821