Computational Chemistry and Catalysis: Prediction and Design
Conflicts of Interest
References
- Wang, T.; Pan, L.; Zhang, X.; Zou, J.-J. Insights into the Pt (111) Surface Aid in Predicting the Selective Hydrogenation Catalyst. Catalysts 2020, 10, 1473. [Google Scholar] [CrossRef]
- Ferrante, F.; Prestianni, A.; Bertiniand, M.; Duca, D. H2 Transformations on Graphene Supported Palladium Cluster: DFT-MD Simulations and NEB Calculations. Catalysts 2020, 10, 1306. [Google Scholar] [CrossRef]
- Shi, D.; Wang, S.; Wang, H.; Wang, P.; Zhang, L.; Qin, Z.; Wang, J.; Zhu, H.; Fan, W. Synthesis of HZSM-5 Rich in Paired Al and ItsCatalytic Performance for Propane Aromatization. Catalysts 2020, 10, 622. [Google Scholar] [CrossRef]
- Li, Y.; Han, X.; Zhao, C.; Yue, L.; Zhao, J.; Ren, J. Screening of Additives to Ni-Based MethanationCatalyst for Enhanced Anti-Sintering Performance. Catalysts 2019, 9, 493. [Google Scholar] [CrossRef]
- Bizon, K.; Skrzypek-Markiewicz, K.; Pedzich, D.; Reczek, N. Intensification of Catalytic Processes through thePellet Structuring: Steady-State Properties ofa Bifunctional Catalyst Pellet Applied to GenericChemical Reactions and the Direct Synthesis of DME. Catalysts 2019, 9, 1020. [Google Scholar] [CrossRef]
- Ibrahim Jibril, Z.; Ramli, A.; Jumbri, K.; Mohamad Yunus, N. Phoenix dactylifera L. Seed Pretreatment for OilExtraction and Optimization Studies for BiodieselProduction Using Ce-Zr/Al-MCM-41 Catalyst. Catalysts 2020, 10, 764. [Google Scholar] [CrossRef]
- Ben El Ayouchia, H.; Bahsis, L.; Fichtali, I.; Luis, R.; Domingo, L.R.; Ríos-Gutiérrez, M.; Julve, M.; Stiriba, S.-E. Deciphering the Mechanism of Silver Catalysis of“Click” Chemistry in Water by CombiningExperimental and MEDT Studies. Catalysts 2020, 10, 956. [Google Scholar] [CrossRef]
- Bahsis, L.; Ben El Ayouchia, H.; Anane, H.; Ramirez de Arellano, C.; Bentama, A.; El Hadrami, E.M.; Julve, M.; Domingo, L.R.; Stiriba, S.-E. Clicking Azides and Alkynes withPoly(pyrazolyl)borate-Copper(I) Catalysts: An Experimental and Computational Study. Catalysts 2019, 9, 687. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stiriba, S.-E. Computational Chemistry and Catalysis: Prediction and Design. Catalysts 2023, 13, 839. https://doi.org/10.3390/catal13050839
Stiriba S-E. Computational Chemistry and Catalysis: Prediction and Design. Catalysts. 2023; 13(5):839. https://doi.org/10.3390/catal13050839
Chicago/Turabian StyleStiriba, Salah-Eddine. 2023. "Computational Chemistry and Catalysis: Prediction and Design" Catalysts 13, no. 5: 839. https://doi.org/10.3390/catal13050839
APA StyleStiriba, S. -E. (2023). Computational Chemistry and Catalysis: Prediction and Design. Catalysts, 13(5), 839. https://doi.org/10.3390/catal13050839