High Performance of Nanostructured Cu2O-Based Photodetectors Grown on a Ti/Mo Metallic Substrate
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials and Preparation
3.2. Characterization Techniques
3.3. Photodetection Process Measurements
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, C.; Li, J.; Li, Z.; Zhang, H.; Dang, Y.; Kong, F. High-performance photodetectors based on nanostructured perovskites. Nanomaterials 2021, 11, 1038. [Google Scholar] [CrossRef]
- Lourenço, M.A.; Milosavljević, M.; Gwilliam, R.M.; Homewood, K.P.; Shao, G. On the role of dislocation loops in silicon light emitting diodes. Appl. Phys. Lett. 2005, 87, 201105. [Google Scholar] [CrossRef]
- Li, Q.; Huang, J.; Meng, J.; Li, Z. Enhanced Performance of a Self-Powered ZnO Photodetector by Coupling LSPR-Inspired Pyro-Phototronic Effect and Piezo-Phototronic Effect. Adv. Opt. Mater. 2022, 10, 2102468. [Google Scholar] [CrossRef]
- Yadav, P.K.; Ajitha, B.; Ahmed, C.M.; Reddy, Y.A.K.; Reddy, V.R.M. Superior UV photodetector performance of TiO2 films using Nb doping. J. Phys. Chem. Solids 2022, 160, 110350. [Google Scholar] [CrossRef]
- Li, Z.; Li, Z.; Zuo, C.; Fang, X. Application of nanostructured TiO2 in UV photodetectors: A review. Adv. Mater. 2022, 34, 2109083. [Google Scholar] [CrossRef]
- Yadav, G.; Gupta, V.; Tomar, M. Double Schottky metal–semiconductor–metal based GaN photodetectors with improved response using laser MBE technique. J. Mater. Res. 2022, 37, 457–469. [Google Scholar] [CrossRef]
- Tawfik, W.Z.; Farghali, A.A.; Moneim, A.; Imam, N.G.; El-Dek, S. Outstanding features of Cu-doped ZnS nanoclusters. Nanotechnology 2018, 29, 215709. [Google Scholar] [CrossRef]
- Suthar, D.; Himanshu; Patel, S.L.; Chander, S.; Kannan, M.D.; Dhaka, M.S. Thickness and annealing evolution to physical properties of e-beam evaporated ZnTe thin films as a rear contact for CdTe solar cells. J. Mater. Sci. Mater. Electron. 2021, 32, 19070–19082. [Google Scholar] [CrossRef]
- Tawfik, W.Z.; Hassan, M.A.; Johar, M.A.; Ryu, S.-W.; Lee, J.K. Highly conversion efficiency of solar water splitting over p-Cu2O/ZnO photocatalyst grown on a metallic substrate. J. Catal. 2019, 374, 276–283. [Google Scholar] [CrossRef]
- Tawfik, W.Z.; Khalifa, Z.S.; Abdel-Wahab, M.S.; Hammad, A.H. Sputtered cobalt doped CuO nano-structured thin films for photoconductive sensors. J. Mater. Sci. Mater. Electron. 2019, 30, 1275–1281. [Google Scholar] [CrossRef]
- Ashour, M.; Abdel-Wahab, M.S.; Shehata, A.; Tawfik, W.Z.; Azooz, M.A.; Elfeky, S.A.; Mohamed, T. Experimental investigation of linear and third-order nonlinear optical properties of pure CuO thin film using femtosecond laser pulses. J. Opt. Soc. Am. B 2022, 39, 508–518. [Google Scholar] [CrossRef]
- Kunturu, P.P.; Huskens, J. Efficient solar water splitting photocathodes comprising a copper oxide heterostructure protected by a thin carbon layer. ACS Appl. Energy Mater. 2019, 2, 7850–7860. [Google Scholar] [CrossRef] [Green Version]
- Bunea, R.; Saikumar, A.K.; Sundaram, K. A comparison of optical properties of CuO and Cu2O thin films for solar cell applications. Mater. Sci. Appl. 2021, 12, 315–329. [Google Scholar]
- Liu, Q.; Tian, H.; Li, J.; Hu, A.; He, X.; Sui, M.; Guo, X. Hybrid graphene/Cu2O quantum dot photodetectors with ultrahigh responsivity. Adv. Opt. Mater. 2019, 7, 1900455. [Google Scholar] [CrossRef]
- Ibrahim, A.M.; Abdel-Wahab, M.S.; Elfayoumi, M.; Tawfik, W.Z. Highly efficient sputtered Ni-doped Cu2O photoelectrodes for solar hydrogen generation from water-splitting. Int. J. Hydrogen Energy 2023, 48, 1863–1876. [Google Scholar] [CrossRef]
- Kartha, C.V.; Rehspringer, J.-L.; Muller, D.; Roques, S.; Bartringer, J.; Ferblantier, G.; Slaoui, A.; Fix, T. Insights into Cu2O thin film absorber via pulsed laser deposition. Ceram. Int. 2022, 48, 15274–15281. [Google Scholar] [CrossRef]
- Derbal, S.; Benaicha, M. Insights on the Effect of Applied Potential on the Properties of Electrodeposited p-Type Cuprous Oxide (Cu2O) Thin Films. J. Electron. Mater. 2021, 50, 5134–5140. [Google Scholar] [CrossRef]
- Abdelhalium, H.H.; Abdel-Wahab, M.S.; Tamm, M.T.; Tawfik, W.Z. Highly efficient ultraviolet photodetector based on molybdenum-doped nanostructured NiO/ITO thin film. Appl. Phys. A 2023, 129, 459. [Google Scholar] [CrossRef]
- Wang, N.; Tao, W.; Gong, X.; Zhao, L.; Wang, T.; Zhao, L.; Liu, F.; Liu, X.; Sun, P.; Lu, G. Highly sensitive and selective NO2 gas sensor fabricated from Cu2O-CuO microflowers. Sens. Actuators B Chem. 2022, 362, 131803. [Google Scholar] [CrossRef]
- Franco, F.F.; Hogg, R.A.; Manjakkal, L. Cu2O-Based Electrochemical Biosensor for Non-Invasive and Portable Glucose Detection. Biosensors 2022, 12, 174. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Q.; Xue, H.; Pang, H. Fabrication of Cu2O-based Materials for Lithium-Ion Batteries. ChemSusChem 2018, 11, 1581–1599. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhang, Y.; Xiao, J.; Jiang, H.; Hu, T.; Meng, C. Copper oxide/cuprous oxide/hierarchical porous biomass-derived carbon hybrid composites for high-performance supercapacitor electrode. J. Alloys Compd. 2019, 782, 1103–1113. [Google Scholar] [CrossRef]
- Zhang, C.; Tu, J.; Huang, X.; Yuan, Y.; Chen, X.; Mao, F. Preparation and electrochemical performances of cubic shape Cu2O as anode material for lithium ion batteries. J. Alloys Compd. 2007, 441, 52–56. [Google Scholar] [CrossRef]
- Shi, W.; Zhang, X.; Li, S.; Zhang, B.; Wang, M.; Shen, Y. Carbon coated Cu2O nanowires for photo-electrochemical water splitting with enhanced activity. Appl. Surf. Sci. 2015, 358, 404–411. [Google Scholar] [CrossRef]
- Umar, M.; Swinkels, M.Y.; De Luca, M.; Fasolato, C.; Moser, L.; Gadea, G.; Marot, L.; Glatzel, T.; Zardo, I. Morphological and stoichiometric optimization of Cu2O thin films by deposition conditions and post-growth annealing. Thin Solid Film. 2021, 732, 138763. [Google Scholar] [CrossRef]
- Wölz, M.; Hauswald, C.; Flissikowski, T.; Gotschke, T.; Fernández-Garrido, S.; Brandt, O.; Grahn, H.T.; Geelhaar, L.; Riechert, H. Epitaxial Growth of GaN Nanowires with High Structural Perfection on a Metallic TiN Film. Nano Lett. 2015, 15, 3743–3747. [Google Scholar] [CrossRef]
- Abdelmoneim, A.; Naji, A.; Wagenaars, E.; Shaban, M. Outstanding stability and photoelectrochemical catalytic performance of (Fe, Ni) co-doped Co3O4 photoelectrodes for solar hydrogen production. Int. J. Hydrogen Energy 2021, 46, 12915–12935. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, W.; Chen, H.-Y.; Xu, J.-J. Dark-field microscopic real-time monitoring the growth of Au on Cu2O nanocubes for ultra-sensitive glucose detection. Anal. Chim. Acta 2021, 1162, 338503. [Google Scholar] [CrossRef]
- Shaker, S.S.; Ismail, R.A.; Ahmed, D.S. High-Responsivity Heterojunction Photodetector Based on Bi2O3-Decorated MWCNTs Nanostructure Grown on Silicon via Laser Ablation in Liquid. J. Inorg. Organomet. Polym. Mater. 2022, 32, 1381–1388. [Google Scholar] [CrossRef]
- Balakarthikeyan, R.; Santhanam, A.; Anandhi, R.; Vinoth, S.; Al-Baradi, A.M.; Alrowaili, Z.; Al-Buriahi, M.; Kumar, K.D.A. Fabrication of nanostructured NiO and NiO: Cu thin films for high-performance ultraviolet photodetector. Opt. Mater. 2021, 120, 111387. [Google Scholar] [CrossRef]
- Lan, T.; Fallatah, A.; Suiter, E.; Padalkar, S. Size controlled copper (I) oxide nanoparticles influence sensitivity of glucose biosensor. Sensors 2017, 17, 1944. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Song, J.; Qin, L.; Peng, Y.; Nötzel, R. Visible-light photoelectrochemical photodetector based on In-rich InGaN/Cu2O core-shell nanowire p–n junctions. Appl. Phys. Lett. 2022, 120, 112108. [Google Scholar] [CrossRef]
- He, C.; Guo, D.; Chen, K.; Wang, S.; Shen, J.; Zhao, N.; Liu, A.; Zheng, Y.; Li, P.; Wu, Z.; et al. α-Ga2O3 Nanorod Array–Cu2O Microsphere p–n Junctions for Self-Powered Spectrum-Distinguishable Photodetectors. ACS Appl. Nano Mater. 2019, 2, 4095–4103. [Google Scholar] [CrossRef]
- Luo, M.; Song, J.; Wang, J.; Pan, X.; Hong, H.; Nötzel, R. Ultraviolet photoelectrochemical photodetector based on GaN/Cu2O core–shell nanowire p–n heterojunctions. AIP Adv. 2022, 12, 115112. [Google Scholar] [CrossRef]
- Duan, Y.; Zhu, Y.; Li, K.; Wang, Q.; Wang, P.; Yu, H.; Yan, Z.; Zhao, X. Cu2O–Au nanowire field-effect phototransistor for hot carrier transfer enhanced photodetection. Nanotechnology 2019, 30, 245202. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Cao, Y.; Wei, J.; Sun, J.-L.; Xu, J.; He, J. Solution synthesis of Cu2O/Si radial nanowire array heterojunctions for broadband photodetectors. Mater. Res. Express 2014, 1, 015002. [Google Scholar] [CrossRef]
- Madusanka, H.T.D.S.; Herath, H.M.A.M.C.; Fernando, C.A.N. High photoresponse performance of self-powered n-Cu2O/p-CuI heterojunction based UV-Visible photodetector. Sens. Actuators A Phys. 2019, 296, 61–69. [Google Scholar] [CrossRef]
- Elsayed, A.M.; Rabia, M.; Shaban, M.; Aly, A.H.; Ahmed, A.M. Preparation of hexagonal nanoporous Al2O3/TiO2/TiN as a novel photodetector with high efficiency. Sci. Rep. 2021, 11, 17572. [Google Scholar] [CrossRef]
- Aslan, E.; Zarbali, M. Tuning of photosensitivity and optical parameters of ZnO based photodetectors by co-Sn and Ti doping. Opt. Mater. 2022, 125, 112030. [Google Scholar] [CrossRef]
- Singh, B.; Mehta, B. Relationship between nature of metal-oxide contacts and resistive switching properties of copper oxide thin film based devices. Thin Solid Film. 2014, 569, 35–43. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelmoneim, A.; Abdel-wahab, M.S.; Lee, J.K.; Abdul Hameed, M.M.; Thamer, B.M.; Al-Enizi, A.M.; Alkhalifah, R.I.; Tawfik, W.Z. High Performance of Nanostructured Cu2O-Based Photodetectors Grown on a Ti/Mo Metallic Substrate. Catalysts 2023, 13, 1145. https://doi.org/10.3390/catal13071145
Abdelmoneim A, Abdel-wahab MS, Lee JK, Abdul Hameed MM, Thamer BM, Al-Enizi AM, Alkhalifah RI, Tawfik WZ. High Performance of Nanostructured Cu2O-Based Photodetectors Grown on a Ti/Mo Metallic Substrate. Catalysts. 2023; 13(7):1145. https://doi.org/10.3390/catal13071145
Chicago/Turabian StyleAbdelmoneim, Alhoda, Mohamed Sh. Abdel-wahab, June Key Lee, Meera Moydeen Abdul Hameed, Badr M. Thamer, Abdullah M. Al-Enizi, Rayana Ibrahim Alkhalifah, and Wael Z. Tawfik. 2023. "High Performance of Nanostructured Cu2O-Based Photodetectors Grown on a Ti/Mo Metallic Substrate" Catalysts 13, no. 7: 1145. https://doi.org/10.3390/catal13071145
APA StyleAbdelmoneim, A., Abdel-wahab, M. S., Lee, J. K., Abdul Hameed, M. M., Thamer, B. M., Al-Enizi, A. M., Alkhalifah, R. I., & Tawfik, W. Z. (2023). High Performance of Nanostructured Cu2O-Based Photodetectors Grown on a Ti/Mo Metallic Substrate. Catalysts, 13(7), 1145. https://doi.org/10.3390/catal13071145