Enzymatic Production of Chitooligosaccharide Using a GH Family 46 Chitosanase from Paenibacillus elgii and Its Antioxidant Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization via One-Factor-at-a-Time Method
2.2. Optimization via Response Surface Methodology
57.201 × A × C + 14.751 × A × D − 11.175 × B × C − 16.181 × B × D − 28.942 × C × D − 156.628 × A2 − 296.867 ×
B2 − 51.810 × C2 − 31.078 × D2
28.942 × C × D − 156.628 × A2 − 296.867 × B2 − 51.810 × C2 − 31.078 × D2
2.3. Model Validation and Product Analysis
2.4. Antioxidant Activity of the Chitosan Oligosaccharide
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Reducing Sugar Assay
3.3. Optimization via One-Factor-at-a-Time Method
3.4. Optimization via Response Surface Methodology
× C + β24 × B × D + β34 × C × D + β11 × A2 − β22 × B2 − β33 × C2 − β44 × D2
3.5. Thin Layer Chromatography Analysis
3.6. Antioxidant Assay
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Qiu, S.; Zhou, S.; Tan, Y.; Feng, J.; Bai, Y.; He, J.; Cao, H.; Che, Q.; Guo, J.; Su, Z. Biodegradation and prospect of polysaccharide from crustaceans. Mar. Drugs 2022, 20, 310. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.Y.; Cong, W.J.; Zhou, H.L.; Zhang, J.G.; Wang, M.X. Biological activities, mechanisms and applications of chitooligosaccharides in the food industry. J. Funct. Foods 2024, 116, 106219. [Google Scholar] [CrossRef]
- Thambiliyagodage, C.; Jayanetti, M.; Mendis, A.; Ekanayake, G.; Liyanaarachchi, H.; Vigneswaran, S. Recent advances in chitosan-based applications—A review. Materials 2023, 16, 2073. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.H.; Chen, R.Y.; Chiang, M.T. Effects of chitosan oligosaccharide on plasma and hepatic lipid metabolism and liver histomorphology in normal Sprague-Dawley rats. Mar. Drugs 2020, 18, 408. [Google Scholar] [CrossRef]
- Santos-Moriano, P.; Kidibule, P.; Míguez, N.; Fernández-Arrojo, L.; Ballesteros, A.O.; Fernández-Lobato, M.; Plou, F.J. Tailored enzymatic synthesis of chitooligosaccharides with different deacetylation degrees and their anti-inflammatory activity. Catalysts 2019, 9, 405. [Google Scholar] [CrossRef]
- Muthu, M.; Gopal, J.; Chun, S.; Devadoss, A.J.P.; Hasan, N.; Sivanesan, I. Crustacean waste-derived chitosan: Antioxidant properties and future perspective. Antioxidants 2021, 10, 228. [Google Scholar] [CrossRef]
- Mohite, P.; Shah, S.R.; Singh, S.; Rajput, T.; Munde, S.; Ade, N.; Prajapati, B.G.; Paliwal, H.; Mori, D.D.; Dudhrejiya, A.V. Chitosan and chito-oligosaccharide: A versatile biopolymer with endless grafting possibilities for multifarious applications. Front. Bioeng. Biotechnol. 2023, 11, 1190879. [Google Scholar] [CrossRef]
- Wang, K.; Yu, D.; Bai, Y.; Cao, H.; Guo, J.; Su, Z. Isolation and purification of chitosan oligosaccharides (mw ≤ 1000) and their protective effect on acute liver injury caused by CCl4. Mar. Drugs 2024, 22, 128. [Google Scholar] [CrossRef]
- Yu, M.; Ding, Y.; Du, Q.; Liao, Y.; Miao, W.; Deng, S.; Cullen, P.J.; Zhou, R. Efficacy of chitosan oligosaccharide combined with cold atmospheric plasma for controlling quality deterioration and spoilage bacterial growth of chilled pacific white shrimp (Litopenaeus vannamei). Foods 2023, 12, 1763. [Google Scholar] [CrossRef]
- Yao, T.; Ma, M.; Sui, Z. Structure and function of polysaccharides and oligosaccharides in foods. Foods 2023, 12, 3872. [Google Scholar] [CrossRef]
- Li, J.; Han, A.; Zhang, L.; Meng, Y.; Xu, L.; Ma, F.; Liu, R. Chitosan oligosaccharide alleviates the growth inhibition caused by physcion and synergistically enhances resilience in maize seedlings. Sci. Rep. 2022, 12, 162. [Google Scholar] [CrossRef]
- Lyalina, T.; Shagdarova, B.; Zhuikova, Y.; Il’ina, A.; Lunkov, A.; Varlamov, V. Effect of seed priming with chitosan hydrolysate on lettuce (Lactuca sativa) growth parameters. Molecules 2023, 28, 1915. [Google Scholar] [CrossRef]
- Yuan, X.; Zheng, J.; Jiao, S.; Cheng, G.; Feng, C.; Du, Y.; Liu, H. A review on the preparation of chitosan oligosaccharides and application to human health, animal husbandry and agricultural production. Carbohydr. Polym. 2019, 220, 60–70. [Google Scholar] [CrossRef]
- Gohi, B.; Zeng, H.Y.; Pan, A.D. Optimization and characterization of chitosan enzymolysis by Pepsin. Bioengineering 2016, 3, 17. [Google Scholar] [CrossRef] [PubMed]
- Doan, C.T.; Tran, T.N.; Tran, T.P.H.; Nguyen, T.T.; Nguyen, H.K.; Tran, T.K.T.; Vu, B.T.; Trinh, T.H.T.; Nguyen, A.D.; Wang, S.-L. Chitosanase production from the liquid fermentation of squid pens waste by Paenibacillus elgii. Polymers 2023, 15, 3724. [Google Scholar] [CrossRef] [PubMed]
- Kulig, D.; Król-Kilińska, Ż.; Bobak, Ł.; Żarowska, B.; Jarmoluk, A.; Zimoch-Korzycka, A. Functional properties of chitosan oligomers obtained by enzymatic hydrolysis. Polymers 2023, 15, 3801. [Google Scholar] [CrossRef]
- Onyeogaziri, F.C.; Papaneophytou, C. A General guide for the optimization of enzyme assay conditions using the design of experiments approach. SLAS Discov. 2019, 24, 587–596. [Google Scholar] [CrossRef]
- Liu, C.L.; Lan, C.Y.; Fu, C.C.; Juang, R.S. Production of hexaoligochitin from colloidal chitin using a chitinase from Aeromonas schubertii. Int. J. Biol. Macromol. 2014, 69, 59–63. [Google Scholar] [CrossRef]
- Irfan, M.; Nadeem, M.; Syed, Q. One-factor-at-a-time (OFAT) optimization of xylanase production from Trichoderma viride -IR05 in solid-state fermentation. J. Radiat. Res. Appl. Sci. 2014, 7, 317–326. [Google Scholar] [CrossRef]
- Nooh, H.M.; Masomian, M.; Salleh, A.B.; Mohamad, R.; Ali, M.S.M.; Rahman, R.N.Z.R.A. Production of thermostable T1 lipase using agroindustrial waste medium formulation. Catalysts 2018, 8, 485. [Google Scholar] [CrossRef]
- Bui, V.H.; Dao, A.Q.; Ngo, D.N. Optimization of chitosan hydrolysis by cellulase enzyme to produce chitooligosaccharide. Sci. Technol. Dev. J. 2017, 20, 70–82. [Google Scholar] [CrossRef]
- Pan, A.D.; Zeng, H.Y.; Gohi, B.F.C.A.; Li, Y.Q. Enzymolysis of chitosan by papain and its kinetics. Carbohydr. Polym. 2016, 135, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, Á.; Mengíbar, M.; Rivera-Rodríguez, G.; Moerchbacher, B.; Acosta, N.; Heras, A. The effect of preparation processes on the physicochemical characteristics and antibacterial activity of chitooligosaccharides. Carbohydr. Polym. 2017, 157, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Kurozumi, S.; Kiyose, M.; Noguchi, T.; Sato, K. A novel hydrochloride free chitosan oligosaccharide production method to improve taste. Int. J. Biol. Macromol. 2019, 140, 109–118. [Google Scholar] [CrossRef]
- Kaczmarek, M.B.; Struszczyk-Swita, K.; Li, X.; Szczęsna-Antczak, M.; Daroch, M. Enzymatic Modifications of Chitin, Chitosan, and Chitooligosaccharides. Front. Bioeng. Biotechnol. 2019, 7, 243. [Google Scholar] [CrossRef]
- Hao, W.; Li, K.; Ma, Y.; Li, R.; Xing, R.; Yu, H.; Li, P. Preparation and antioxidant activity of chitosan dimers with different sequences. Mar. Drugs 2021, 19, 366. [Google Scholar] [CrossRef]
- Li, K.; Xing, R.; Liu, S.; Li, R.; Qin, Y.; Meng, X.; Li, P. Separation of chito-oligomers with several degrees of polymerization and study of their antioxidant activity. Carbohydr. Polym. 2012, 88, 896–903. [Google Scholar] [CrossRef]
- Doan, C.T.; Tran, T.N.; Nguyen, V.B.; Tran, T.D.; Nguyen, A.D.; Wang, S.L. Bioprocessing of squid pens waste into chitosanase by Paenibacillus sp. TKU047 and its application in low-molecular weight chitosan oligosaccharides production. Polymers 2020, 12, 1163. [Google Scholar] [CrossRef]
- Kim, D.-O.; Lee, K.W.; Lee, H.J.; Lee, C.Y. Vitamin C equivalent antioxidant capacity (VCEAC) of phenolic phytochemicals. J. Agric. Food Chem. 2002, 50, 3713–3717. [Google Scholar] [CrossRef]
- Matouri, M.; Liu, Z.; Saldaña, M.D.A. Production of chitosan from shrimp shell using ultrasound followed by subcritical water hydrolysis. Food Chemistry 2024, 441, 138248. [Google Scholar] [CrossRef]
- Barroso, R.P.; Berlim, L.S.; Ito, A.S.; Costa-Filho, A.J. In vitro antioxidant properties of golden grass (Syngonanthus nitens) by electron paramagnetic resonance. Food Sci. Nutr. 2019, 7, 1353–1360. [Google Scholar] [CrossRef] [PubMed]
- Silva, K.D.R.R.; Sirasa, M.S.F. Antioxidant properties of selected fruit cultivars grown in Sri Lanka. Food Chem. 2018, 238, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Coto, E.; Fernandez, N.; Garcia, J.J.; Diez, M.J.; Sahagun, A.M.; Sierra, M. Assessment of the antioxidant/Hypolipidemic relationship of Sideritis hyssopifolia in an experimental animal model. Molecules 2019, 24, 2049. [Google Scholar] [CrossRef] [PubMed]
- Shui, G.; Leong, L.P. Residue from star fruit as valuable source for functional food ingredients and antioxidant nutraceuticals. Food Chem. 2006, 97, 277–284. [Google Scholar] [CrossRef]
- Suleria, H.A.R.; Barrow, C.J.; Dunshea, F.R. Screening and characterization of phenolic compounds and their antioxidant capacity in different fruit peels. Foods 2020, 9, 1206. [Google Scholar] [CrossRef]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Tran, T.N.; Doan, C.T.; Nguyen, V.B.; Nguyen, A.D.; Wang, S.L. Conversion of fishery waste to proteases by Streptomyces speibonae and their application in antioxidant preparation. Fishes 2022, 7, 140. [Google Scholar] [CrossRef]
Run | pH | Temperature (°C) | [E]/[S] Ratio (U/g) | Incubation Time (h) | Reducing Sugar (mg/g) |
---|---|---|---|---|---|
1 | 6 | 60 | 50 | 6 | 452.076 |
2 | 5.5 | 60 | 100 | 6 | 648.131 |
3 | 5.5 | 50 | 100 | 8 | 475.012 |
4 | 5 | 60 | 100 | 4 | 431.106 |
5 | 6 | 60 | 150 | 6 | 473.462 |
6 | 6 | 70 | 100 | 6 | 128.964 |
7 | 6 | 60 | 100 | 4 | 453.864 |
8 | 5.5 | 70 | 150 | 6 | 226.115 |
9 | 5.5 | 70 | 50 | 6 | 158.413 |
10 | 5 | 60 | 100 | 8 | 462.393 |
11 | 5.5 | 60 | 50 | 4 | 470.580 |
12 | 5.5 | 70 | 100 | 4 | 217.208 |
13 | 5 | 60 | 50 | 6 | 311.006 |
14 | 6 | 50 | 100 | 6 | 318.300 |
15 | 6 | 60 | 100 | 8 | 544.153 |
16 | 5 | 50 | 100 | 6 | 277.955 |
17 | 5.5 | 60 | 150 | 4 | 601.567 |
18 | 5.5 | 50 | 150 | 6 | 487.753 |
19 | 5.5 | 60 | 100 | 6 | 669.128 |
20 | 5.5 | 50 | 100 | 4 | 366.947 |
21 | 5.5 | 50 | 50 | 6 | 375.350 |
22 | 5 | 70 | 100 | 6 | 98.181 |
23 | 5.5 | 70 | 100 | 8 | 260.548 |
24 | 5.5 | 60 | 150 | 8 | 624.451 |
25 | 5.5 | 60 | 50 | 8 | 609.232 |
26 | 5.5 | 60 | 100 | 6 | 660.545 |
27 | 5 | 60 | 150 | 6 | 561.195 |
Parameter Estimates | ||||||
---|---|---|---|---|---|---|
Term | Coefficient | SE Coefficient | T | p | VIF | Tolerance |
Constant | 659.268 | 11.784 | 55.946 | <0.0001 | ||
A | 19.082 | 5.892 | 3.239 | 0.0071 | 1.00 | 1.00 |
B | −100.991 | 5.892 | −17.140 | <0.0001 | 1.00 | 1.00 |
C | 49.824 | 5.892 | 8.456 | <0.0001 | 1.00 | 1.00 |
D | 36.210 | 5.892 | 6.146 | <0.0001 | 1.00 | 1.00 |
A × B | −2.391 | 10.205 | −0.234 | 0.8187 | 1.00 | 1.00 |
A × C | −57.201 | 10.205 | −5.605 | 0.0001 | 1.00 | 1.00 |
A × D | 14.751 | 10.205 | 1.445 | 0.1740 | 1.00 | 1.00 |
B × C | −11.175 | 10.205 | −1.095 | 0.2950 | 1.00 | 1.00 |
B × D | −16.181 | 10.205 | −1.586 | 0.1388 | 1.00 | 1.00 |
C × D | −28.942 | 10.205 | −2.836 | 0.0150 | 1.00 | 1.00 |
A2 | −156.628 | 8.838 | −17.722 | <0.0001 | 1.25 | 0.80 |
B2 | −296.867 | 8.838 | −33.590 | <0.0001 | 1.25 | 0.80 |
C2 | −51.810 | 8.838 | −5.862 | 0.0001 | 1.25 | 0.80 |
D2 | −31.078 | 8.838 | −3.516 | 0.0043 | 1.25 | 0.80 |
Analysis of Variance | ||||||
Source | Degrees of freedom (DF) | Sum of squares (SS) | Mean square (MS) | F | p | |
Model | 14 | 738,051.414 | 52,717.958 | 126.546 | <0.0001 | |
Error | 12 | 4999.084 | 416.590 | |||
Lack of Fit | 10 | 4776.217 | 477.622 | 4.286 | 0.2039 | |
Pure Error | 2 | 222.867 | 111.434 | |||
Total (Model + Error) | 26 | 743,050.498 | 28,578.865 | |||
Model Summary | ||||||
R2 | 99.33% | |||||
Adjusted R2 | 98.54% | |||||
Predicted R2 | 96.23% | |||||
S (Root Mean Square Error) | 20.411 |
AEAC (mg AA/100 g) | Ref. | ||
---|---|---|---|
DPPH Assay | ABTS Assay | ||
COS1 | 1246.926 ± 26.456 | 3673.483 ± 268.560 | |
COS2 | 391.311 ± 19.457 | 1286.665 ± 32.430 | |
Golden grass (Syngonanthus nitens) | 1485 ± 198 | [31] | |
Tangerine peel | 913 ± 84 | [31] | |
Banana pulp | 165 ± 111 | [31] | |
Banana peel | 883 ± 150 | [31] | |
Fresh Gala apples | 136.0 ± 6.6 | 205.4 ± 5.6 | [29] |
Gooseberry | 111.25 | [32] | |
Sideritis hyssopifolia | 1.808–2.419 | [33] | |
Star fruit residue | 3412 ± 290 | 3490 ± 310 | [34] |
Grapefruit peel | 9.17 ± 0.19 | 10.79 ± 0.56 | [35] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doan, C.T.; Tran, T.N.; Nguyen, A.D.; Wang, S.-L. Enzymatic Production of Chitooligosaccharide Using a GH Family 46 Chitosanase from Paenibacillus elgii and Its Antioxidant Activity. Catalysts 2024, 14, 761. https://doi.org/10.3390/catal14110761
Doan CT, Tran TN, Nguyen AD, Wang S-L. Enzymatic Production of Chitooligosaccharide Using a GH Family 46 Chitosanase from Paenibacillus elgii and Its Antioxidant Activity. Catalysts. 2024; 14(11):761. https://doi.org/10.3390/catal14110761
Chicago/Turabian StyleDoan, Chien Thang, Thi Ngoc Tran, Anh Dzung Nguyen, and San-Lang Wang. 2024. "Enzymatic Production of Chitooligosaccharide Using a GH Family 46 Chitosanase from Paenibacillus elgii and Its Antioxidant Activity" Catalysts 14, no. 11: 761. https://doi.org/10.3390/catal14110761
APA StyleDoan, C. T., Tran, T. N., Nguyen, A. D., & Wang, S.-L. (2024). Enzymatic Production of Chitooligosaccharide Using a GH Family 46 Chitosanase from Paenibacillus elgii and Its Antioxidant Activity. Catalysts, 14(11), 761. https://doi.org/10.3390/catal14110761