Non-Symmetrically Fused Bis(arylimino)pyridines with para-Phenyl Substitution: Exploring Their Use as N′,N,N″-Supports in Iron Ethylene Polymerization Catalysis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of Fe1–Fe5
2.2. Ethylene Polymerization Investigations Using Fe1–Fe5
2.2.1. Polymerization Studies Using Fe1–Fe5 under Activation with MMAO
2.2.2. Polymerization Studies Using Fe1–Fe5 under Activation with MAO
2.3. Structural Analysis of the Polyethylene
3. Materials and Methods
3.1. General Considerations
3.2. Synthesis of [N,N-diaryl-11-phenyl-1,2,3,7,8,9,10-heptahydrocyclohepta[b]quinoline-4,6-diimine]iron(II) Chloride (Fe1–Fe5)
3.2.1. Aryl = 2,6-Dimethylphenyl (Fe1)
3.2.2. Aryl = 2,6-Diethylphenyl (Fe2)
3.2.3. Aryl = 2,6-Diisopropylphenyl (Fe3)
3.2.4. Aryl = 2,4,6-Trimethylphenyl (Fe4)
3.2.5. Aryl = 2,6-Diethyl-4-methylphenyl (Fe5)
3.3. Polymerization Studies
3.3.1. Ethylene Polymerization at 1 Atm Ethylene Pressure
3.3.2. Ethylene Polymerization at 5 Atm or 10 Atm Ethylene Pressure
3.4. Single Crystal X-ray Diffraction Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Small, B.L.; Brookhart, M.; Bennett, A.M.A. Highly Active Iron and Cobalt Catalysts for the Polymerization of Ethylene. J. Am. Chem. Soc. 1998, 120, 4049–4050. [Google Scholar] [CrossRef]
- Britovsek, G.J.P.; Gibson, V.C.; McTavish, S.J.; Solan, G.A.; White, A.J.P.; Williams, D.J.; Britovsek, G.J.P.; Kimberley, B.S.; Maddox, P.J. Novel olefin polymerization catalysts based on iron and cobalt. Chem. Commun. 1998, 849–850. [Google Scholar] [CrossRef]
- Small, B.L.; Brookhart, M. Iron-Based Catalysts with Exceptionally High Activities and Selectivities for Oligomerization of Ethylene to Linear α-Olefins. J. Am. Chem. Soc. 1998, 120, 7143–7144. [Google Scholar] [CrossRef]
- Britovsek, G.J.P.; Mastroianni, S.; Solan, G.A.; Baugh, S.P.D.; Redshaw, C.; Gibson, V.C.; White, A.J.P.; Williams, D.J.; Elsegood, M.R.J. Oligomerisation of Ethylene by Bis(imino)pyridyliron and -cobalt Complexes. Chem. Eur. J. 2000, 6, 2221–2231. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Solan, G.A.; Zhang, W.; Sun, W.-H. Carbocyclic-fused N,N,N-pincer ligands as ring-strain adjustable supports for iron and cobalt catalysts in ethylene oligo-/polymerization. Coord. Chem. Rev. 2018, 363, 92–108. [Google Scholar] [CrossRef]
- Gibson, V.C.; Redshaw, C.; Solan, G.A. Bis(imino)pyridines: Surprisingly Reactive Ligands and a Gateway to New Families of Catalysts. Chem. Rev. 2007, 107, 1745–1776. [Google Scholar] [CrossRef]
- Bianchini, C.; Giambastiani, G.; Luconi, L.; Meli, A. Olefin oligomerization, homopolymerization and copolymerization by late transition metals supported by (imino)pyridine ligands. Coord. Chem. Rev. 2010, 254, 431–455. [Google Scholar] [CrossRef]
- Britovsek, G.J.P.; Bruce, M.; Gibson, V.C.; Kimberley, B.S.; Maddox, P.J.; Mastroianni, S.; McTavish, S.J.; Redshaw, C.; Solan, G.A.; Stromberg, S.; et al. Iron and Cobalt Ethylene Polymerization Catalysts Bearing 2,6-Bis(Imino)Pyridyl Ligands: Synthesis, Structures, and Polymerization Studies. J. Am. Chem. Soc. 1999, 121, 8728–8740. [Google Scholar] [CrossRef]
- Ittel, S.D.; Johnson, L.K.; Brookhart, M. Late-Metal Catalysts for Ethylene Homo- and Copolymerization. Chem. Rev. 2000, 100, 1169–1204. [Google Scholar] [CrossRef]
- Gibson, V.C.; Solan, G.A. Olefin Oligomerizations and Polymerizations Catalyzed by Iron and Cobalt Complexes Bearing Bis(imino)pyridine Ligands. In Catalysis without Precious Metals; Bullock, R.M., Ed.; Wiley-VCH: Weinheim, Germany, 2010; pp. 111–141. [Google Scholar]
- Gibson, V.C.; Solan, G.A. Iron-Based and Cobalt-Based Olefin Polymerisation Catalysts. In Metal Catalysts in Olefin Polymerization; Guan, Z., Ed.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 107–158. [Google Scholar]
- Sun, W.-H.; Jie, S.; Zhang, S.; Zhang, W.; Song, Y.; Ma, H. Iron Complexes Bearing 2-Imino-1,10-phenanthrolinyl Ligands as Highly Active Catalysts for Ethylene Oligomerization. Organometallics 2006, 25, 666–677. [Google Scholar] [CrossRef]
- Pelletier, J.D.A.; Champouret, Y.D.M.; Cadarso, J.; Clowes, L.; Gañete, M.; Singh, K.; Thanarajasingham, V.; Solan, G.A. Electronically variable imino-phenanthrolinyl-cobalt complexes; synthesis, structures and ethylene oligomerisation studies. J. Organomet. Chem. 2006, 691, 4114–4123. [Google Scholar] [CrossRef]
- Jie, S.; Zhang, S.; Sun, W.-H.; Kuang, X.; Liu, T.; Guo, J. Iron(II) complexes ligated by 2-imino-1,10-phenanthrolines: Preparation and catalytic behavior toward ethylene oligomerization. J. Mol. Catal. A Chem. 2007, 269, 85–96. [Google Scholar] [CrossRef]
- Appukuttan, V.K.; Liu, Y.; Son, B.C.; Ha, C.-S.; Suh, H.; Kim, I. Iron and Cobalt Complexes of 2,3,7,8-Tetrahydroacridine-4,5(1H,6H)-diimine Sterically Modulated by Substituted Aryl Rings for the Selective Oligomerization to Polymerization of Ethylene. Organometallics 2011, 30, 2285–2294. [Google Scholar] [CrossRef]
- Zhang, W.; Chai, W.; Sun, W.-H.; Hu, X.; Redshaw, C.; Hao, X. 2-(1-(Arylimino)ethyl)-8-arylimino-5,6,7-trihydroquinoline Iron(II) Chloride Complexes: Synthesis, Characterization, and Ethylene Polymerization Behavior. Organometallics 2012, 31, 5039–5048. [Google Scholar] [CrossRef]
- Sun, W.-H.; Kong, S.; Chai, W.; Shiono, T.; Redshaw, C.; Hu, X.; Guo, C.; Hao, X. 2-(1-(Arylimino)ethyl)-8-arylimino-5,6,7-trihydroquinolylcobalt dichloride: Synthesis and polyethylene wax formation. Appl. Catal. A Gen. 2012, 447–448, 67–73. [Google Scholar] [CrossRef]
- Zhang, Y.; Suo, H.; Huang, F.; Liang, T.; Hu, X.; Sun, W.H. Thermo-stable 2-(arylimino)benzylidene-9-arylimino-5,6,7,8-tetrahydro cyclohepta[b]pyridyliron(II) precatalysts toward ethylene polymerization and highly linear polyethylenes. J. Polym. Sci. Part A Polym. Chem. 2016, 55, 830–842. [Google Scholar] [CrossRef]
- Du, S.; Zhang, W.; Yue, E.; Huang, F.; Liang, T.; Sun, W.H. α,α′-Bis(arylimino)-2,3:5,6-bis(pentamethylene)pyridylcobalt Chlorides: Synthesis, Characterization, and Ethylene Polymerization Behavior. Eur. J. Inorg. Chem. 2016, 2016, 1748–1755. [Google Scholar] [CrossRef]
- Du, S.; Wang, X.; Zhang, W.; Flisak, Z.; Sun, Y.; Sun, W.-H. A practical ethylene polymerization for vinyl-polyethylenes: Synthesis, characterization and catalytic behavior of α,α′-bisimino-2,3:5,6-bis(pentamethylene)pyridyliron chlorides. Polym. Chem. 2016, 7, 4188–4197. [Google Scholar] [CrossRef]
- Wang, Z.; Solan, G.A.; Mahmood, Q.; Liu, Q.; Ma, Y.; Hao, X.; Sun, W.-H. Bis(imino)pyridines Incorporating Doubly Fused Eight-Membered Rings as Conformationally Flexible Supports for Cobalt Ethylene Polymerization Catalysts. Organometallics 2018, 37, 380–389. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, R.; Zhang, W.; Solan, G.A.; Liu, Q.; Liang, T.; Sun, W.-H. Enhancing thermostability of iron ethylene polymerization catalysts through N,N,N-chelation of doubly fused α,α′-bis(arylimino)-2,3:5,6-bis(hexamethylene)pyridines. Catal. Sci. Technol. 2019, 9, 1933–1943. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, Y.; Guo, J.; Liu, Q.; Solan, G.A.; Liang, T.; Sun, W.-H. Bis(imino)pyridines fused with 6- and 7-membered carbocylic rings as N,N,N-scaffolds for cobalt ethylene polymerization catalysts. Dalton Trans. 2019, 48, 2582–2591. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Solan, G.A.; Ma, Y.; Liu, Q.; Liang, T.; Sun, W.-H. Fusing Carbocycles of Inequivalent Ring Size to a Bis(imino)pyridine-Iron Ethylene Polymerization Catalyst: Distinctive Effects on Activity, PE Molecular Weight, and Dispersity. Research 2019, 2019, 9426063. [Google Scholar] [CrossRef] [PubMed]
- Mazzolini, J.; Boyron, O.; Monteil, V.; Gigmes, D.; Bertin, D.; D’Agosto, F.; Boisson, C. Polyethylene End Functionalization Using Radical-Mediated Thiol−Ene Chemistry: Use of Polyethylenes Containing Alkene End Functionality. Macromolecules 2011, 44, 3381–3387. [Google Scholar] [CrossRef]
- Wang, X.; Nozaki, K. Selective Chain-End Functionalization of Polar Polyethylenes: Orthogonal Reactivity of Carbene and Polar Vinyl Monomers in Their Copolymerization with Ethylene. J. Am. Chem. Soc. 2018, 140, 15635–15640. [Google Scholar] [CrossRef] [PubMed]
- Amin, S.B.; Marks, T.J. Versatile Pathways for In Situ Polyolefin Functionalization with Heteroatoms: Catalytic Chain Transfer. Angew. Chem. Int. Ed. 2008, 47, 2006–2025. [Google Scholar] [CrossRef] [PubMed]
- Cámpora, J.; Naz, A.M.; Palma, P.; Rodríguez-Delgado, A.; Álvarez, E.; Tritto, I.; Boggioni, L. Iron and Cobalt Complexes of 4-Alkyl-2,6-diiminopyridine Ligands: Synthesis and Ethylene Polymerization Catalysis. Eur. J. Inorg. Chem. 2008, 2008, 1871–1879. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Z.; Zhang, Q.; Zou, S.; Ma, Y.; Solan, G.A.; Zhang, W.; Sun, W.-H. Exploring Long Range para-Phenyl Effects in Unsymmetrically Fused bis(imino)pyridine-Cobalt Ethylene Polymerization Catalysts. Catalysts 2023, 13, 1387. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, W.; Wang, Z.; Solan, G.A.; Liang, T.; Sun, W.-H. Doubly fused N,N,N-iron ethylene polymerization catalysts appended with fluoride substituents; probing catalytic performance via a combined experimental and MLR study. Catal. Sci. Technol. 2021, 11, 4605–4618. [Google Scholar] [CrossRef]
- Masuda, J.D.; Wei, P.; Stephan, D.W. Nickel and palladium phosphinimine-imine ligand complexes. Dalton Trans. 2003, 18, 3500–3505. [Google Scholar] [CrossRef]
- Addison, A.W.; Rao, T.N. Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane]copper(II) perchlorate. J. Chem. Soc. Dalton Trans. 1984, 1349–1356. [Google Scholar] [CrossRef]
- Long, Z.; Wu, B.; Yang, P.; Li, G.; Liu, Y.; Yang, X.-J. Synthesis and characterization of para-nitro substituted 2,6-bis(phenylimino)pyridyl Fe(II) and Co(II) complexes and their ethylene polymerization properties. J. Organomet. Chem. 2009, 694, 3793–3799. [Google Scholar] [CrossRef]
- Guo, L.; Gao, H.; Zhang, L.; Zhu, F.; Wu, Q. An Unsymmetrical Iron(II) Bis(imino)pyridyl Catalyst for Ethylene Polymerization: Effect of a Bulky Ortho Substituent on the Thermostability and Molecular Weight of Polyethylene. Organometallics 2010, 29, 2118–2125. [Google Scholar] [CrossRef]
- Liu, T.; Ma, Y.; Solan, G.A.; Sun, Y.; Sun, W.-H. Unimodal polyethylenes of high linearity and narrow dispersity by using ortho-4,4′-dichlorobenzhydryl-modified bis(imino)pyridyl-iron catalysts. New J. Chem. 2023, 47, 5786–5795. [Google Scholar] [CrossRef]
- Bianchini, C.; Giambastiani, G.; Rios, I.G.; Mantovani, G.; Meli, A.; Segarra, A.M. Ethylene oligomerization, homopolymerization and copolymerization by iron and cobalt catalysts with 2,6-(bis-organylimino)pyridyl ligands. Coord. Chem. Rev. 2006, 250, 1391–1418. [Google Scholar] [CrossRef]
- Han, M.; Oleynik, I.I.; Liu, M.; Ma, Y.; Oleynik, I.V.; Solan, G.A.; Liang, T.; Sun, W.H. Ring size enlargement in an ortho -cycloalkyl-substituted bis(imino)pyridine-cobalt ethylene polymerization catalyst and its impact on performance and polymer properties. Appl. Organomet. Chem. 2022, 36, e6529. [Google Scholar] [CrossRef]
- Zhang, Q.; Zuo, Z.; Ma, Y.; Liang, T.; Yang, X.; Sun, W.-H. Fluorinated 2,6-bis(arylimino)pyridyl iron complexes targeting bimodal dispersive polyethylenes: Probing chain termination pathways via a combined experimental and DFT study. Dalton Trans. 2022, 51, 8290–8302. [Google Scholar] [CrossRef] [PubMed]
- Dabiri, M.; Baghbanzadeh, M.; Nikcheh, M.S. Oxalic Acid: An Efficient and Cost-Effective Organic Catalyst for the Friedländer Quinoline Synthesis under Solvent-Free Conditions. Monatsh. Chem. 2007, 138, 1249–1252. [Google Scholar] [CrossRef]
- Bell, T.W.; Khasanov, A.B.; Drew, M.G.B. Role of Pyridine Hydrogen-Bonding Sites in Recognition of Basic Amino Acid Side Chains. J. Am. Chem. Soc. 2002, 124, 14092–14103. [Google Scholar] [CrossRef]
- Vierhapper, F.W.; Eliel, E.L. Selective Hydrogenation of Quinoline and Its Homologs, Isoquinoline, and Phenyl-Substituted Pyridines in the Benzene Ring. J. Org. Chem. Vol. 1975, 40, 2729–2734. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. C 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. A 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Fulmer, G.R.; Miller, A.J.M.; Sherden, N.H.; Gottlieb, H.E.; Nudelman, A.; Stoltz, B.M.; Bercaw, J.E.; Goldberg, K.I. NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist. Organometallics 2010, 29, 2176–2179. [Google Scholar] [CrossRef]
Fe2 | Fe3 | |
---|---|---|
Bond lengths (Å) | ||
Fe(1)–N(2) | 2.142(5) | 2.076(3) |
Fe(1)–N(1) | 2.241(5) | 2.228(2) |
Fe(1)–N(3) | 2.240(5) | 2.169(3) |
Fe(1)–Cl(1) | 2.2824(18) | 2.2537(10) |
Fe(1)–Cl(2) | 2.3023(19) | 2.3177(9) |
N(1)–C(2) | 1.277(8) | 1.208(15) |
N(1)–C(21) | 1.441(7) | 1.443(4) |
N(3)–C(13) | 1.286(9) | 1.281(15) |
N(3)–C(33) | 1.436(8) | 1.447(4) |
Bond angles (°) | ||
Cl(1)–Fe(1)–Cl(2) | 107.94(9) | 116.77(4) |
N(2)–Fe(1)–Cl(1) | 137.74(15) | 152.59(9) |
N(2)–Fe(1)–Cl(2) | 114.30(15) | 90.63(8) |
N(1)–Fe(1)–Cl(1) | 103.03(14) | 98.63(7) |
N(1)–Fe(1)–Cl(2) | 98.74(15) | 102.38(7) |
N(3)–Fe(1)–Cl(1) | 99.50(15) | 100.58(8) |
N(3)–Fe(1)–Cl(2) | 99.99(16) | 99.99(8) |
N(3)–Fe(1)–N(1) | 144.49(19) | 139.70(11) |
N(2)–Fe(1)–N(1) | 72.52(18) | 73.13(9) |
N(2)–Fe(1)–N(3) | 72.32(18) | 73.54(10) |
Entry | Precat. | Al:Fe | T (°C) | t (min) | Mass of PE (g) | Activity b | Mwc | Mw/Mnc | Tm (°C) d |
---|---|---|---|---|---|---|---|---|---|
1 | Fe4 | 2500 | 40 | 30 | 5.14 | 10.28 | 51.6 | 14.2 | 131.1 |
2 | Fe4 | 2500 | 50 | 30 | 8.69 | 17.38 | 35.6 | 10.7 | 129.8 |
3 | Fe4 | 2500 | 60 | 30 | 9.57 | 19.14 | 9.8 | 3.1 | 130.0 |
4 | Fe4 | 2500 | 70 | 30 | 8.91 | 17.82 | 4.8 | 1.5 | 127.7 |
5 | Fe4 | 2500 | 80 | 30 | 3.66 | 7.32 | 3.7 | 1.5 | 128.8 |
6 | Fe4 | 1500 | 60 | 30 | 2.57 | 5.14 | 46.0 | 2.8 | 132.4 |
7 | Fe4 | 1750 | 60 | 30 | 9.75 | 19.50 | 36.2 | 2.7 | 133.1 |
8 | Fe4 | 2000 | 60 | 30 | 17.05 | 34.10 | 81.3 | 9.6 | 131.8 |
9 | Fe4 | 2250 | 60 | 30 | 12.50 | 25.00 | 85.1 | 7.0 | 132.8 |
10 | Fe4 | 2000 | 60 | 5 | 8.12 | 97.44 | 13.7 | 3.5 | 128.8 |
11 | Fe4 | 2000 | 60 | 15 | 11.27 | 45.08 | 23.0 | 3.9 | 131.2 |
12 | Fe4 | 2000 | 60 | 45 | 18.01 | 24.01 | 90.6 | 9.1 | 135.3 |
13 | Fe4 | 2000 | 60 | 60 | 18.24 | 18.24 | 94.3 | 9.2 | 132.6 |
14 e | Fe4 | 2000 | 60 | 30 | 0.61 | 1.22 | 0.8 | 1.3 | 120.2 |
15 f | Fe4 | 2000 | 60 | 30 | 8.98 | 17.96 | 79.0 | 7.4 | 132.0 |
16 | Fe1 | 2000 | 60 | 30 | 12.89 | 25.78 | 26.4 | 6.4 | 129.5 |
17 | Fe2 | 2000 | 60 | 30 | 14.67 | 29.34 | 70.0 | 6.9 | 131.9 |
18 | Fe3 | 2000 | 60 | 30 | 5.33 | 10.66 | 51.6 | 8.1 | 131.1 |
19 | Fe5 | 2000 | 60 | 30 | 3.82 | 7.64 | 69.4 | 13.6 | 130.1 |
Entry | Precat. | Al:Fe | T (°C) | t (min) | Mass of PE (g) | Activity b | Mwc | Mw/Mnc | Tm (°C) d |
---|---|---|---|---|---|---|---|---|---|
1 | Fe4 | 2500 | 40 | 30 | 6.04 | 12.08 | 95.5 | 18.5 | 130.2 |
2 | Fe4 | 2500 | 50 | 30 | 10.03 | 20.06 | 72.4 | 11.7 | 130.7 |
3 | Fe4 | 2500 | 60 | 30 | 15.29 | 30.58 | 65.0 | 8.8 | 131.7 |
4 | Fe4 | 2500 | 70 | 30 | 9.85 | 19.70 | 18.4 | 3.0 | 130.3 |
5 | Fe4 | 2500 | 80 | 30 | 5.05 | 10.10 | 4.9 | 1.5 | 132.7 |
6 | Fe4 | 1000 | 60 | 30 | 10.54 | 21.08 | 161.2 | 8.4 | 132.1 |
7 | Fe4 | 1500 | 60 | 30 | 12.52 | 25.04 | 152.5 | 13.8 | 132.3 |
8 | Fe4 | 2000 | 60 | 30 | 17.96 | 35.92 | 129.0 | 11.4 | 132.3 |
9 | Fe4 | 3000 | 60 | 30 | 14.80 | 29.60 | 32.3 | 4.3 | 130.7 |
10 | Fe4 | 2000 | 60 | 5 | 7.08 | 84.96 | 16.8 | 3.8 | 129.4 |
11 | Fe4 | 2000 | 60 | 15 | 11.05 | 44.20 | 29.7 | 6.1 | 130.0 |
12 | Fe4 | 2000 | 60 | 45 | 18.13 | 24.17 | 142.1 | 15.4 | 131.5 |
13 | Fe4 | 2000 | 60 | 60 | 18.65 | 18.65 | 168.0 | 16.6 | 133.0 |
14 e | Fe4 | 2000 | 60 | 30 | 0.84 | 1.68 | 3.4 | 4.0 | 124.8 |
15 f | Fe4 | 2000 | 60 | 30 | 7.04 | 14.08 | 130.7 | 13.0 | 132.7 |
16 | Fe1 | 2000 | 60 | 30 | 14.10 | 28.20 | 48.9 | 8.8 | 131.1 |
17 | Fe2 | 2000 | 60 | 30 | 10.18 | 20.36 | 59.2 | 8.5 | 131.4 |
18 | Fe3 | 2000 | 60 | 30 | 6.52 | 13.04 | 35.2 | 7.0 | 131.4 |
19 | Fe5 | 2000 | 60 | 30 | 8.73 | 17.46 | 50.2 | 8.8 | 132.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Wang, Z.; Zhang, Q.; Ma, Y.; Solan, G.A.; Sun, Y.; Sun, W.-H. Non-Symmetrically Fused Bis(arylimino)pyridines with para-Phenyl Substitution: Exploring Their Use as N′,N,N″-Supports in Iron Ethylene Polymerization Catalysis. Catalysts 2024, 14, 213. https://doi.org/10.3390/catal14030213
Wang Y, Wang Z, Zhang Q, Ma Y, Solan GA, Sun Y, Sun W-H. Non-Symmetrically Fused Bis(arylimino)pyridines with para-Phenyl Substitution: Exploring Their Use as N′,N,N″-Supports in Iron Ethylene Polymerization Catalysis. Catalysts. 2024; 14(3):213. https://doi.org/10.3390/catal14030213
Chicago/Turabian StyleWang, Yizhou, Zheng Wang, Qiuyue Zhang, Yanping Ma, Gregory A. Solan, Yang Sun, and Wen-Hua Sun. 2024. "Non-Symmetrically Fused Bis(arylimino)pyridines with para-Phenyl Substitution: Exploring Their Use as N′,N,N″-Supports in Iron Ethylene Polymerization Catalysis" Catalysts 14, no. 3: 213. https://doi.org/10.3390/catal14030213
APA StyleWang, Y., Wang, Z., Zhang, Q., Ma, Y., Solan, G. A., Sun, Y., & Sun, W.-H. (2024). Non-Symmetrically Fused Bis(arylimino)pyridines with para-Phenyl Substitution: Exploring Their Use as N′,N,N″-Supports in Iron Ethylene Polymerization Catalysis. Catalysts, 14(3), 213. https://doi.org/10.3390/catal14030213