Recent Advances of PtCu Alloy in Electrocatalysis: Innovations and Applications
Abstract
:1. Introduction
2. Synthesis of PtCu Alloy Electrocatalysts
2.1. Modification of Innovative Supports
2.1.1. Modified Carbon Supports
2.1.2. Metal Oxide Support Modification
2.2. Reactant Selection and Synthesis Strategies
2.2.1. Surfactant-Free Synthesis
2.2.2. Special Intermediate-Assisted Synthesis
2.2.3. Advanced Template Strategy
2.3. Post-Processing: Advanced High-Temperature Processing Strategies
2.3.1. Exploration of Annealing Mechanisms and Surface Overcoating
2.3.2. Novel High-Temperature Post-Processing Strategy
3. Application of PtCu Alloy Electrocatalysis
3.1. Fundamental Level Application
3.1.1. Hydrogen Evolution Reaction (HER)
3.1.2. Alcohol Oxidation Reaction (AOR)
Methanol (C1)
Ethanol (C2)
C3 Alcohols
3.1.3. Nitrogen-Related Reaction
3.1.4. Oxygen Reduction Reaction (ORR)
3.2. Device Level Application
3.2.1. Electrolyzer
3.2.2. Fuel Cell
4. Conclusions and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fernández, P.S.; Fernandes Gomes, J.; Angelucci, C.A.; Tereshchuk, P.; Martins, C.A.; Camara, G.A.; Martins, M.a.E.; Da Silva, J.L.F.; Tremiliosi-Filho, G. Establishing a Link between Well-Ordered Pt(100) Surfaces and Real Systems: How Do Random Superficial Defects Influence the Electro-oxidation of Glycerol? ACS Catal. 2015, 5, 4227–4236. [Google Scholar] [CrossRef]
- Ipadeola, A.K.; Eid, K.; Lebechi, A.K.; Abdullah, A.M.; Ozoemena, K.I. Porous multi-metallic Pt-based nanostructures as efficient electrocatalysts for ethanol oxidation: A mini-review. Electrochem. Commun. 2022, 140, 107330. [Google Scholar] [CrossRef]
- Jin, X.; Zhao, M.; Shen, J.; Yan, W.; He, L.; Thapa, P.S.; Ren, S.; Subramaniam, B.; Chaudhari, R.V. Exceptional performance of bimetallic Pt1Cu3/TiO2 nanocatalysts for oxidation of gluconic acid and glucose with O2 to glucaric acid. J. Catal. 2015, 330, 323–329. [Google Scholar] [CrossRef]
- Xu, H.; Wang, A.-L.; Tong, Y.-X.; Li, G.-R. Enhanced Catalytic Activity and Stability of Pt/CeO2/PANI Hybrid Hollow Nanorod Arrays for Methanol Electro-oxidation. ACS Catal. 2016, 6, 5198–5206. [Google Scholar] [CrossRef]
- Zhang, B.; Guo, X.-W.; Liang, H.; Ge, H.; Gu, X.; Chen, S.; Yang, H.; Qin, Y. Tailoring Pt–Fe2O3 Interfaces for Selective Reductive Coupling Reaction To Synthesize Imine. ACS Catal. 2016, 6, 6560–6566. [Google Scholar] [CrossRef]
- Jiang, B.; Li, C.; Malgras, V.; Imura, M.; Tominaka, S.; Yamauchi, Y. Mesoporous Pt nanospheres with designed pore surface as highly active electrocatalyst. Chem. Sci. 2016, 7, 1575–1581. [Google Scholar] [CrossRef]
- Li, S.; Tang, X.; Jia, H.; Li, H.; Xie, G.; Liu, X.; Lin, X.; Qiu, H.-J. Nanoporous high-entropy alloys with low Pt loadings for high-performance electrochemical oxygen reduction. J. Catal. 2020, 383, 164–171. [Google Scholar] [CrossRef]
- Menshchikov, V.; Alekseenko, A.; Guterman, V.; Nechitailov, A.; Glebova, N.; Tomasov, A.; Spiridonova, O.; Belenov, S.; Zelenina, N.; Safronenko, O. Effective Platinum-Copper Catalysts for Methanol Oxidation and Oxygen Reduction in Proton-Exchange Membrane Fuel Cell. Nanomaterials 2020, 10, 742. [Google Scholar] [CrossRef]
- Wang, Y.J.; Zhao, N.; Fang, B.; Li, H.; Bi, X.T.; Wang, H. Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: Particle size, shape, and composition manipulation and their impact to activity. Chem. Rev. 2015, 115, 3433–3467. [Google Scholar] [CrossRef]
- Yan, W.; Zhang, D.; Zhang, Q.; Sun, Y.; Zhang, S.; Du, F.; Jin, X. Synthesis of PtCu–based nanocatalysts: Fundamentals and emerging challenges in energy conversion. J. Energy Chem. 2022, 64, 583–606. [Google Scholar] [CrossRef]
- Qiu, S.; Li, W.; Pan, X.; Liu, M.; Wu, G.; Xie, Z. PtCu anchored on N,S-codoped electrospinning porous carbon nanofibers for oxygen reduction reaction. Int. J. Hydrogen Energy 2023, 48, 34794–34803. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, K.; Wu, L.; Wang, Y.; Du, X.; Li, J. Charge transfer and spillover effect enabled high-performance titanium dioxide supported PtCu catalyst towards acidic oxygen reduction. Chem. Eng. J. 2024, 481, 148097. [Google Scholar] [CrossRef]
- Su, Z.; Chen, T. Porous Noble Metal Electrocatalysts: Synthesis, Performance, and Development. Small 2021, 17, e2005354. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, S.; Huang, J.; Zhou, H.; Liu, X.; Tan, P.; Chen, H.; Liang, Y.; Pan, J. Microbial synthesis of N, P co-doped carbon supported PtCu catalysts for oxygen reduction reaction. J. Energy Chem. 2023, 84, 486–495. [Google Scholar] [CrossRef]
- Qi, Z.; Xiao, C.; Liu, C.; Goh, T.W.; Zhou, L.; Maligal-Ganesh, R.; Pei, Y.; Li, X.; Curtiss, L.A.; Huang, W. Sub-4 nm PtZn Intermetallic Nanoparticles for Enhanced Mass and Specific Activities in Catalytic Electrooxidation Reaction. J. Am. Chem. Soc. 2017, 139, 4762–4768. [Google Scholar] [CrossRef]
- Nie, M.; Xu, Z.; Wang, Y.; You, H.; Luo, L.; Li, B.; Mutahir, S.; Gan, W.; Yuan, Q. Ultrafast synthesis of efficient TS-PtCoCu/CNTs composite with high feed-to-product conversion rate by Joule heating for electrocatalytic oxidation of ethanol. J. Colloid. Interface Sci. 2024, 660, 334–344. [Google Scholar] [CrossRef]
- Xiao, L.; Wang, Z.; Guan, J. Optimization strategies of covalent organic frameworks and their derivatives for electrocatalytic applications. Adv. Funct. Mater. 2024, 34, 2310195. [Google Scholar] [CrossRef]
- Xiao, L.; Qi, L.; Sun, J.; Husile, A.; Zhang, S.; Wang, Z.; Guan, J. Structural regulation of covalent organic frameworks for advanced electrocatalysis. Nano Energy 2023, 120, 109155. [Google Scholar] [CrossRef]
- Fu, H.; Zhang, N.; Lai, F.; Zhang, L.; Chen, S.; Li, H.; Jiang, K.; Zhu, T.; Xu, F.; Liu, T. Surface-regulated platinum–copper nanoframes in electrochemical reforming of ethanol for efficient hydrogen production. ACS Catal. 2022, 12, 11402–11411. [Google Scholar] [CrossRef]
- Gao, J.; Tang, X.; Du, P.; Li, H.; Yuan, Q.; Xie, G.; Qiu, H.-J. Synergistically coupling ultrasmall PtCu nanoalloys with highly porous CoP nanosheets as an enhanced electrocatalyst for electrochemical hydrogen evolution. Sustain. Energy Fuels 2020, 4, 2551–2558. [Google Scholar] [CrossRef]
- Ge, S.; Zhang, L.; Hou, J.; Liu, S.; Qin, Y.; Liu, Q.; Cai, X.; Sun, Z.; Yang, M.; Luo, J. Cu2O-derived PtCu nanoalloy toward energy-efficient hydrogen production via hydrazine electrolysis under large current density. ACS Appl. Energy Mater. 2022, 5, 9487–9494. [Google Scholar] [CrossRef]
- Kaya, D.; Demiroglu, I.; Isik, I.B.; Isik, H.H.; Çetin, S.K.; Sevik, C.; Ekicibil, A.; Karadag, F. Highly active bimetallic Pt–Cu nanoparticles for the electrocatalysis of hydrogen evolution reactions: Experimental and theoretical insight. Int. J. Hydrogen Energy 2023, 48, 37209–37223. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Y.; Zhao, Y.; Wang, Y.; Zhang, Z.; Wu, T.; Qin, W.; Liu, S.; Jia, B.; Wu, H. Ultrahigh Pt-mass-activity hydrogen evolution catalyst electrodeposited from bulk Pt. Adv. Funct. Mater. 2022, 32, 2112207. [Google Scholar] [CrossRef]
- Zhou, M.; Zhao, Y.; Zhao, X.; Yin, P.F.; Dong, C.K.; Liu, H.; Du, X.W.; Yang, J. Dislocation-Activated Low Platinum-Loaded PtCu Nanoparticles Welded onto the Substrate for Practical Acidic Hydrogen Generation. ACS Appl. Energy Mater. 2024, 7, 3848–3857. [Google Scholar] [CrossRef]
- Tuo, Y.; Lu, Q.; Chen, C.; Liu, T.; Pan, Y.; Zhou, Y.; Zhang, J. The facile synthesis of core–shell PtCu nanoparticles with superior electrocatalytic activity and stability in the hydrogen evolution reaction. RSC Adv. 2021, 11, 26326–26335. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Liu, Q.; Wang, P.; Zhu, J.; Chen, D.; Yang, Y.; Zhao, Y.; Pu, Z.; Mu, S. Molybdenum Carbide-PtCu Nanoalloy Heterostructures on MOF-Derived Carbon toward Efficient Hydrogen Evolution. Small 2021, 17, 2104241. [Google Scholar] [CrossRef]
- Ye, K.; Liu, Y.; Wang, X.; Wang, P.; Cao, K.; Liang, J.; Zuo, Y. Strain-activated porous helical-spiny-like PtCu with exposed high-index facets for efficient alkaline hydrogen evolution. Mater. Today Chem. 2023, 30, 101581. [Google Scholar] [CrossRef]
- Zhang, H.; Guo, X.; Liu, W.; Wu, D.; Cao, D.; Cheng, D. Regulating surface composition of platinum-copper nanotubes for enhanced hydrogen evolution reaction in all pH values. J. Colloid. Interface Sci. 2023, 629, 53–62. [Google Scholar] [CrossRef]
- Kim, H.; Kim, D.; Son, J.I.; Jang, S.; Chung, D.Y. Mixed Potential Driven Self-Cleaning Strategy in Direct Isopropanol Fuel Cells. ACS Catal. 2024, 14, 8480–8487. [Google Scholar] [CrossRef]
- Wang, J.; Yan, H.; Li, X. Synthesis of PtCu rhombic dodecahedral nanoframes decorated with six nanobranches for efficient methanol electrooxidation. Energy Fuels 2022, 36, 3947–3953. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, S.; Sun, S.; Wu, L.; Tian, J.; Wu, Y.; Chen, Y.; Liu, X. Cu Tailoring Pt Enables Branched-Structured Electrocatalysts with High Concave Surface Curvature Toward Efficient Methanol Oxidation. Small 2023, 20, 2307970. [Google Scholar] [CrossRef]
- Zhou, S.; Lv, Z.; Zhao, L.; Zhang, D.; Wang, Z.; Dai, Y.; Li, B.; Starostenko, O.; Lai, J.; Wang, L. Polysulfide modified PtCu intermetallic nanocatalyst with enrichment realizes efficient electrooxidation ethanol to CO2. Nano Res. 2024, 17, 2320–2327. [Google Scholar] [CrossRef]
- Bayat, R.; El Attar, A.; Akin, M.; Bekmezci, M.; El Rhazi, M.; Sen, F. Copper nanoparticle modified chain-like platinum nanocomposites for electro-oxidation of C1-, C2-, and C3-type alcohols. Int. J. Hydrogen Energy 2024, 51, 1577–1586. [Google Scholar] [CrossRef]
- Castagna, R.M.; Sieben, J.M.; Alvarez, A.E.; Duarte, M.M. Electrooxidation of ethanol and glycerol on carbon supported PtCu nanoparticles. Int. J. Hydrogen Energy 2019, 44, 5970–5982. [Google Scholar] [CrossRef]
- Pu, H.; Zhang, T.; Dong, K.; Dai, H.; Zhou, L.; Wang, K.; Bai, S.; Wang, Y.; Deng, Y. Evolution of PtCu tripod nanocrystals to dendritic triangular nanocrystals and study of the electrochemical performance to alcohol electrooxidation. Nanoscale 2021, 13, 20592–20600. [Google Scholar] [CrossRef] [PubMed]
- Sieben, J.M.; Alvarez, A.E.; Sanchez, M.D. Platinum nanoparticles deposited on Cu-doped NiO/C hybrid supports as high-performance catalysts for ethanol and glycerol electrooxidation in alkaline medium. J. Alloys Compd. 2022, 921, 166112. [Google Scholar] [CrossRef]
- Fang, C.; Hu, J.; Jiang, X.; Cui, Z.; Xu, X.; Bi, T. Bifunctional PtCu electrocatalysts for the N 2 reduction reaction under ambient conditions and methanol oxidation. Inorg. Chem. Front. 2020, 7, 1411–1419. [Google Scholar] [CrossRef]
- Prabowo Rahardjo, S.S.; Shih, Y.-J. Electrocatalytic Ammonia Oxidation Mediated by Nickel and Copper Crystallites Decorated with Platinum Nanoparticle (PtM/G, M = Cu, Ni). ACS Sustain. Chem. Eng. 2022, 10, 5043–5054. [Google Scholar] [CrossRef]
- Islam, M.N.; Ahsan, M.; Aoki, K.; Nagao, Y.; Alsafrani, A.E.; Marwani, H.M.; Almahri, A.; Rahman, M.M.; Hasnat, M.A. Development of CuNi immobilized Pt surface to minimize nitrite evolution during electrocatalytic nitrate reduction in neutral medium. J. Environ. Chem. Eng. 2023, 11, 111149. [Google Scholar] [CrossRef]
- Cerrón-Calle, G.A.; Fajardo, A.S.; Sánchez-Sánchez, C.M.; Garcia-Segura, S. Highly reactive Cu-Pt bimetallic 3D-electrocatalyst for selective nitrate reduction to ammonia. Appl. Catal. B 2022, 302, 120844. [Google Scholar] [CrossRef]
- Ding, J.; Li, W.; Chen, Q.; Liu, J.; Tang, S.; Wang, Z.; Chen, L.; Zhang, H. Sustainable ammonia synthesis from air by the integration of plasma and electrocatalysis techniques. Inorg. Chem. Front. 2023, 10, 5762–5771. [Google Scholar] [CrossRef]
- Parkash, A.; Jia, Z.; Tian, T.; Ge, Z.; Yu, C.; Chunli, X. A New Generation of Platinum-Copper Electrocatalysts with Ultra-Low Concentrations of Platinum for Oxygen-Reduction Reactions in Alkaline Media. ChemistrySelect 2020, 5, 3391–3397. [Google Scholar] [CrossRef]
- Kim, H.Y.; Kwon, T.; Ha, Y.; Jun, M.; Baik, H.; Jeong, H.Y.; Kim, H.; Lee, K.; Joo, S.H. Intermetallic PtCu nanoframes as efficient oxygen reduction electrocatalysts. Nano Lett. 2020, 20, 7413–7421. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Cheng, H.; Song, L.; Han, L.; Zhang, R.; Kwon, G.; Ma, L.; Ehrlich, S.N.; Frenkel, A.I.; Yang, J. Rhombohedral ordered intermetallic nanocatalyst boosts the oxygen reduction reaction. ACS Catal. 2020, 11, 184–192. [Google Scholar] [CrossRef]
- Deng, Z.; Gong, Z.; Gong, M.; Wang, X. Multiscale Regulation of Ordered PtCu Intermetallic Electrocatalyst for Highly Durable Oxygen Reduction Reaction. Nano Lett. 2024, 24, 3994–4001. [Google Scholar] [CrossRef] [PubMed]
- Macauley, N.; Papadias, D.D.; Fairweather, J.; Spernjak, D.; Langlois, D.; Ahluwalia, R.; More, K.L.; Mukundan, R.; Borup, R.L. Carbon Corrosion in PEM Fuel Cells and the Development of Accelerated Stress Tests. J. Electrochem. Soc. 2018, 165, F3148–F3160. [Google Scholar] [CrossRef]
- Wang, C.; Ricketts, M.; Soleymani, A.P.; Jankovic, J.; Waldecker, J.; Chen, J. Effect of Carbon Support Characteristics on Fuel Cell Durability in Accelerated Stress Testing. J. Electrochem. Soc. 2021, 168, 044507. [Google Scholar] [CrossRef]
- Yan, Q.-Q.; Yin, P.; Liang, H.-W. Engineering the Electronic Interaction between Metals and Carbon Supports for Oxygen/Hydrogen Electrocatalysis. ACS Mater. Lett. 2021, 3, 1197–1212. [Google Scholar] [CrossRef]
- Nie, Y.; Wei, Z. Surface-confined Pt-based catalysts for strengthening oxygen reduction performance. Prog. Nat. Sci. Mater. Int. 2020, 30, 796–806. [Google Scholar] [CrossRef]
- Yue, R.; Yao, Z.; Geng, J.; Du, Y.; Xu, J.; Yang, P. Facile electrochemical synthesis of a conducting copolymer from 5-aminoindole and EDOT and its use as Pt catalyst support for formic acid electrooxidation. J. Solid State Electrochem. 2012, 17, 751–760. [Google Scholar] [CrossRef]
- Dao, V.-D.; Larina, L.L.; Tran, Q.C.; Bui, V.-T.; Nguyen, V.-T.; Pham, T.-D.; Mohamed, I.M.A.; Barakat, N.A.M.; Huy, B.T.; Choi, H.-S. Evaluation of Pt-based alloy/graphene nanohybrid electrocatalysts for triiodide reduction in photovoltaics. Carbon 2017, 116, 294–302. [Google Scholar] [CrossRef]
- Yoon, S.-W.; Dao, V.-D.; Larina, L.L.; Lee, J.-K.; Choi, H.-S. Optimum strategy for designing PtCo alloy/reduced graphene oxide nanohybrid counter electrode for dye-sensitized solar cells. Carbon 2016, 96, 229–236. [Google Scholar] [CrossRef]
- Zhang, X.; Fan, H.; Lu, X.; Guo, L.; Du, D.; Shan, H.; Geng, L.; Akdim, O.; Huang, X.; Park, G.-S.; et al. Enhanced redox catalysis of electrochemical alcohol oxidation in alkaline medium by using Pt-Cu/C catalyst. J. Alloys Compd. 2022, 926, 166994. [Google Scholar] [CrossRef]
- Yu, J.; Guo, Y.; Dai, Y.; Jin, Z.; Wang, Z.; Wang, F.; Zhu, H. Preparation and properties of polypyrrole-modified carbon black supported Pt3Cu alloy catalyst. New J. Chem. 2023, 47, 17999–18009. [Google Scholar] [CrossRef]
- Liang, X.; Huang, M.; Huang, F.; Peng, X.; Rani, K.K.; Wang, L.; Yang, Z.; Fan, Y.; Chen, D.-H. Composition-adjustable PtCoCu alloy nanoparticles for promoting methanol oxidation reaction. Mol. Catal. 2023, 545, 113225. [Google Scholar] [CrossRef]
- Kamyabi, M.A.; Sharifi Khangheshlaghi, L.; Jadali, S. Efficient methanol electrooxidation on activated pencil graphite electrode modified with PtCu catalyst. J. Appl. Electrochem. 2022, 53, 919–933. [Google Scholar] [CrossRef]
- Da Silva, A.G.M.; Fernandes, C.G.; Hood, Z.D.; Peng, R.; Wu, Z.; Dourado, A.H.B.; Parreira, L.S.; de Oliveira, D.C.; Camargo, P.H.C.; de Torresi, S.I.C. PdPt-TiO2 nanowires: Correlating composition, electronic effects and O-vacancies with activities towards water splitting and oxygen reduction. Appl. Catal. B Environ. 2020, 277, 119177. [Google Scholar] [CrossRef]
- Noh, K.-J.; Im, H.; Lim, C.; Jang, M.G.; Nam, I.; Han, J.W. Tunable nano-distribution of Pt on TiO2 nanotubes by atomic compression control for high-efficient oxygen reduction reaction. Chem. Eng. J. 2022, 427, 131568. [Google Scholar] [CrossRef]
- Ott, S.; Orfanidi, A.; Schmies, H.; Anke, B.; Nong, H.N.; Hubner, J.; Gernert, U.; Gliech, M.; Lerch, M.; Strasser, P. Ionomer distribution control in porous carbon-supported catalyst layers for high-power and low Pt-loaded proton exchange membrane fuel cells. Nat. Mater. 2020, 19, 77–85. [Google Scholar] [CrossRef]
- Tao, L.; Shi, Y.; Huang, Y.-C.; Chen, R.; Zhang, Y.; Huo, J.; Zou, Y.; Yu, G.; Luo, J.; Dong, C.-L.; et al. Interface engineering of Pt and CeO2 nanorods with unique interaction for methanol oxidation. Nano Energy 2018, 53, 604–612. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, Y.; Chang, Y.; Yang, Z.; Song, X.; Zhou, W.; Wang, J.; Li, H. Pt3Cu alloy anchored on nanoporous WO3 with high activity and stability in methanol oxidation. Int. J. Hydrogen Energy 2024, 50, 1441–1449. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhi, H.; Yang, L.; Xu, F. The heat-promoted metal–support interaction of a PtCu/SiO2 carbon-free catalyst for the methanol oxidation and oxygen reduction reactions. RSC Sustain. 2023, 1, 1989–1994. [Google Scholar] [CrossRef]
- Liu, X.; Wang, X.; Zhen, S.; Sun, G.; Pei, C.; Zhao, Z.J.; Gong, J. Support stabilized PtCu single-atom alloys for propane dehydrogenation. Chem. Sci. 2022, 13, 9537–9543. [Google Scholar] [CrossRef] [PubMed]
- Zou, T.; Wang, Y.; Xu, F. Defect-Engineered Charge Transfer in a PtCu/Pr(x)Ce(1-x)O(2) Carbon-Free Catalyst for Promoting the Methanol Oxidation and Oxygen Reduction Reactions. ACS Appl. Mater. Interfaces 2023, 15, 58296–58308. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, B.; Yang, D.; Lv, H.; Zhang, C. Preparation optimization and single cell application of PtNi/C octahedral catalyst with enhanced ORR performance. Electrochim. Acta 2018, 288, 126–133. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Yang, C.; Lu, J.; Cao, L.; Liang, H.-P. Surfactant-assisted implantation strategy for facile construction of Pt-based hybrid electrocatalyst to accelerate oxygen reduction reaction. Mater. Today Energy 2022, 24, 100919. [Google Scholar] [CrossRef]
- Zhang, H.; Zeng, Y.; Cao, L.; Yang, L.; Fang, D.; Yi, B.; Shao, Z. Enhanced electrocatalytic performance of ultrathin PtNi alloy nanowires for oxygen reduction reaction. Front. Energy 2017, 11, 260–267. [Google Scholar] [CrossRef]
- He, W.; Han, X.; Jia, H.; Cai, J.; Zhou, Y.; Zheng, Z. AuPt Alloy Nanostructures with Tunable Composition and Enzyme-like Activities for Colorimetric Detection of Bisulfide. Sci. Rep. 2017, 7, 40103. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, J.; Kuang, Q.; Xie, S.; Jiang, Z.; Xie, Z.; Zheng, L. Cu(2+)-assisted synthesis of hexoctahedral Au-Pd alloy nanocrystals with high-index facets. J. Am. Chem. Soc. 2011, 133, 17114–17117. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, L.; Shi, Y.; Wu, F.; Xu, Y.; Zhou, T.; Niu, W.; Zhang, J.; Xu, G. Copper and iron mediated growth of surfactant-free PtCu and PtFe advanced electrocatalysts for water oxidation and oxygen reduction. Electrochem. Sci. Adv. 2021, 2, e2100033. [Google Scholar] [CrossRef]
- Xiang, H.; Zheng, Y.; Sun, Y.; Guo, T.; Zhang, P.; Li, W.; Kong, S.; Ouzounian, M.; Chen, H.; Li, H.; et al. Bimetallic and postsynthetically alloyed PtCu nanostructures with tunable reactivity for the methanol oxidation reaction. Nanoscale Adv. 2020, 2, 1603–1612. [Google Scholar] [CrossRef] [PubMed]
- Pavlets, A.; Alekseenko, A.; Kozhokar, E.; Pankov, I.; Alekseenko, D.; Guterman, V. Efficient Pt-based nanostructured electrocatalysts for fuel cells: One-pot preparation, gradient structure, effect of alloying, electrochemical performance. Int. J. Hydrogen Energy 2023, 48, 22379–22388. [Google Scholar] [CrossRef]
- Nie, M.; Xu, Z.; Luo, L.; Wang, Y.; Gan, W.; Yuan, Q. One-pot synthesis of ultrafine trimetallic PtPdCu alloy nanoparticles decorated on carbon nanotubes for bifunctional catalysis of ethanol oxidation and oxygen reduction. J. Colloid. Interface Sci. 2023, 643, 26–37. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.; Chen, W.; He, D.; Wan, J.; Pei, J.; Dong, J.; Wang, Y.; An, P.; Jin, Z.; Xing, W. Design of ultrathin Pt-Mo-Ni nanowire catalysts for ethanol electrooxidation. Sci. Adv. 2017, 3, e1603068. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, C.; Wang, W.; Guo, R.; Bi, W.; Guo, Y.; Jin, M. H(2)-Induced coalescence of Pt nanoparticles for the preparation of ultrathin Pt nanowires with high-density planar defects. Nanoscale 2019, 11, 14828–14835. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Gao, W.; Shan, H.; Chen, W.; Shang, W.; Tao, P.; Song, C.; Addiego, C.; Deng, T.; Pan, X.; et al. Platinum-Based Nanowires as Active Catalysts toward Oxygen Reduction Reaction: In Situ Observation of Surface-Diffusion-Assisted, Solid-State Oriented Attachment. Adv. Mater. 2017, 29, 1703460. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.-L.; Yin, P.; Zuo, L.-J.; Yin, S.-Y.; Lin, Y.; Zhang, W.; Chu, S.-Q.; Liang, H.-W.; Fu, X.-Z. Scalable Synthesis of Low-Pt PtCu3 Intermetallic Oxygen Reduction Electrocatalysts via Sulfur-Containing Inorganic Salt-Assisted Strategy. ACS Sustain. Chem. Eng. 2023, 11, 12093–12101. [Google Scholar] [CrossRef]
- Liu, Y.; Sheng, S.; Wu, M.; Wang, S.; Wang, Y.; Yang, H.; Chen, J.; Hao, X.; Zhi, C.; Wang, Y.; et al. Controllable Synthesis of PtIrCu Ternary Alloy Ultrathin Nanowires for Enhanced Ethanol Electrooxidation. ACS Appl. Mater. Interfaces 2023, 15, 3934–3940. [Google Scholar] [CrossRef]
- Chen, G.; Shan, H.; Li, Y.; Bao, H.; Hu, T.; Zhang, L.; Liu, S.; Ma, F. Hollow PtCu nanoparticles encapsulated into a carbon shellviamild annealing of Cu metal–organic frameworks. J. Mater. Chem. A 2020, 8, 10337–10345. [Google Scholar] [CrossRef]
- Zhu, H.; Dai, Y.; Di, S.; Tian, L.; Wang, F.; Wang, Z.; Lu, Y. Bimetallic ZIF-Based PtCuCo/NC Electrocatalyst Pt Supported with an N-Doped Porous Carbon for Oxygen Reduction Reaction in PEM Fuel Cells. ACS Appl. Energy Mater. 2023, 6, 1575–1584. [Google Scholar] [CrossRef]
- Guan, B.Y.; Yu, L.; Lou, X.W. Formation of Asymmetric Bowl-Like Mesoporous Particles via Emulsion-Induced Interface Anisotropic Assembly. J. Am. Chem. Soc. 2016, 138, 11306–11311. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zeng, H.C. Hollowing Sn-doped TiO2 nanospheres via Ostwald ripening. J. Am. Chem. Soc. 2007, 129, 15839–15847. [Google Scholar] [CrossRef]
- Yin, Y.; Rioux, R.M.; Erdonmez, C.K.; Hughes, S.; Somorjai, G.A.; Alivisatos, A.P. Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 2004, 304, 711–714. [Google Scholar] [CrossRef] [PubMed]
- Lou, X.W.; Archer, L.A.; Yang, Z. Hollow Micro-/Nanostructures: Synthesis and Applications. Adv. Mater. 2008, 20, 3987–4019. [Google Scholar] [CrossRef]
- Luo, X.; Fu, C.; Shen, S.; Luo, L.; Zhang, J. Free–templated synthesis of N–doped PtCu porous hollow nanospheres for efficient ethanol oxidation and oxygen reduction reactions. Appl. Catal. B Environ. 2023, 330, 122602. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, J.; Liu, S.; Zhou, X.; Xu, L.; Tian, X.; Yang, J.; Tang, Y. Self-Templating-Oriented Manipulation of Ultrafine Pt(3) Cu Alloyed Nanoparticles into Asymmetric Porous Bowl-Shaped Configuration for High-Efficiency Methanol Electrooxidation. Small 2022, 18, e2202782. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Cai, S.; Lin, B.; Yang, L.; Le, H.; Mu, S. Geometric Engineering of Porous PtCu Nanotubes with Ultrahigh Methanol Oxidation and Oxygen Reduction Capability. Small 2022, 18, e2107387. [Google Scholar] [CrossRef] [PubMed]
- Hodnik, N.; Jeyabharathi, C.; Meier, J.C.; Kostka, A.; Phani, K.L.; Recnik, A.; Bele, M.; Hocevar, S.; Gaberscek, M.; Mayrhofer, K.J. Effect of ordering of PtCu(3) nanoparticle structure on the activity and stability for the oxygen reduction reaction. Phys. Chem. Chem. Phys. 2014, 16, 13610–13615. [Google Scholar] [CrossRef] [PubMed]
- Gatalo, M.; Ruiz-Zepeda, F.; Hodnik, N.; Dražić, G.; Bele, M.; Gaberšček, M. Insights into thermal annealing of highly-active PtCu3/C Oxygen Reduction Reaction electrocatalyst: An in-situ heating transmission Electron microscopy study. Nano Energy 2019, 63, 103892. [Google Scholar] [CrossRef]
- Yang, P.; Devasenathipathy, R.; Xu, W.; Wang, Z.; Chen, D.-H.; Zhang, X.; Fan, Y.; Chen, W. Pt1(CeO2)0.5 Nanoparticles Supported on Multiwalled Carbon Nanotubes for Methanol Electro-oxidation. ACS Appl. Nano Mater. 2021, 4, 10584–10591. [Google Scholar] [CrossRef]
- Chung, D.Y.; Jun, S.W.; Yoon, G.; Kwon, S.G.; Shin, D.Y.; Seo, P.; Yoo, J.M.; Shin, H.; Chung, Y.H.; Kim, H.; et al. Highly Durable and Active PtFe Nanocatalyst for Electrochemical Oxygen Reduction Reaction. J. Am. Chem. Soc. 2015, 137, 15478–15485. [Google Scholar] [CrossRef] [PubMed]
- Gan, L.; Heggen, M.; Cui, C.; Strasser, P. Thermal Facet Healing of Concave Octahedral Pt–Ni Nanoparticles Imaged in Situ at the Atomic Scale: Implications for the Rational Synthesis of Durable High-Performance ORR Electrocatalysts. ACS Catal. 2015, 6, 692–695. [Google Scholar] [CrossRef]
- Liu, Q.; Tripp, J.; Mitchell, C.; Rzepka, P.; Sadykov, I.I.; Beck, A.; Krumeich, F.; Nundy, S.; Artiglia, L.; Ranocchiari, M.; et al. Influence of alloying and surface overcoating engineering on the electrochemical properties of carbon-supported PtCu nanocrystals. J. Alloys Compd. 2023, 968, 172128. [Google Scholar] [CrossRef]
- Ye, X.; Shao, R.Y.; Yin, P.; Liang, H.W.; Chen, Y.X. Ordered Intermetallic PtCu Catalysts Made from Pt@Cu Core/Shell Structures for Oxygen Reduction Reaction. Inorg. Chem. 2022, 61, 15239–15246. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Huang, Z.; Xie, P.; Lacey, S.D.; Jacob, R.J.; Xie, H.; Chen, F.; Nie, A.; Pu, T.; Rehwoldt, M. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 2018, 359, 1489–1494. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Yao, Y.; Ko, B.H.; Huang, Z.; Dong, Q.; Gao, J.; Chen, W.; Li, J.; Li, S.; Wang, X.; et al. Carbon-Supported High-Entropy Oxide Nanoparticles as Stable Electrocatalysts for Oxygen Reduction Reactions. Adv. Funct. Mater. 2021, 31, 2010561. [Google Scholar] [CrossRef]
- Qiao, H.; Wang, X.; Dong, Q.; Zheng, H.; Chen, G.; Hong, M.; Yang, C.-P.; Wu, M.; He, K.; Hu, L. A high-entropy phosphate catalyst for oxygen evolution reaction. Nano Energy 2021, 86, 106029. [Google Scholar] [CrossRef]
- Cui, S.-K.; Guo, D.-J. Microwave-assisted preparation of PtCu/C nanoalloys and their catalytic properties for oxygen reduction reaction. J. Alloys Compd. 2021, 874, 159869. [Google Scholar] [CrossRef]
- Hosseini, S.E.; Wahid, M.A. Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development. Renew. Sustain. Energy Rev. 2016, 57, 850–866. [Google Scholar] [CrossRef]
- Li, X.; Zhao, L.; Yu, J.; Liu, X.; Zhang, X.; Liu, H.; Zhou, W. Water splitting: From electrode to green energy system. Nano Micro Lett. 2020, 12, 131. [Google Scholar] [CrossRef]
- Zhang, Q.; Guan, J. Atomically dispersed catalysts for hydrogen/oxygen evolution reactions and overall water splitting. J. Power Sources 2020, 471, 228446. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, T.; Han, J.; Qi, H.; Jiao, S.; Hou, C.; Guan, J. Interface engineering of Fe-Sn-Co sulfide/oxyhydroxide heterostructural electrocatalyst for synergistic water splitting. Nano Res. Energy 2024, 3, e9120106. [Google Scholar] [CrossRef]
- Li, J.; Liu, H.-X.; Gou, W.; Zhang, M.; Xia, Z.; Zhang, S.; Chang, C.-R.; Ma, Y.; Qu, Y. Ethylene-glycol ligand environment facilitates highly efficient hydrogen evolution of Pt/CoP through proton concentration and hydrogen spillover. Energy Environ. Sci. 2019, 12, 2298–2304. [Google Scholar] [CrossRef]
- Li, W.; Hu, Z.-Y.; Zhang, Z.; Wei, P.; Zhang, J.; Pu, Z.; Zhu, J.; He, D.; Mu, S.; Van Tendeloo, G. Nano-single crystal coalesced PtCu nanospheres as robust bifunctional catalyst for hydrogen evolution and oxygen reduction reactions. J. Catal. 2019, 375, 164–170. [Google Scholar] [CrossRef]
- Shao, M.; Adzic, R. Electrooxidation of ethanol on a Pt electrode in acid solutions: In situ ATR-SEIRAS study. Electrochim. Acta 2005, 50, 2415–2422. [Google Scholar] [CrossRef]
- Dos Reis, R.G.; Colmati, F. Electrochemical alcohol oxidation: A comparative study of the behavior of methanol, ethanol, propanol, and butanol on carbon-supported PtSn, PtCu, and Pt nanoparticles. J. Solid. State Electrochem. 2016, 20, 2559–2567. [Google Scholar] [CrossRef]
- Liao, Y.; Yu, G.; Zhang, Y.; Guo, T.; Chang, F.; Zhong, C.-J. Composition-tunable PtCu alloy nanowires and electrocatalytic synergy for methanol oxidation reaction. J. Phys. Chem. C 2016, 120, 10476–10484. [Google Scholar] [CrossRef]
- Maya-Cornejo, J.; Carrera-Cerritos, R.; Sebastián, D.; Ledesma-García, J.; Arriaga, L.; Aricò, A.; Baglio, V. PtCu catalyst for the electro-oxidation of ethanol in an alkaline direct alcohol fuel cell. Int. J. Hydrogen Energy 2017, 42, 27919–27928. [Google Scholar] [CrossRef]
- Wang, K.; Sriphathoorat, R.; Luo, S.; Tang, M.; Du, H.; Shen, P.K. Ultrathin PtCu hexapod nanocrystals with enhanced catalytic performance for electro-oxidation reactions. J. Mater. Chem. A 2016, 4, 13425–13430. [Google Scholar] [CrossRef]
- Zhang, G.; Yang, Z.; Zhang, W.; Hu, H.; Wang, C.; Huang, C.; Wang, Y. Tailoring the morphology of Pt 3 Cu 1 nanocrystals supported on graphene nanoplates for ethanol oxidation. Nanoscale 2016, 8, 3075–3084. [Google Scholar] [CrossRef]
- Liu, T.; Wang, K.; Yuan, Q.; Shen, Z.; Wang, Y.; Zhang, Q.; Wang, X. Monodispersed sub-5.0 nm PtCu nanoalloys as enhanced bifunctional electrocatalysts for oxygen reduction reaction and ethanol oxidation reaction. Nanoscale 2017, 9, 2963–2968. [Google Scholar] [CrossRef] [PubMed]
- Joghee, P.; Malik, J.N.; Pylypenko, S.; O’Hayre, R. A review on direct methanol fuel cells–In the perspective of energy and sustainability. MRS Energy Sustain. 2015, 2, E3. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, H.Z.; Ying, J.; Tian, G.; Liu, Y.; Geng, W.; Hu, J.; Lu, Y.; Chang, G.G.; Ozoemena, K.I. Ultimate Corrosion to Pt-Cu Electrocatalysts for Enhancing Methanol Oxidation Activity and Stability in Acidic Media. Chem.—Eur. J. 2021, 27, 9124–9128. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Rao, P.; Deng, P.; Li, J.; Chen, Q.; Shen, Y.; Tian, X. Three-dimensional porous PtCu as highly efficient electrocatalysts for methanol oxidation reaction. Int. J. Hydrogen Energy 2022, 47, 35701–35708. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, Y.-F.; Fu, C.; Zhang, R.-H.; Zhan, W.; Wang, P.; Zhang, X.; Wang, Q.; Zhou, X.-W. In-situ loading synthesis of graphene supported PtCu nanocube and its high activity and stability for methanol oxidation reaction. J. Colloid. Interface Sci. 2021, 595, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Liang, L.; Pan, J.; Li, K.; Zeng, B.; Cui, Z.; Liu, Q. Understanding the key role of the surface structure of L11-ordered PtCu intermetallic electrocatalyst toward methanol oxidation reaction by dealloying methods. Appl. Surf. Sci. 2023, 618, 156573. [Google Scholar] [CrossRef]
- Oberhauser, W.; Poggini, L.; Capozzoli, L.; Bellini, M.; Filippi, J.; Vizza, F. Oxidation of Ethanol to Acetic Acid by Supported PtCu Nanoparticles Stabilized by a Diamine Ligand. Inorg. Chem. 2023, 62, 2848–2858. [Google Scholar] [CrossRef]
- Han, C.; Lyu, Y.; Wang, S.; Liu, B.; Zhang, Y.; Weigand, J.J.; Du, H.; Lu, J. Highly Utilized Active Sites on Pt@ Cu/C for Ethanol Electrocatalytic Oxidation in Alkali Metal Hydroxide Solutions. Adv. Funct. Mater. 2023, 33, 2305436. [Google Scholar] [CrossRef]
- Sieben, J.M.; Alvarez, A.E.; Sanchez, M.D. Glycerol electrooxidation on carbon-supported Pt-CuO and PtCu-CuO catalysts. Electrochim. Acta 2023, 439, 141672. [Google Scholar] [CrossRef]
- Sievi, G.; Geburtig, D.; Skeledzic, T.; Bösmann, A.; Preuster, P.; Brummel, O.; Waidhas, F.; Montero, M.A.; Khanipour, P.; Katsounaros, I. Towards an efficient liquid organic hydrogen carrier fuel cell concept. Energy Environ. Sci. 2019, 12, 2305–2314. [Google Scholar] [CrossRef]
- Tang, J.; Li, J.; Pishva, P.; Xie, R.; Peng, Z. Aqueous, Rechargeable Liquid Organic Hydrogen Carrier Battery for High-Capacity, Safe Energy Storage. ACS Energy Lett. 2023, 8, 3727–3732. [Google Scholar] [CrossRef]
- Hauenstein, P.; Seeberger, D.; Wasserscheid, P.; Thiele, S. High performance direct organic fuel cell using the acetone/isopropanol liquid organic hydrogen carrier system. Electrochem. Commun. 2020, 118, 106786. [Google Scholar] [CrossRef]
- Jiang, M.; Hu, Y.; Zhang, W.; Wang, L.; Yang, S.; Liang, J.; Zhang, Z.; Zhang, X.; Jin, Z. Regulating the alloying degree and electronic structure of Pt–Au nanoparticles for high-efficiency direct C2+ alcohol fuel cells. Chem. Mater. 2021, 33, 3767–3778. [Google Scholar] [CrossRef]
- Alekseenko, A.; Moguchikh, E.; Safronenko, O.; Guterman, V. Durability of de-alloyed PtCu/C electrocatalysts. Int. J. Hydrogen Energy 2018, 43, 22885–22895. [Google Scholar] [CrossRef]
- Cao, L.; Zhang, G.; Lu, W.; Qin, X.; Shao, Z.; Yi, B. Preparation of hollow PtCu nanoparticles as high-performance electrocatalysts for oxygen reduction reaction in the absence of a surfactant. RSC Adv. 2016, 6, 39993–40001. [Google Scholar] [CrossRef]
- Tian, X.; Lu, X.F.; Xia, B.Y.; Lou, X.W.D. Advanced electrocatalysts for the oxygen reduction reaction in energy conversion technologies. Joule 2020, 4, 45–68. [Google Scholar] [CrossRef]
- Sarkar, A.; Manthiram, A. Synthesis of Pt@ Cu core− shell nanoparticles by galvanic displacement of Cu by Pt4+ ions and their application as electrocatalysts for oxygen reduction reaction in fuel cells. J. Phys. Chem. C 2010, 114, 4725–4732. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, L.; Cheng, T.; Guo, H.; Sun, B.; Wang, Y. Preparation and application in assembling high-performance fuel cell catalysts of colloidal PtCu alloy nanoclusters. J. Power Sources 2018, 395, 66–76. [Google Scholar] [CrossRef]
- Huang, L.; Zaman, S.; Tian, X.; Wang, Z.; Fang, W.; Xia, B.Y. Advanced platinum-based oxygen reduction electrocatalysts for fuel cells. Acc. Chem. Res. 2021, 54, 311–322. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Zhang, H.; Liu, S.; Zhang, B.; Zhong, H.; Su, D.S. Facile synthesis of supported Pt–Cu nanoparticles with surface enriched Pt as highly active cathode catalyst for proton exchange membrane fuel cells. Int. J. Hydrogen Energy 2012, 37, 17978–17983. [Google Scholar] [CrossRef]
- Johansson, T.P.; Ulrikkeholm, E.T.; Hernandez-Fernandez, P.; Escudero-Escribano, M.; Malacrida, P.; Stephens, I.; Chorkendorff, I. Towards the elucidation of the high oxygen electroreduction activity of Pt x Y: Surface science and electrochemical studies of Y/Pt (111). Phys. Chem. Chem. Phys. 2014, 16, 13718–13725. [Google Scholar] [CrossRef] [PubMed]
- Shao, M.; Chang, Q.; Dodelet, J.-P.; Chenitz, R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 2016, 116, 3594–3657. [Google Scholar] [CrossRef] [PubMed]
- Brault, P.; Coutanceau, C.; Caillard, A.; Baranton, S. Pt3MeAu (Me= Ni, Cu) fuel cell nanocatalyst growth, shapes, and efficiency: A molecular dynamics simulation approach. J. Phys. Chem. C 2019, 123, 29656–29664. [Google Scholar] [CrossRef]
- Asano, M.; Kawamura, R.; Sasakawa, R.; Todoroki, N.; Wadayama, T. Oxygen reduction reaction activity for strain-controlled Pt-based model alloy catalysts: Surface strains and direct electronic effects induced by alloying elements. ACS Catal. 2016, 6, 5285–5289. [Google Scholar] [CrossRef]
- Zhao, Y.; Wu, Y.; Liu, J.; Wang, F. Dependent relationship between quantitative lattice contraction and enhanced oxygen reduction activity over Pt–Cu alloy catalysts. ACS Appl. Mater. Interfaces 2017, 9, 35740–35748. [Google Scholar] [CrossRef]
- Wang, L.; Hu, C.; Zhao, Y.; Hu, Y.; Zhao, F.; Chen, N.; Qu, L. A dually spontaneous reduction and assembly strategy for hybrid capsules of graphene quantum dots with platinum–copper nanoparticles for enhanced oxygen reduction reaction. Carbon 2014, 74, 170–179. [Google Scholar] [CrossRef]
- Gong, M.; Xiao, D.; Deng, Z.; Zhang, R.; Xia, W.; Zhao, T.; Liu, X.; Shen, T.; Hu, Y.; Lu, Y. Structure evolution of PtCu nanoframes from disordered to ordered for the oxygen reduction reaction. Appl. Catal. B 2021, 282, 119617. [Google Scholar] [CrossRef]
- Shi, Y.; Huang, K.; Shen, L.; Ding, C.; Lu, Z.; Tan, H.; Guo, C.; Yan, C. Understanding the in-plane electron transport in low noble metal proton exchange membrane water electrolyser. J. Power Sources 2022, 549, 232130. [Google Scholar] [CrossRef]
- Grandi, M.; Gatalo, M.; Kamšek, A.R.; Kapun, G.; Mayer, K.; Ruiz-Zepeda, F.; Šala, M.; Marius, B.; Bele, M.; Hodnik, N. Mechanistic Study of Fast Performance Decay of PtCu Alloy-based Catalyst Layers for Polymer Electrolyte Fuel Cells through Electrochemical Impedance Spectroscopy. Materials 2023, 16, 3544. [Google Scholar] [CrossRef]
- Zhao, F.; Zheng, L.; Yuan, Q.; Zhang, Q.; Sheng, T.; Yang, X.; Gu, L.; Wang, X. PtCu subnanoclusters epitaxial on octahedral PtCu/Pt skin matrix as ultrahigh stable cathode electrocatalysts for room-temperature hydrogen fuel cells. Nano Res. 2023, 16, 2252–2258. [Google Scholar] [CrossRef]
- Tang, J.; Xie, R.; Pishva, P.; Shen, X.; Zhu, Y.; Peng, Z. Recent progress and perspectives of liquid organic hydrogen carrier electrochemistry for energy applications. J. Mater. Chem. A 2024. [Google Scholar] [CrossRef]
- Wu, B.; Xiao, J.; Li, L.; Hu, T.; Qiu, M.; Lützenkirchen-Hecht, D.; Yuan, K.; Chen, Y. Arranging Electronic Localization of PtCu Nanoalloys to Stimulate Improved Oxygen Electroreduction for High-Performance Fuel Cells. CCS Chem. 2023, 5, 2545–2556. [Google Scholar] [CrossRef]
- Li, Y.; Yan, Y.; He, Y.; Du, S. Catalyst electrodes with PtCu nanowire arrays in situ grown on gas diffusion layers for direct formic acid fuel cells. ACS Appl. Mater. Interfaces 2022, 14, 11457–11464. [Google Scholar] [CrossRef] [PubMed]
- Falina, I.; Pavlets, A.; Alekseenko, A.; Titskaya, E.; Kononenko, N. Influence of PtCu/C catalysts composition on electrochemical characteristics of polymer electrolyte fuel cell and properties of proton exchange membrane. Catalysts 2021, 11, 1063. [Google Scholar] [CrossRef]
- Zhang, X.; An, Z.; Xia, Z.; Li, H.; Xu, X.; Yu, S.; Wang, S.; Sun, G. Phosphoric acid resistance PtCu/C oxygen reduction reaction electrocatalyst for HT-PEMFCs: A theoretical and experimental study. Appl. Surf. Sci. 2023, 619, 156663. [Google Scholar] [CrossRef]
- Alekseenko, A.; Pavlets, A.; Mikheykin, A.; Belenov, S.; Guterman, E. The integrated approach to studying the microstructure of de-alloyed PtCu/C electrocatalysts for PEMFCs. Appl. Surf. Sci. 2023, 631, 157539. [Google Scholar] [CrossRef]
- Matsui, H.; Shoji, A.; Chen, C.; Zhao, X.; Uruga, T.; Tada, M. Local structures and robust oxygen reduction performances of TiN-supported bimetallic Pt–Cu electrocatalysts for fuel cells. Catal. Sci. Technol. 2024, 14, 1501–1511. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, X.; Yan, H.; Sun, L.; Chen, S.; Zhang, S.; Zhang, J. Manipulating Pt-skin of porous network Pt-Cu alloy nanospheres toward efficient oxygen reduction. J. Colloid. Interface Sci. 2023, 652, 1006–1015. [Google Scholar] [CrossRef]
- Zhou, Y.; Yuan, Q. PtCu/Pt core/atomic-layer shell hollow octahedra for oxygen reduction and methanol oxidation electrocatalysis. Chem. Commun. 2024, 60, 2918–2921. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhao, Z.; Liang, J.; Li, S.; Lu, G.; Priest, C.; Wang, T.; Han, J.; Wu, G.; Wang, X. Inducing Covalent Atomic Interaction in Intermetallic Pt Alloy Nanocatalysts for High-Performance Fuel Cells. Angew. Chem. Int. Ed. 2023, 62, e202302134. [Google Scholar] [CrossRef]
- An, Z.; Li, H.; Zhang, X.; Xia, Z.; Zhang, H.; Chu, W.; Yu, S.; Wang, S.; Sun, G. Ultrastable and Phosphoric Acid-Resistant PtRhCu@ Pt Oxygen Reduction Electrocatalyst for High-Temperature Polymer Electrolyte Fuel Cells. ACS Catal. 2024, 14, 2572–2581. [Google Scholar] [CrossRef]
- Ju, B.; Song, H.J.; Yoon, H.; Kim, D.K.; Jin, H.W.; Lim, T.; Kim, D.-W. Understanding the Metal Carbonyl-Assisted Synthesis of PtMoCu/C Nanocatalysts for Proton-Exchange Membrane Fuel Cells. ACS Sustain. Chem. Eng. 2023, 11, 16108–16116. [Google Scholar] [CrossRef]
PtCu Synthesis | Categorizations | Examples | Pros and Cons |
---|---|---|---|
Pre-Synthesis: Modification of Innovative Supports | Modified Carbon Supports | HNO3 and H2O2 modification on pristine carbon [53] |
|
C-PPy [54] | |||
Graphene [55] | |||
NS-PCNF [11] | |||
APGE [56] | |||
Metal Oxide Supports | WO3 [61] |
| |
SiO2 [62] | |||
CuSiO3 [63] | |||
TiO2−xN [12] | |||
Pr0.15Ce0.85O2 [64] | |||
Reactant Selection and Synthesis Strategies | Surfactant-Free Synthesis | Using ascorbic acid in water-based solvent at 40 °C [70] |
|
Cu nanowires reacted with ascorbic acid [71] | |||
Stepwise one-pot synthesis using NaBH4 reduction [72] | |||
One-pot solvothermal method using ascorbic acid [73] | |||
Special intermediate-assisted synthesis | DMF decomposes to produce H2 intermediates [78] |
| |
CuS2 intermediates [77] | |||
MOFs intermediates [79] | |||
Escherichia coli [14] | |||
CuCo-ZIF intermediate [80] | |||
Advanced template strategy | Reverse diffusion, template-free method [85] |
| |
Self-templated with the assistance of MBAA [86] | |||
Self-template using Cu nanowires [87] | |||
Post-treatment: Advanced High-Temperature Processing Strategies | Surface overcoating | Carbon nano-shells [93] |
|
Core/shell structures [94] | |||
Novel High-temperature processing strategy | Thermal shock irradiation approach [16] |
| |
Microwave-assist [98] |
PtCu Catalyzed Reaction | Catalyst | Structure | Performance | Durability | Pros and Cons |
---|---|---|---|---|---|
HER | PtCu/WO3@CF [23] | hollow nanospheres | 1.35 A mg−1Pt at overpotentials of 20 mV | 2000 cycles |
|
HER | PtCu-Mo2C [26] | MOF | 1 A mgPt−1 at −0.04 V | 5000 cycles | |
HER | phs-PtCu [27] | porous helical-spiny-like nanowires | 85 mA/cm2 at 200 mV | 1000 cycles | |
HER | PtCu-NA [21] | nanoalloys | overpotentials of 224 mV at 100 mA cm–2 | 70 h | |
HER | Pt1Cu3 NPs [25] | core–shell structure with a PtCu core and Pt-rich shell | 10 mV (acid) and 17 mV (alkaline) overpotentials at 10 mA cm−2 | 24 h (acid) and 9 h (alkaline) | |
HER | PtCu NCs [93] | nanoporous and nanodendritic structure | 6.4 A/mgPt at 50 mV overpotential | 500 cycles | |
HER | Pt5Cu2 NTs [28] | nanotubes | 34 (basic), 32 (acidic), and 284 (neutral) mV at 10 mA cm−2 | >50 h (basic), 10,000 cycles (acidic), and 30 h (neutral) | |
HER/EOR | PtCu NF [19] | nanoframes with high-index facets and multi-channels | 0.58 V to reach 10 mA cm–2 | 7200 s | |
HER | PtCu/CoP [20] | PtCu nanocluster decorated CoP nanosheet | overpotential of 20 mV at 10 mA cm−2 | 100 h in both acid and alkaline media | |
MOR & ORR | PtCu/Pr0.15Ce0.85O2 [64] | one-dimensional PtCu | 1.05 (MOR) & 0.12 (ORR) A·mg–1 | 5000 cycles |
|
MOR | PtCu RDFs [30] | rhombic dodecahedral nanoframes | 3.65 mA cm−2 | 1400 s | |
MOR | PtCu BNCs-S [31] | branched nanocrystals with long and sharp arms | 1.59 A mg−1 | 500 cycles | |
MOR | H-PNTs, A-PNTs and S-PNTs [87] | hollow nanospheres (H-PNTs), solid alloy (A-PNTs), and Pt-rich skinned nanoparticles (S-PNTs) | 1.33 (H-PNTs), 2.56 (A-PNTs), and 0.63 (S-PNTs) A mgPt–1 | 5000 cycles | |
MOR | Pt-Cu [113] | 3D architecture with uniform interconnected pores | 302 mA/mg, 1.72 mA/cm2 | 5000 cycles | |
MOR | P-PtCu [114] | porous 3D nanocubes | 2.3 A·mg−1Pt, 11.9 mA cm−2Pt | 1000 cycles | |
MOR | PtCu-NCb [115] | nanocubes | 0.67 mA cm−2 | 500 cycles | |
MOR | PtCu/C-700-ED, PtCu/C-700-CD [116] | L11-ordered with rough and smooth Pt shells | 1625.2 mA mgPt−1 | 2000 cycles | |
MOR & EOR & IOR | PtCu [33] | chain-like nanoparticles | 253.1 (MOR), 187.7 (EOR) and 37.2 (IOR) mA cm−2 | 1000 s | |
EOR & GOR | Pt1Cu1−x/C [34] | core–shell | 39.4 (EOR) & 24.5 (GOR)mA mg−1 | 5 h | |
EOR and EGOR | PtCu TRNs [35] | dendritic triangular nanocrystals | 2079 (EOR) and 767 (EGOR) mA mg−1 | 1200 s | |
EOR | PtCu [117] | nanoparticles | 3.0 mA/μg(Pt) | - | |
EOR | Pt@Cu/C [118] | nanoparticles | 8184 mA mgPt−1 | 100 cycles | |
EOR & ORR | N-doped Pt7Cu [85] | porous hollow nanospheres | 2.14 (EOR) and 1.42 (ORR) A mgPt–1 | - | |
GOR | Pt0.85Cu0.15-CuO(3)/C [119] | nanoparticles | 270 mA mgPt−1 | 3500 s | |
NH3OR | PtCu/G [38] | copper crystallites decorated with platinum nanoparticle | >90% efficiency | - |
|
NRR & MOR | Pt6Cu [37] | networked nanocrystals | 6.15% FE (NRR) & 21.3 mA cm−2 (MOR) | 10 (NRR) and 500 (MOR) cycles | |
NiRR | Cu-Pt [40] | nanocomposite foam | 84% selectivity toward ammonia | - | |
NiRR | PtCuNi [39] | - | 99.6% selectivity to NH4+ | - | |
ORR | Pt0.25Cu [42] | nanoparticles | Onset potential 0.98 V vs. RHE | 1000 cycles |
|
ORR | O-PtCuNF/C [43] | nanoframes with an atomically ordered intermetallic structure | 2.5 A mgPt−1 | 10,000 cycles | |
ORR | Int-PtCuN/KB [44] | N-doped rhombohedral ordered | 1.15 A mgPt–1 | 20,000 cycles | |
ORR | O-PtCu/HMCS [45] | monodisperse nanosized intermetallics | 2.73 A cm–2Pt | 50,000 cycles | |
MOR & ORR | PtCux−y/C [8] | - | 997 (MOR) and 200 (ORR) A/g(Pt) | 5000 cycles | |
ORR | L11-PtCu [137] | intermetallics with an L11 structure | 0.82 A mg−1Pt, 1.24 mA cm−2 | 30,000 cycles | |
ORR | PtCu–H2-600 [94] | ordered nanoparticles | 1.85 mA cm–2 | 3000 cycles |
Catalyst | PtCu Catalyzed Reaction in Fuel Cell | Max Current Density (A cm−2) | Max Power Density (mW cm−2) | ECSA (m2 gPt−1) | Reference |
---|---|---|---|---|---|
PtCu/KB_0.8 | ORR | 1 | ~350 | 57.9 | [139] |
PtCu1.60/C | ORR | ~1.5 | 318.8 | 48.1 | [140] |
PtCuNC-700 | ORR | ~2.3 | 929.7 | 41.6 | [142] |
Pt3Cu1 NW | Formic acid oxidation reaction | ~0.5 | 116.3 | 15.8 | [143] |
PtCu0.3/C | ORR | ~0.06 | - | 32 | [144] |
Pt2Cu/C | ORR | 1 | 383.4 | - | [145] |
PtCu/C-N | ORR | ~2300 (A gPt−1) | ~275 | 45 | [146] |
PtCu-1.0/TiN | ORR | 4 A (mg−1) | 1500 (mW mg−1) | 60.3 | [147] |
PtCuNSs/C | ORR | ~4.2 | 1200 | 41.96 | [148] |
H-PtCu/PtL OHs/C | ORR & MOR | ~130 | 55.7 | 82.3 | [149] |
PtCuCo/NC | ORR | 1.7 | 642.86 | 124.4 | [80] |
L10−Pt2CuGa/C | ORR | ~6.5 | 2600 | 48.6 | [150] |
PtRhCu@Pt/C | ORR | ~1.5 | 977 | 91.4 | [151] |
PtMoCu/C | ORR | ~4 | 1300 | 32.4 | [152] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, Z.; Tang, J.; Shen, X. Recent Advances of PtCu Alloy in Electrocatalysis: Innovations and Applications. Catalysts 2024, 14, 373. https://doi.org/10.3390/catal14060373
Shen Z, Tang J, Shen X. Recent Advances of PtCu Alloy in Electrocatalysis: Innovations and Applications. Catalysts. 2024; 14(6):373. https://doi.org/10.3390/catal14060373
Chicago/Turabian StyleShen, Ziyang, Jinyao Tang, and Xiaochen Shen. 2024. "Recent Advances of PtCu Alloy in Electrocatalysis: Innovations and Applications" Catalysts 14, no. 6: 373. https://doi.org/10.3390/catal14060373
APA StyleShen, Z., Tang, J., & Shen, X. (2024). Recent Advances of PtCu Alloy in Electrocatalysis: Innovations and Applications. Catalysts, 14(6), 373. https://doi.org/10.3390/catal14060373