Boosting Hydrogen Evolution via Phase Engineering-Modulated Crystallinity of Ruthenium–Zinc Bimetallic MOFs
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphological and Structural Characterizations
2.2. Electrocatalytic HER Performance
2.3. DFT Calculations
3. Materials and Methods
3.1. Chemicals
3.2. Synthesis of ZIF-8
3.3. Synthesis of ZnRu30-ZIF
3.4. Material Characterizations
3.5. Electrochemical Measurement
3.6. Theoretical Calculations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, J.; Wei, J.; An, C.; Tang, H.; Deng, Q.; Li, J. Electrocatalyst design for the conversion of energy molecules: Electronic state modulation and mass transport regulation. Chem. Commun. 2022, 58, 10907–10924. [Google Scholar] [CrossRef] [PubMed]
- Pattengale, B.; Huang, Y.; Yan, X.; Yang, S.; Younan, S.; Hu, W.; Li, Z.; Lee, S.; Pan, X.; Gu, J.; et al. Dynamic evolution and reversibility of single-atom Ni(II) active site in 1T-MoS2 electrocatalysts for hydrogen evolution. Nat. Commun. 2020, 11, 4114. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zeng, L.; Yu, J.; Yang, L.; Zhang, J.; Zhang, X.; Han, F.; Zhao, L.; Li, X.; Liu, H.; et al. Charge redistribution of Ru nanoclusters on Co3O4 porous nanowire via the oxygen regulation for enhanced hydrogen evolution reaction. Nano Energy 2021, 85, 105940. [Google Scholar] [CrossRef]
- Zhou, S.; Jang, H.; Qin, Q.; Hou, L.; Kim, M.G.; Liu, S.; Liu, X.; Cho, J. Boosting Hydrogen Evolution Reaction by Phase Engineering and Phosphorus Doping on Ru/P-TiO2. Angew. Chem. Int. Ed. 2022, 61, e202212196. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Zhang, L.; Wang, S.; Wang, M.; Deng, C.; Sun, Y.; Yan, C.; Qian, T. 2 A cm−2 Level Large-Scale Production of Hydrogen Enabled by Constructing Higher Capacity of Interface “Electron Pocket”. ACS Nano 2023, 17, 15504–15515. [Google Scholar] [CrossRef] [PubMed]
- Guan, Y.; Liu, T.; Wu, Y.; Yang, C.; Liu, B.; Hu, B.; Jiang, W.; Liu, C.; Che, G. Modulating the electronic structure of Ru using a self-reconstructed MOF-NiFeOOH heterointerface for improved electrocatalytic water splitting. J. Mater. Chem. A 2024, 12, 17404–17412. [Google Scholar] [CrossRef]
- Wei, J.; Wang, J.; Guo, W.; Tang, H.; Li, J. Tailoring the acidity of WO3/ZrO2 to regulate the energy barrier of water dissociation in alkaline hydrogen evolution. Chem. Eng. J. 2023, 460, 141783. [Google Scholar] [CrossRef]
- Liu, S.; Li, Z.; Chang, Y.; Gyu Kim, M.; Jang, H.; Cho, J.; Hou, L.; Liu, X. Substantial Impact of Built-in Electric Field and Electrode Potential on the Alkaline Hydrogen Evolution Reaction of Ru−CoP Urchin Arrays. Angew. Chem. Int. Ed. 2024, 63, e202400069. [Google Scholar] [CrossRef]
- Hong, S.; Kim, H.; Kim, J.; Han, G.H.; Kim, S.Y.; Ahn, S.H. Electrochemical fabrication of Ni-P-B ternary catalyst for hydrogen production in proton exchange membrane water electrolyzer. Int. J. Energy Res. 2021, 46, 5988–5996. [Google Scholar] [CrossRef]
- Lin, Y.; Zhang, M.; Zhao, L.; Wang, L.; Cao, D.; Gong, Y. Ru doped bimetallic phosphide derived from 2D metal organic framework as active and robust electrocatalyst for water splitting. Appl. Surf. Sci. 2021, 536, 147952. [Google Scholar] [CrossRef]
- Chen, D.; Lu, R.; Yao, Y.; Wu, D.; Zhao, H.; Yu, R.; Pu, Z.; Wang, P.; Zhu, J.; Yu, J.; et al. Duetting electronic structure modulation of Ru atoms in RuSe2@NC enables more moderate H* adsorption and water dissociation for hydrogen evolution reaction. J. Mater. Chem. A 2022, 10, 7637–7644. [Google Scholar] [CrossRef]
- Ma, T.; Wang, P.; Niu, H.-J.; Che, Z.; Li, G.; Zhou, W. Single Ru atoms dispersed on MoSe2/MXene nanosheets with multiple interfaces for enhanced acidic hydrogen evolution. Carbon 2024, 218, 118758. [Google Scholar] [CrossRef]
- Luo, Z.; Yi, H.; Yang, Z.; Wang, C. Bimetallic Sulfur-Doped Nickel–Cobalt Selenides as Efficient Bifunctional Electrocatalysts for the Complete Decomposition of Water. Small 2024, 20, 2402954. [Google Scholar] [CrossRef] [PubMed]
- Zhang, E.; Song, W. Review—Self-Supporting Electrocatalysts for HER in Alkaline Water Electrolysis. J. Electrochem. Soc. 2024, 171, 052503. [Google Scholar] [CrossRef]
- Cai, J.; Zong, L.; Fan, K.; Song, F.; Gao, J.; Wang, Z.; Chen, Y.; Wang, L. High temperature shock synthesis of superfine Ru nanoparticles anchored on TiO2 @nitrogen-doped carbon for pH-universal hydrogen evolution reaction. J. Alloys Compd. 2023, 969, 172279. [Google Scholar] [CrossRef]
- Tong, Y.; Chen, P. Nanostructure engineering of ruthenium-modified electrocatalysts for efficient electrocatalytic water splitting. J. Mater. Chem. A 2024, 12, 3844–3878. [Google Scholar] [CrossRef]
- Chen, Z.W.; Li, J.; Ou, P.; Huang, J.E.; Wen, Z.; Chen, L.; Yao, X.; Cai, G.; Yang, C.C.; Singh, C.V.; et al. Unusual Sabatier principle on high entropy alloy catalysts for hydrogen evolution reactions. Nat. Commun. 2024, 15, 359. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Li, Y.; Pei, C.; Lu, Y.; Kim, J.K.; Park, H.S.; Pang, H. Interfacial Design of Ti3C2Tx MXene/Graphene Heterostructures Boosted Ru Nanoclusters with High Activity Toward Hydrogen Evolution Reaction. Adv. Sci. 2024, 11, 2310013. [Google Scholar] [CrossRef] [PubMed]
- Tang, R.; Yang, Y.; Zhou, Y.; Yu, X.Y. Rational Design of Heterostructured Ru Cluster-Based Catalyst for pH Universal Hydrogen Evolution Reaction and High-Performance Zn-H2O Battery. Adv. Funct. Mater. 2023, 34, 2301925. [Google Scholar] [CrossRef]
- Liu, Y.; Li, X.; Zhang, Q.; Li, W.; Xie, Y.; Liu, H.; Shang, L.; Liu, Z.; Chen, Z.; Gu, L.; et al. A General Route to Prepare Low-Ruthenium-Content Bimetallic Electrocatalysts for pH-Universal Hydrogen Evolution Reaction by Using Carbon Quantum Dots. Angew. Chem. Int. Ed. 2019, 59, 1718–1726. [Google Scholar] [CrossRef]
- Luo, R.; Li, Z.; Li, R.; Jiang, C.; Qi, R.; Liu, M.; Lin, H.; Huang, R.; Luo, C.; Peng, H. Ultrafine Ru nanoparticles derived from few-layered Ti3C2Tx MXene templated MOF for highly efficient alkaline hydrogen evolution. Int. J. Energy Res. 2022, 47, 32787–32795. [Google Scholar] [CrossRef]
- Li, C.; Kim, S.H.; Lim, H.Y.; Sun, Q.; Jiang, Y.; Noh, H.J.; Kim, S.J.; Baek, J.; Kwak, S.K.; Baek, J.B. Self-Accommodation Induced Electronic Metal–Support Interaction on Ruthenium Site for Alkaline Hydrogen Evolution Reaction. Adv. Mater. 2023, 35, 2301369. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Wang, J.; Zhou, W.; Li, J. Catalyst-Support Interactions Promoted Acidic Electrochemical Oxygen Evolution Catalysis: A Mini Review. Molecules 2023, 28, 2262. [Google Scholar] [CrossRef] [PubMed]
- Abdelghafar, F.; Xu, X.; Jiang, S.P.; Shao, Z. Designing single-atom catalysts toward improved alkaline hydrogen evolution reaction. Mater. Rep. Energy 2022, 2, 100144. [Google Scholar] [CrossRef]
- Lai, Y.; Ji, L.; Wang, J.; Shen, J.; Liao, J.; He, X.; Wang, T.; Chen, Z.; Wang, S. Ultrafine Ruthenium Nanoparticles Anchored on S,N-Codoped Carbon Nanofibers for H2 and Electricity Coproduction. ACS Sustain. Chem. Eng. 2024, 12, 17406–17416. [Google Scholar] [CrossRef]
- Zhao, S.; Hung, S.-F.; Deng, L.; Zeng, W.-J.; Xiao, T.; Li, S.; Kuo, C.-H.; Chen, H.-Y.; Hu, F.; Peng, S. Constructing regulable supports via non-stoichiometric engineering to stabilize ruthenium nanoparticles for enhanced pH-universal water splitting. Nat. Commun. 2024, 15, 2728. [Google Scholar] [CrossRef]
- Chen, Z.; Wei, W.; Xu, X.; Gu, X.; Huang, C.; Wei, W.; Shao, Z.; Ni, B.-J.; Chen, H. Reconstructed anti-corrosive and active surface on hierarchically porous carbonized wood for efficient overall seawater electrolysis. Sci. Bull. 2024, 69, 2337–2341. [Google Scholar] [CrossRef]
- Yan, B.; Liu, D.; Feng, X.; Shao, M.; Zhang, Y. Ru Nanoparticles Supported on Co-Embedded N-Doped Carbon Nanotubes as Efficient Electrocatalysts for Hydrogen Evolution in Basic Media. Chem. Res. Chin. Univ. 2020, 36, 425–430. [Google Scholar] [CrossRef]
- Meng, W.; Wang, J.; Zhang, D.; Xu, J.; Guo, F.; Zhang, Y.; Pang, R.; Cao, A.; Shang, Y. Defective Amorphous Carbon-Coated Carbon Nanotube-Loaded Ruthenium Nanoparticles as Efficient Electrocatalysts for Hydrogen Production. Small Struct. 2023, 4, 2300098. [Google Scholar] [CrossRef]
- Feng, Y.; Zhang, S.; Zhu, L.; Li, G.; Zhao, N.; Zhang, H.; Chen, B.H. Reduced graphene oxide-supported ruthenium nanocatalysts for highly efficient electrocatalytic hydrogen evolution reaction. Int. J. Energy Res. 2022, 47, 39853–39863. [Google Scholar] [CrossRef]
- Salah, A.; Ren, H.-D.; Al-Ansi, N.; Tan, H.; Yu, F.; Yanchun, L.; Thamer, B.M.; Al-Salihy, A.; Zhao, L.; Li, Y. Dispersing small Ru nanoparticles into boron nitride remodified by reduced graphene oxide for high-efficient electrocatalytic hydrogen evolution reaction. J. Colloid Interface Sci. 2023, 644, 378–387. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Kim, B.; Li, Z.; Thapa, R.; Zhang, Y.; Seo, J.M.; Guan, R.; Tang, F.; Baek, J.H.; Kim, Y.H.; et al. Direct Electroplating Ruthenium Precursor on the Surface Oxidized Nickel Foam for Efficient and Stable Bifunctional Alkaline Water Electrolysis. Adv. Mater. 2024, 36, 2403151. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Wang, H.; Wang, C.; Guo, L.; Wang, Y. Ru-modulated morphology and electronic structure of nickel organic framework bifunctional electrocatalyst for efficient overall water splitting. Electrochim. Acta 2023, 470, 143300. [Google Scholar] [CrossRef]
- Chen, D.; Yang, W.; Jiao, L.; Li, L.; Yu, S.H.; Jiang, H.L. Boosting Catalysis of Pd Nanoparticles in MOFs by Pore Wall Engineering: The Roles of Electron Transfer and Adsorption Energy. Adv. Mater. 2020, 32, 2000041. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.; Hu, F.; Ma, M.; Huang, S.C.; Xiong, Y.; Chen, H.Y.; Li, L.; Peng, S. Electronic Modulation Caused by Interfacial Ni-O-M (M=Ru, Ir, Pd) Bonding for Accelerating Hydrogen Evolution Kinetics. Angew. Chem. Int. Ed. 2021, 60, 22276–22282. [Google Scholar] [CrossRef]
- Xu, Y.; Yu, S.; Ren, T.; Liu, S.; Wang, Z.; Li, X.; Wang, L.; Wang, H. Hydrophilic/Aerophobic Hydrogen-Evolving Electrode: NiRu-Based Metal-Organic Framework Nanosheets In Situ Grown on Conductive Substrates. ACS Appl. Mater. Interfaces 2020, 12, 34728–34735. [Google Scholar] [CrossRef] [PubMed]
- Adegoke, K.A.; Ogunjinmi, O.E.; Adegoke, O.R.; Bello, O.S. Bifunctional two-dimensional metal organic frameworks for oxygen reaction and water splitting. Nano Energy 2024, 128, 109897. [Google Scholar] [CrossRef]
- Liao, P.; Kang, J.; Zhong, Y.; Xiang, R.; Wang, S.; Li, S.; Liu, X.; Li, G. Recent advances of two-dimensional metal-organic frameworks in alkaline electrolysis water for hydrogen production. Sci. China Chem. 2023, 66, 1924–1939. [Google Scholar] [CrossRef]
- Salah, A.; Ren, H.-D.; Al-Ansi, N.; Al-Salihy, A.; Qaraah, F.A.; Mahyoub, S.A.; Ahmed, A.A.; Drmosh, Q.A. Interface Engineering Induced by Low Ru Doping in Ni/Co@NC Derived from Ni-ZIF-67 for Enhanced Electrocatalytic Overall Water Splitting. ACS Appl. Mater. Interfaces 2024, 16, 60310–60320. [Google Scholar] [CrossRef] [PubMed]
- Rezaee, S.; Shahrokhian, S. Ruthenium/Ruthenium oxide hybrid nanoparticles anchored on hollow spherical Copper-Cobalt Nitride/Nitrogen doped carbon nanostructures to promote alkaline water splitting: Boosting catalytic performance via synergy between morphology engineering, electron transfer tuning and electronic behavior modulation. J. Colloid Interface Sci. 2022, 626, 1070–1084. [Google Scholar]
- Han, J.-Y.; Cai, S.-H.; Zhu, J.-Y.; Yang, S.; Li, J.-S. MOF-derived ruthenium-doped amorphous molybdenum dioxide hybrid for highly efficient hydrogen evolution reaction in alkaline media. Chem. Commun. 2022, 58, 100–103. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Xue, Z.; Liu, Q.; Jia, Y.; Li, Y.; Liu, K.; Lin, Y.; Liu, M.; Li, G.; Su, C.-Y. Modulating electronic structure of metal-organic frameworks by introducing atomically dispersed Ru for efficient hydrogen evolution. Nat. Commun. 2021, 12, 1369. [Google Scholar] [CrossRef]
- Zhao, M.; Xia, Y. Crystal-phase and surface-structure engineering of ruthenium nanocrystals. Nat. Rev. Mater. 2020, 5, 440–459. [Google Scholar] [CrossRef]
- Zhai, W.; Li, Z.; Wang, Y.; Zhai, L.; Yao, Y.; Li, S.; Wang, L.; Yang, H.; Chi, B.; Liang, J.; et al. Phase Engineering of Nanomaterials: Transition Metal Dichalcogenides. Chem. Rev. 2024, 124, 4479–4539. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zhong, Y.; Wajrak, M.; Bhatelia, T.; Jiang, S.P.; Shao, Z. Grain boundary engineering: An emerging pathway toward efficient electrocatalysis. InfoMat 2024, 6, 10608. [Google Scholar] [CrossRef]
- Zhu, T.; Han, J.; Sun, T.; Zhao, J.; Pi, X.; Xu, J.; Chen, K. Amorphous Ruthenium–Selenium Nanoparticles as a pH-Universal Catalyst for Enhanced Hydrogen Evolution Reaction. ACS Catal. 2024, 14, 1914–1921. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, Z.; Guo, M.; Xiao, L.; Tang, H.; Li, J.; Kou, Z.; Li, J. Epitaxial heterointerfacial electron bridge synchronizes oxygen evolution activity and stability on a layered double hydroxide surface. EES Catal. 2024, 2, 862–873. [Google Scholar] [CrossRef]
- Forgan, R.S. Modulated self-assembly of metal–organic frameworks. Chem. Sci. 2020, 11, 4546–4562. [Google Scholar] [CrossRef] [PubMed]
- Umemura, A.; Diring, S.; Furukawa, S.; Uehara, H.; Tsuruoka, T.; Kitagawa, S. Morphology Design of Porous Coordination Polymer Crystals by Coordination Modulation. J. Am. Chem. Soc. 2011, 133, 15506–15513. [Google Scholar] [CrossRef]
- Bacirhonde, P.M.; Mohamed, A.Y.; Han, B.; Cho, D.Y.; Devendra, S.; Choi, J.W.; Lim, C.R.; Afranie, E.O.; Baik, K.H.; Kang, K.; et al. Ruthenium Engineered A2B2O6-Hybrid Columbite Ferrite for Bifunctional pH-Universal Water Splitting. Adv. Energy Mater. 2023, 13, 2300174. [Google Scholar] [CrossRef]
- Li, Y.; Chen, J.; Wang, Z.A.; Chen, S. 3D Hierarchical Carbon-Supported Ultrafine Ru Nanoparticles for pH Universal Hydrogen Evolution Reactions. ACS Appl. Nano Mater. 2024, 7, 7555–7561. [Google Scholar] [CrossRef]
- Li, H.-C.; Ji, P.-C.; Teng, Y.; Jia, H.-L.; Guan, M.-Y. Preparation of carbon coated hyperdispersed Ru nanoparticles supported on TiO2 HER electrocatalysts by dye-sensitization. New J. Chem. 2023, 47, 9628–9634. [Google Scholar] [CrossRef]
- Mohd Najib, A.S.B.; Iqbal, M.; Zakaria, M.B.; Shoji, S.; Cho, Y.; Peng, X.; Ueda, S.; Hashimoto, A.; Fujita, T.; Miyauchi, M.; et al. Active faceted nanoporous ruthenium for electrocatalytic hydrogen evolution. J. Mater. Chem. A 2020, 8, 19788–19792. [Google Scholar] [CrossRef]
- Khalid, M.; Fonseca, H.A.B.; Verga, L.G.; Rafe Hatshan, M.; Da Silva, J.L.F.; Varela, H.; Shahgaldi, S. Facile synthesis of Ru nanoclusters embedded in carbonaceous shells for hydrogen evolution reaction in alkaline and acidic media. J. Electroanal. Chem. 2023, 929, 117116. [Google Scholar] [CrossRef]
- Zhao, M.; Li, H.; Li, W.; Li, J.; Yi, L.; Hu, W.; Li, C.M. Ru-Doping Enhanced Electrocatalysis of Metal–Organic Framework Nanosheets toward Overall Water Splitting. Chem. Eur. J. 2020, 26, 17091–17096. [Google Scholar] [CrossRef] [PubMed]
- Pang, Q.-Q.; Bai, X.; Du, X.; Zhang, S.; Liu, Z.-Y.; Yue, X.-Z. Facet modulation of nickel-ruthenium nanocrystals for efficient electrocatalytic hydrogen evolution. J. Colloid Interface Sci. 2023, 633, 275–283. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, X.; Hu, G.; Feng, L. Ru Nanoclusters Coupled on Co/N-Dopde Carbon Nanotubes Efficiently Catalyzed the Hydrogen Evolution Reaction. ACS Sustain. Chem. Eng. 2020, 8, 9136–9144. [Google Scholar] [CrossRef]
- Zhong, C.; Zhou, Q.; Li, S.; Cao, L.; Li, J.; Shen, Z.; Ma, H.; Liu, J.; Lu, M.; Zhang, H. Enhanced synergistic catalysis by a novel triple-phase interface design of NiO/Ru@Ni for the hydrogen evolution reaction. J. Mater. Chem. A 2019, 7, 2344–2350. [Google Scholar] [CrossRef]
- Zheng, Y.; Jiao, Y.; Zhu, Y.; Li, L.H.; Han, Y.; Chen, Y.; Jaroniec, M.; Qiao, S.-Z. High Electrocatalytic Hydrogen Evolution Activity of an Anomalous Ruthenium Catalyst. J. Am. Chem. Soc. 2016, 138, 16174–16181. [Google Scholar] [CrossRef]
- Liu, S.; Liu, Q.; Lv, Y.; Chen, B.; Zhou, Q.; Wang, L.; Zheng, Q.; Che, C.; Chen, C. Ru decorated with NiCoP: An efficient and durable hydrogen evolution reaction electrocatalyst in both acidic and alkaline conditions. Chem. Commun. 2017, 53, 13153–13156. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Mao, G.; Huang, C.; Cai, P.; Cheng, G.; Luo, W. Decorating WSe2 nanosheets with ultrafine Ru nanoparticles for boosting electrocatalytic hydrogen evolution in alkaline electrolytes. Inorg. Chem. Front. 2019, 6, 1382–1387. [Google Scholar] [CrossRef]
- He, Q.; Tian, D.; Jiang, H.; Cao, D.; Wei, S.; Liu, D.; Song, P.; Lin, Y.; Song, L. Achieving Efficient Alkaline Hydrogen Evolution Reaction over a Ni5P4 Catalyst Incorporating Single-Atomic Ru Sites. Adv. Mater. 2020, 32, 1906972. [Google Scholar] [CrossRef] [PubMed]
- Jiang, R.; Tran, D.T.; Li, J.; Chu, D. Ru@RuO2 Core-Shell Nanorods: A Highly Active and Stable Bifunctional Catalyst for Oxygen Evolution and Hydrogen Evolution Reactions. Energy Environ. Mater. 2019, 2, 201–208. [Google Scholar] [CrossRef]
- Feng, T.; Cui, Z.; Guo, P.; Wang, X.; Li, J.; Liu, X.; Wang, W.; Li, Z. Fabrication of Ru/WO3-W2N/N-doped carbon sheets for hydrogen evolution reaction. J. Colloid Interface Sci. 2023, 636, 618–626. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, P.; Liu, D.; Jin, W.; Xiao, W.; Xiao, Z.; Wu, Z.; Wang, L. Amorphous Ru Coupled with Defect-Abundant B-Doped FeP4/Fe2P Porous Nanospheres as an Electrocatalyst for Hydrogen Generation with a Wide pH Range. ACS Appl. Nano Mater. 2023, 6, 19905–19914. [Google Scholar] [CrossRef]
- Yu, Z.; Si, C.; Escobar-Bedia, F.J.; LaGrow, A.P.; Xu, J.; Sabater, M.J.; Amorim, I.; Araujo, A.; Sousa, J.P.S.; Meng, L.; et al. Bifunctional atomically dispersed ruthenium electrocatalysts for efficient bipolar membrane water electrolysis. Inorg. Chem. Front. 2022, 9, 4142–4150. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Wang, D.; Huang, T.; He, Z.; Cui, Y.; Li, J. Boosting Hydrogen Evolution via Phase Engineering-Modulated Crystallinity of Ruthenium–Zinc Bimetallic MOFs. Catalysts 2025, 15, 58. https://doi.org/10.3390/catal15010058
Wang J, Wang D, Huang T, He Z, Cui Y, Li J. Boosting Hydrogen Evolution via Phase Engineering-Modulated Crystallinity of Ruthenium–Zinc Bimetallic MOFs. Catalysts. 2025; 15(1):58. https://doi.org/10.3390/catal15010058
Chicago/Turabian StyleWang, Jia, De Wang, Tianci Huang, Zhenyu He, Yong Cui, and Junsheng Li. 2025. "Boosting Hydrogen Evolution via Phase Engineering-Modulated Crystallinity of Ruthenium–Zinc Bimetallic MOFs" Catalysts 15, no. 1: 58. https://doi.org/10.3390/catal15010058
APA StyleWang, J., Wang, D., Huang, T., He, Z., Cui, Y., & Li, J. (2025). Boosting Hydrogen Evolution via Phase Engineering-Modulated Crystallinity of Ruthenium–Zinc Bimetallic MOFs. Catalysts, 15(1), 58. https://doi.org/10.3390/catal15010058