Microemulsion-Based Synthesis of Highly Efficient Ag-Doped Fibrous SiO2-TiO2 Photoanodes for Photoelectrochemical Water Splitting
Abstract
:1. Introduction
2. Results and Discussions
2.1. Crystal Structure Analysis of FST and Ag-Doped FST Photoanodes
2.2. High Surface Area and Pore Characteristics of Ag-Doped FST Through Nitrogen Adsorption
2.3. Functional Group Dynamics: FTIR Spectra of SiO2, TiO2, and Ag-Doped FST
2.4. Chemical Oxidation State Analysis
2.5. Surface Morphology of Ag-Doped FST
2.6. UV–Visible Spectroscopy
2.7. Optical Properties and Mott–Schottky Analysis of Ag-Doped FST
2.8. Boosted PEC Efficiency of Ag-Doped FST
2.9. Enhanced Charge Transfer Efficiency in Ag-Doped FST: EIS Nyquist Plot Analysis
2.10. PEC Stability
2.11. Plausible Mechanism
3. Materials and Methods
3.1. Materials
3.2. Fabrication of Ag-Doped FST Photoanode
3.3. Physiochemical Characterization
3.4. PEC Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Thirunavukkarasu, G.K.; Hanif, M.B.; Liapun, V.; Hensel, K.; Kupčík, J.; Lorincik, J.; Elantyev, I.; Monfort, O.; Motola, M. Decrypting the growth of anodic TiO2 nanotube layers in eco-friendly fluoride-free nitrate-based electrolyte for enhanced photocatalytic degradation of organic pollutants. Mater. Res. Bull. 2023, 165, 112322. [Google Scholar] [CrossRef]
- Hassan, N.S.; Jalil, A.A.; Hitam, C.N.C.; Vo, D.V.N.; Nabgan, W. Biofuels and renewable chemicals production by catalytic pyrolysis of cellulose: A review. Environ. Chem. Lett. 2020, 18, 1625–1648. [Google Scholar] [CrossRef]
- Liapun, V.; Hanif, M.B.; Sihor, M.; Vislocka, X.; Pandiaraj, S.; Unnikrishnan, V.K.; Thirunavukkarasu, G.K.; Edelmannová, M.F.; Reli, M.; Monfort, O.; et al. Versatile application of BiVO4/TiO2 S-scheme photocatalyst: Photocatalytic CO2 and Cr(VI) reduction. Chemosphere 2023, 337, 139397. [Google Scholar] [CrossRef] [PubMed]
- Aryamol, K.; Kanagaraj, K.; Nangan, S.; Haponiuk, J.T.; Okhawilai, M.; Pandiaraj, S.; Hanif, M.B.; Alodhayb, A.N.; Thomas, S.; Thirumalaivasan, N.; et al. Recent advances of carbon pathways for sustainable environment development. Environ. Res. 2024, 250, 118513. [Google Scholar] [CrossRef]
- Rehman, J.U.; Javed, S.; Mujahid, M.; Gohar, O.; Ahmad, A.; Brahma, S.; Hanif, M.B.; Motola, M. Enhanced photocatalytic activity of Sn-doped TiO2 nanoparticles: Microstructural-photoelectrochemical synergy. Phys. B Condens. Matter 2024, 690, 416260. [Google Scholar] [CrossRef]
- Khan, M.; Ali, G.; Ahmed, U.; Riaz, A.; Hanif, M.B.; Li, C.-X.; Basit, M.A. Improved electro- and photo-catalytic performance of simplistically developed g-C3N4/rGO/TiO2 nanocomposite. J. Photochem. Photobiol. A Chem. 2024, 456, 115820. [Google Scholar] [CrossRef]
- Jiang, M.; Wu, Z.; Zhang, X.; Cai, Y.; Wang, W.; Liang, Y. Synergetic effect of surface plasmon resonance and Schottky junction to drastically boost solar-driven photoelectrochemical hydrogen production and photocatalytic performance of CdS/Al nanorod arrays. Energy Convers. Manag. 2022, 268, 115978. [Google Scholar] [CrossRef]
- Hanif, M.B.; Bacova, J.; Berezenko, V.; Zeng, Y.; Paluch, E.; Seniuk, A.; Khan, M.Z.; Rauf, S.; Hussain, I.; Motlochova, M.; et al. 2D TiO2 Nanosheets decorated via sphere-like BiVO4: A promising non-toxic material for liquid phase photocatalysis and bacterial eradication. ChemSusChem 2024, 17, e202400027. [Google Scholar] [CrossRef]
- Berezenko, V.; Hanif, M.B.; Sihor, M.; Zeng, Y.; Edelmannová, M.F.; Reli, M.; Iftikhar, H.; Khan, M.Z.; Plecenik, T.; Gregor, M.; et al. Exploring next-generation X(NO3)Y (X = Na+, K+, Sr2+, Ag+; Y=1, 2) electrolytes for enhanced TiO2 nanotube hydrogen generation. Int. J. Hydrogen Energy 2024, in press. [Google Scholar] [CrossRef]
- Ding, Y.; Maitra, S.; Wang, C.; Zheng, R.; Zhang, M.; Barakat, T.; Roy, S.; Liu, J.; Li, Y.; Hasan, T.; et al. Hydrophilic bi-functional B-doped g-C3N4 hierarchical architecture for excellent photocatalytic H2O2 production and photoelectrochemical water splitting. J. Energy Chem. 2022, 70, 236–247. [Google Scholar] [CrossRef]
- Muzammal, S.; Ahmad, A.; Sheraz, M.; Kim, J.; Ali, S.; Hanif, M.B.; Hussain, I.; Pandiaraj, S.; Alodhayb, A.; Javed, M.S.; et al. Polymer-supported nanomaterials for photodegradation: Unraveling the methylene blue menace. Energy Convers. Manag. X 2024, 22, 100547. [Google Scholar] [CrossRef]
- Cho, S.; Yim, G.; Park, J.T.; Jang, H. Surfactant-free one-pot synthesis of Au-TiO2 core shell nanostars by inter-cation redox reaction for photoelectrochemical water splitting. Energy Convers. Manag. 2022, 252, 115038. [Google Scholar] [CrossRef]
- Ng, W.C.; Saha, T.; Ilankoon, I.; Chong, M.N. Design and construction of a novel hierarchical Ag/{1 1 1}Ag3PO4/PANI/Pt photoanode with boosted interfacial charge transfer rate and high photocurrent density > 16 mA/cm2 for sunlight driven water splitting. Energy Convers. Manag. 2022, 271, 116298. [Google Scholar] [CrossRef]
- Arifin, K.; Yunus, R.M.; Minggu, L.J.; Kassim, M.B. Improvement of TiO2 nanotubes for photoelectrochemical water splitting: Review. Int. J. Hydrog. Energy 2021, 46, 4998–5024. [Google Scholar] [CrossRef]
- Zhou, W.; Sun, F.; Pan, K.; Tian, G.; Jiang, B.; Ren, Z.; Tian, C.; Fu, H. Well-ordered large-pore mesoporous anatase TiO2 with remarkably high thermal stability and improved crystallinity: Preparation, characterization, and photocatalytic performance. Adv. Funct. Mater. 2011, 21, 1922–1930. [Google Scholar] [CrossRef]
- Fang, B.; Xing, Z.; Sun, D.; Li, Z.; Zhou, W. Hollow semiconductor photocatalysts for solar energy conversion. Adv. Powder Mater. 2022, 1, 100021. [Google Scholar] [CrossRef]
- Chakraborty, A.; Samriti; Ruzimuradov, O.; Gupta, R.K.; Cho, J.; Prakash, J. TiO2 nanoflower photocatalysts: Synthesis, modifications and applications in wastewater treatment for removal of emerging organic pollutants. Environ. Res. 2022, 212, 113550. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Gao, H.; Chen, M.; Xu, X.; Wang, X.; Pan, C.; Gao, J. Microwave-assisted synthesis of reduced graphene oxide/titania nanocomposites as an adsorbent for methylene blue adsorption. Appl. Surf. Sci. 2015, 360, 840–848. [Google Scholar] [CrossRef]
- Rahman, A.; Jalil, A.; Triwahyono, S.; Ripin, A.; Aziz, F.; Fatah, N.; Jaafar, N.; Hitam, C.; Salleh, N.; Hassan, N. Strategies for introducing titania onto mesostructured silica nanoparticles targeting enhanced photocatalytic activity of visible-light-responsive Ti-MSN catalysts. J. Clean. Prod. 2017, 143, 948–959. [Google Scholar] [CrossRef]
- Hassan, N.; Jalil, A.; Triwahyono, S.; Khusnun, N.; Izan, S.; Kidam, K.; Johari, A. Synergistic effect of microwave rapid heating and weak mineralizer on silica-stabilized tetragonal zirconia nanoparticles for enhanced photoactivity of Bisphenol A. J. Mol. Liq. 2018, 261, 423–430. [Google Scholar] [CrossRef]
- Dong, Z.; Ding, D.; Li, T.; Ning, C. Black Si-doped TiO2 nanotube photoanode for high-efficiency photoelectrochemical water splitting. RSC Adv. 2018, 8, 5652–5660. [Google Scholar] [CrossRef] [PubMed]
- Usman, M.; Khan, K.I.; Adnan, M.; Khan, A. Facile synthesis of NiAl-LDH/Ag/g-C3N4 ternary composite for photocatalytic degradation of methylene blue. Full- Nanotub. Carbon Nanostructures 2024, 32, 264–273. [Google Scholar] [CrossRef]
- Sang, L.; Ge, H.; Sun, B. Probing plasmonic Ag nanoparticles on TiO2 nanotube arrays electrode for efficient solar water splitting. Int. J. Hydrog. Energy 2018, 44, 15787–15794. [Google Scholar] [CrossRef]
- Liza, T.Z.; Tusher, M.H.; Anwar, F.; Monika, M.F.; Amin, K.F.; Asrafuzzaman, F. Effect of Ag-doping on morphology, structure, band gap and photocatalytic activity of bio-mediated TiO2 nanoparticles. Results Mater. 2024, 22, 100559. [Google Scholar] [CrossRef]
- Krejčíková, S.; Matějová, L.; Kočí, K.; Obalová, L.; Matěj, Z.; Čapek, L.; Šolcová, O. Preparation and characterization of Ag-doped crystalline titania for photocatalysis applications. Appl. Catal. B Environ. 2012, 111–112, 119–125. [Google Scholar] [CrossRef]
- Bahadur, N.M.; Chowdhury, F.; Obaidullah; Hossain, S.; Rashid, R.; Akter, Y.; Furusawa, T.; Sato, M.; Suzuki, N. Ultrasonic-assisted synthesis, characterization, and photocatalytic application of SiO2@TiO2 core-shell nanocomposite particles. J. Nanomater. 2019, 2019, 6368789. [Google Scholar] [CrossRef]
- Rosales, A.; Esquivel, K. SiO2@TiO2 composite synthesis and its hydrophobic applications: A review. Catalysts 2020, 10, 171. [Google Scholar] [CrossRef]
- Polshettiwar, V.; Cha, D.; Zhang, X.; Basset, J.M. High-surface-area silica nanospheres (KCC-1) with a fibrous morphology. Angew. Chem. Int. Ed. Engl. 2010, 49, 9652–9656. [Google Scholar] [CrossRef]
- Bahari, M.; Bukhari, S.; Jun, L.; Setiabudi, H. Development of fibrous mesoporous silica for catalytic reaction: A short review. Mater. Today Proc. 2021, 42, 33–38. [Google Scholar] [CrossRef]
- Fauzi, A.; Jalil, A.; Mohamed, M.; Triwahyono, S.; Jusoh, N.; Rahman, A.; Aziz, F.; Hassan, N.; Khusnun, N.; Tanaka, H. Altering fiber density of cockscomb-like fibrous silica–titania catalysts for enhanced photodegradation of ibuprofen. J. Environ. Manag. 2018, 227, 34–43. [Google Scholar] [CrossRef]
- Azami, M.; Jalil, A.; Hitam, C.; Hassan, N.; Mamat, C.; Adnan, R.; Chanlek, N. Tuning of the electronic band structure of fibrous silica titania with g-C3N4 for efficient Z-scheme photocatalytic activity. Appl. Surf. Sci. 2020, 512, 145744. [Google Scholar] [CrossRef]
- Hu, X.; Xiao, L.; Jian, X.; Zhou, W. Synthesis of mesoporous silica-embedded TiO2 loaded with Ag nanoparticles for photocatalytic hydrogen evolution from water splitting. J. Wuhan Univ. Technol. Sci. Ed. 2017, 32, 67–75. [Google Scholar] [CrossRef]
- Hitam, C.N.C.; Jalil, A.A.; Triwahyono, S.; Ahmad, A.; Jaafar, N.F.; Salamun, N.; Fatah, N.A.A.; Teh, L.P.; Khusnun, N.F.; Ghazali, Z. Synergistic interactions of Cu and N on surface altered amorphous TiO2 nanoparticles for enhanced photocatalytic oxidative desulfurization of dibenzothiophene. RSC Adv. 2016, 6, 76259–76268. [Google Scholar] [CrossRef]
- Zhang, D.; Cao, Y.; Karuturi, S.K.; Du, M.; Liu, M.; Xue, C.; Chen, R.; Wang, P.; Zhang, J.; Shi, J.; et al. Enabling unassisted solar water splitting by single-junction amorphous silicon photoelectrodes. ACS Appl. Energy Mater. 2020, 3, 4629–4637. [Google Scholar] [CrossRef]
- Chi, C.; Qu, P.; Xu, X.; Xian, J.; Zhang, D.; Li, J.; Ren, J.; Xu, X.; Chen, H. Synthesis of SiO2@Ag for light absorption and the fabrication of highly color-saturated amorphous photonic crystals. J. Mater. Chem. C 2023, 11, 13343–13349. [Google Scholar] [CrossRef]
- Ouyang, M.; Wang, J.; Peng, B.; Zhao, Y.; Wang, S.; Ma, X. Effect of Ti on Ag catalyst supported on spherical fibrous silica for partial hydrogenation of dimethyl oxalate. Appl. Surf. Sci. 2018, 466, 592–600. [Google Scholar] [CrossRef]
- Dong, Z.; Le, X.; Li, X.; Zhang, W.; Dong, C.; Ma, J. Silver nanoparticles immobilized on fibrous nano-silica as highly efficient and recyclable heterogeneous catalyst for reduction of 4-nitrophenol and 2-nitroaniline. Appl. Catal. B Environ. 2014, 158–159, 129–135. [Google Scholar] [CrossRef]
- Samia, M.; Usman, M.; Osman, A.I.; Khan, K.I.; Saeed, F.; Zeng, Y.; Motola, M.; Dai, H.T.; Malick, U. Enhanced visible-light photocatalytic degradation of organic pollutants using fibrous silica titania and Ti3AlC2 catalysts for sustainable wastewater treatment. N. J. Chem. 2024, 48, 17500–17515. [Google Scholar] [CrossRef]
- Hussain, I.; Jalil, A.; Mamat, C.; Siang, T.; Rahman, A.; Azami, M.; Adnan, R. New insights on the effect of the H2/CO ratio for enhancement of CO methanation over metal-free fibrous silica ZSM-5: Thermodynamic and mechanistic studies. Energy Convers. Manag. 2019, 199, 112056. [Google Scholar] [CrossRef]
- Praveen, P.; Viruthagiri, G.; Mugundan, S.; Shanmugam, N. Structural, optical and morphological analyses of pristine titanium di-oxide nanoparticles—Synthesized via sol–gel route. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 117, 622–629. [Google Scholar] [CrossRef] [PubMed]
- Uma, K.; Chen, S.-W.; KrishnaKumar, B.; Jeyaprabha, C.; Yang, T.C.-K.; Lin, J.-H. Enhanced photocatalytic activity of CdS nanostar decorated SiO2/TiO2 composite spheres and the simulation effect using FDTD model. Ionics 2021, 27, 397–406. [Google Scholar] [CrossRef]
- El-Lateef, H.M.A.; Zeng, C.-Q.; Khalaf, M.M.; Mohamed, I.M.A. Green Synthesis of Silver-Incorporated Rutile TiO2 for Enhanced Photocatalytic Degradation of Ciprofloxacin and Carmine G Dye Pollutants. Catalysts 2024, 14, 904. [Google Scholar] [CrossRef]
- Liu, Q.; Lu, H.; Shi, Z.; Wu, F.; Guo, J.; Deng, K.; Li, L. 2D ZnIn2S4 nanosheet/1D TiO2 nanorod heterostructure arrays for improved photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 2014, 6, 17200–17207. [Google Scholar] [CrossRef]
- Azami, M.; Jalil, A.; Aziz, F.; Hassan, N.; Mamat, C.; Izzudin, N. Influence of the nitrogen pots from graphitic carbon nitride with the presence of wrinkled silica. Hydrog. Energy 2023, 48, 6532–6545. [Google Scholar] [CrossRef]
- Ahmadi, Y.; Kim, K.-H. Modification strategies for visible-light photocatalysts and their performance-enhancing effects on photocatalytic degradation of volatile organic compounds. Renew. Sustain. Energy Rev. 2024, 189, 113948. [Google Scholar] [CrossRef]
- Fan, M.; Fan, G.; Zhang, G.; Zheng, S. Facile synthesis and kinetic mechanism of Ag-doped TiO2/SiO2 nanoparticles for phenol degradation under visible light irradiation. Res. Chem. Intermed. 2020, 46, 1127–1139. [Google Scholar] [CrossRef]
- Samia; Saeed, F.; Jia, L.; Arain, M.; Ahmed, A.; Yikai, F.; Zhenda, C.; Hussain, I.; Ashraf, G.A.; Ben Ahmed, S.; et al. Emerging Trends in Metal-Organic Framework (MOFs) Photocatalysts for Hydrogen Energy Using Water Splitting: A State-of-the-Art Review. J. Ind. Eng. Chem. 2023, 131, 54–135. [Google Scholar] [CrossRef]
- Sivaranjani, T.; Rajakarthihan, S.; Karthigeyan, A.; Bharath, G. Sustainable photoelectrocatalytic oxidation of antibiotics using Ag–CoFe2O4@ TiO2 heteronanostructures for eco-friendly wastewater remediation. Chemosphere 2024, 362, 142736. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, J.; Li, X.; Chen, J.; Li, Y.; Luo, X.; Xie, T.; Qiu, Q.; Liang, T. Highly efficient CoTiO3/MOF-derived In2S3 photo-electrocatalysts: Degradation kinetics, pathways, and mechanism. J. Alloy. Compd. 2023, 975, 172921. [Google Scholar] [CrossRef]
- Cui, W.; Shang, J.; Bai, H.; Hu, J.; Xu, D.; Ding, J.; Fan, W.; Shi, W. In-situ implantation of plasmonic Ag into metal-organic frameworks for constructing efficient Ag/NH2-MIL-125/TiO2 photoanode. Chem. Eng. J. 2020, 388, 124206. [Google Scholar] [CrossRef]
- Lims, S.C.; Divya, S.; Abirami, V.; Kasinathan, K.; Jose, M. Investigation of frequency and temperature dependent impedance, modulus and conductivity properties of MgO@SiO2 core shell nanocomposites. Mater. Sci. Eng. B 2023, 300, 117077. [Google Scholar] [CrossRef]
- Qian, C.; Zhou, S.; Zhang, Z.; Zhu, Y. Effect of nano-SiO2 on sulfate attack resistance of cement pastes by electrochemical impedance spectroscopy. J. Build. Eng. 2023, 72, 106742. [Google Scholar] [CrossRef]
- Fang, Y.; Hodgson, R.; Lee, W.C.; Le, H.; Chan, H.W.B.; Hassan, H.M.; Alsohaimi, I.H.; Canciani, G.E.; Qian, R.; Chen, Q. Light trapping by porous TiO2 hollow hemispheres for high efficiency photoelectrochemical water splitting. Phys. Chem. Chem. Phys. 2023, 25, 11253–11260. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, I.M.; Kanagaraj, P.; Yasin, A.S.; Iqbal, W.; Liu, C. Electrochemical impedance investigation of urea oxidation in alkaline media based on electrospun nanofibers towards the technology of direct-urea fuel cells. J. Alloys Compd. 2020, 816, 152513. [Google Scholar] [CrossRef]
- He, Y.; Zhang, L.; Teng, B.; Fan, M. New Application of Z-Scheme Ag3PO4/g-C3N4 Composite in Converting CO2 to Fuel. Environ. Sci. Technol. 2015, 49, 649–656. [Google Scholar] [CrossRef]
- Lin, B.; Li, S.; Peng, Y.; Chen, Z.; Wang, X. MOF-derived core/shell C-TiO2/CoTiO3 type II heterojunction for efficient photocatalytic removal of antibiotics. J. Hazard Mater. 2021, 406, 124675. [Google Scholar] [CrossRef] [PubMed]
- Eqi, M.; Shi, C.; Xie, J.; Kang, F.; Qi, H.; Tan, X.; Huang, Z.; Liu, J.; Guo, J. Synergetic effect of Ni-Au bimetal nanoparticles on urchin-like TiO2 for hydrogen and arabinose co-production by glucose photoreforming. Adv. Compos. Hybrid Mater. 2023, 6, 5. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, F.; Yang, M.; Wang, Z.; Ren, Y.; Cui, J.; Zhao, Y.; Du, J.; Li, K.; Wang, W.; et al. Synthesis of porous MoS2/CdSe/TiO2 photoanodes for photoelectrochemical water splitting. Microporous Mesoporous Mater. 2019, 284, 403–409. [Google Scholar] [CrossRef]
- Sawal, M.; Jalil, A.; Abdullah, T.; Hassan, N.; Bahari, M.; Izzudin, N.; Jusoh, N.; Nagao, Y.; Aoki, K.; Chong, M.; et al. n-n heterojunction CdS/FST photoanode for enhanced photoelectrochemical water splitting. Int. J. Hydrogen Energy 2024, in press. [Google Scholar] [CrossRef]
- Sun, N.; Si, X.; He, L.; Zhang, J.; Sun, Y. Strategies for enhancing the photocatalytic activity of semiconductors. Int. J. Hydrog. Energy 2024, 58, 1249–1265. [Google Scholar] [CrossRef]
- Cai, J.; Liu, C.; Tang, X.; Kong, L.; Yu, F.; Wang, J.; Xie, Q.; Li, H.; Li, S. Understanding the effect of interface on the charge separation in Bi2S3@Sn: α-Fe2O3 heterojunction for photoelectrochemical water oxidation. Renew. Energy 2022, 191, 195–203. [Google Scholar] [CrossRef]
- Kolodziejak, K.; Sar, J.; Wysmulek, K.; Orlinski, K.; Piotrowski, P.; Gajewski, M.; Pawlak, D.A. Durability of SrTiO3–TiO2 eutectic composite as a photoanode for photoelectrochemical water splitting. RSC Adv. 2023, 13, 35422–35428. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, S.K.; Bashat, A.M.; Hassan, H.M.; Ismail, N.; El Rouby, W.M. Optimizing the performance of Auy/Nix/TiO2NTs photoanodes for photoelectrochemical water splitting. RSC Adv. 2023, 13, 14018–14032. [Google Scholar] [CrossRef]
- Cui, F.; Zhang, Y.; Fonseka, H.A.; Promdet, P.; Channa, A.I.; Wang, M.; Xia, X.; Sathasivam, S.; Liu, H.; Parkin, I.P.; et al. Robust protection of III–V nanowires in water splitting by a thin compact TiO2 layer. ACS Appl. Mater. Interfaces 2021, 13, 30950–30958. [Google Scholar] [CrossRef]
- Fan, R.; Mi, Z.; Shen, M. Silicon based photoelectrodes for photoelectrochemical water splitting. Opt. Express 2019, 27, A51–A80. [Google Scholar] [CrossRef] [PubMed]
Parameter | Ag-doped FST | FST | SiO2 | TiO2 | Remarks |
---|---|---|---|---|---|
Bandgap Energy (eV) | 2.5 | 2.8 | 3.2 | 3.0 | Ag doping narrows the bandgap, enhancing visible light absorption |
Photocurrent Density (mAcm−2 at 1.2 V vs. RHE) | 13.98 | 11.65 | - | - | Ag-doped FST shows ~1.2-fold improvement over FST |
Charge Transfer Resistance (Rct, Ω) | 311 | 1125 | 622 | 1496 | Ag-doped FST has the lowest Rct, indicating superior charge transfer efficiency |
Surface Area (m2g−1) | 233.4 | - | - | - | Higher surface area enhances the number of active sites for redox reactions |
ABPE (%) at 0.5 V vs. RHE | 7.37 | 6.21 | 4.33 | 3.81 | Improved applied bias photon-to-current efficiency due to Ag doping |
Onset Potential (V vs. RHE) | Lower | Higher | - | - | Lower onset potential indicates reduced energy barrier for charge transfer |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arain, S.; Usman, M.; Saeed, F.; Feng, S.; Rehman, W.; Liu, X.; Dai, H. Microemulsion-Based Synthesis of Highly Efficient Ag-Doped Fibrous SiO2-TiO2 Photoanodes for Photoelectrochemical Water Splitting. Catalysts 2025, 15, 66. https://doi.org/10.3390/catal15010066
Arain S, Usman M, Saeed F, Feng S, Rehman W, Liu X, Dai H. Microemulsion-Based Synthesis of Highly Efficient Ag-Doped Fibrous SiO2-TiO2 Photoanodes for Photoelectrochemical Water Splitting. Catalysts. 2025; 15(1):66. https://doi.org/10.3390/catal15010066
Chicago/Turabian StyleArain, Samia, Muhammad Usman, Faiq Saeed, Shouzhong Feng, Waheed Rehman, Xianhua Liu, and Haitao Dai. 2025. "Microemulsion-Based Synthesis of Highly Efficient Ag-Doped Fibrous SiO2-TiO2 Photoanodes for Photoelectrochemical Water Splitting" Catalysts 15, no. 1: 66. https://doi.org/10.3390/catal15010066
APA StyleArain, S., Usman, M., Saeed, F., Feng, S., Rehman, W., Liu, X., & Dai, H. (2025). Microemulsion-Based Synthesis of Highly Efficient Ag-Doped Fibrous SiO2-TiO2 Photoanodes for Photoelectrochemical Water Splitting. Catalysts, 15(1), 66. https://doi.org/10.3390/catal15010066