Carbon-Encapsulated Ni Nanoparticles Catalysts Derived from Ni-Hexamine Coordination Frameworks for Oxygen Reduction Reaction and Oxygen Evolution Reaction
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphology and Structural Characterizations of the NiHMT
2.2. Morphology and Structural Characterizations of the Ni@NC-T
2.3. Electrochemical ORR/OER Performance and ZAB Testing
3. Experimental Section
3.1. Preparation of NiHMT
3.2. Preparation of Ni@NC-T
3.3. Materials Characterization
3.4. Electrochemical Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jaouen, F. Enabling Low-Cost and Sustainable Fuel Cells. Nat. Mater. 2022, 21, 733–735. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhao, Z.; Xia, Z.; Dai, L. A Metal-Free Bifunctional Electrocatalyst for Oxygen Reduction and Oxygen Evolution Reactions. Nat. Nanotechnol. 2015, 10, 444–452. [Google Scholar] [CrossRef] [PubMed]
- Rebrov, E.V.; Gao, P.-Z. Molecular Catalysts for OER/ORR in Zn–Air Batteries. Catalysts 2023, 13, 1289. [Google Scholar] [CrossRef]
- Dai, L.; Xue, Y.; Qu, L.; Choi, H.-J.; Baek, J.-B. Metal-Free Catalysts for Oxygen Reduction Reaction. Chem. Rev. 2015, 115, 4823–4892. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, X.; Yang, Z.; Yan, S.; Zhang, C.; Liu, S. Space-Confined Synthesis of Lasagna-like N-Doped Graphene-Wrapped Copper–Cobalt Sulfides as Efficient and Durable Electrocatalysts for Oxygen Reduction and Oxygen Evolution Reactions. ACS Sustain. Chem. Eng. 2020, 8, 1004–1014. [Google Scholar] [CrossRef]
- Ma, Z.; Cano, Z.P.; Yu, A.; Chen, Z.; Jiang, G.; Fu, X.; Yang, L.; Wu, T.; Bai, Z.; Lu, J. Enhancing Oxygen Reduction Activity of Pt-Based Electrocatalysts: From Theoretical Mechanisms to Practical Methods. Angew. Chem. Int. Ed. 2020, 59, 18334–18348. [Google Scholar] [CrossRef]
- Wang, C.; Lan, F.; He, Z.; Xie, X.; Zhao, Y.; Hou, H.; Guo, L.; Murugadoss, V.; Liu, H.; Shao, Q.; et al. Iridium-Based Catalysts for Solid Polymer Electrolyte Electrocatalytic Water Splitting. ChemSusChem 2019, 12, 1576–1590. [Google Scholar] [CrossRef]
- Yu, J.; He, Q.; Yang, G.; Zhou, W.; Shao, Z.; Ni, M. Recent Advances and Prospective in Ruthenium-Based Materials for Electrochemical Water Splitting. ACS Catal. 2019, 9, 9973–10011. [Google Scholar] [CrossRef]
- Tang, L.; Xu, Q.; Zhang, Y.; Chen, W.; Wu, M. MOF/PCP-Based Electrocatalysts for the Oxygen Reduction Reaction. Electrochem. Energy Rev. 2022, 5, 32–81. [Google Scholar] [CrossRef]
- Zasypkina, A.A.; Ivanova, N.A.; Spasov, D.D.; Mensharapov, R.M.; Sinyakov, M.V.; Grigoriev, S.A. Recent Advances in the Development of Nanocarbon-Based Electrocatalytic/Electrode Materials for Proton Exchange Membrane Fuel Cells: A Review. Catalysts 2024, 14, 303. [Google Scholar] [CrossRef]
- Zhang, W.; Li, J.; Wei, Z. Carbon-Based Catalysts of the Oxygen Reduction Reaction: Mechanistic Understanding and Porous Structures. Chin. J. Catal. 2023, 48, 15–31. [Google Scholar]
- Shi, W.; Lu, S.; Chao, M.; Zheng, X.; Gong, H.; Qian, Y.; Gao, F.; Guo, X.; Liu, Y.; Zhang, J.; et al. A Bottom-up Puzzle Strategy for P/B Co-Doped Carbon Nanosheets as Efficient Oxygen Reaction Electrocatalysts. Appl. Surf. Sci. 2024, 649, 159172. [Google Scholar]
- Lai, L.; Potts, J.R.; Zhan, D.; Wang, L.; Poh, C.K.; Tang, C.; Gong, H.; Shen, Z.; Lin, J.; Ruoff, R.S. Exploration of the Active Center Structure of Nitrogen-Doped Graphene-Based Catalysts for Oxygen Reduction Reaction. Energy Environ. Sci. 2012, 5, 7936–7942. [Google Scholar]
- Jeon, I.-Y.; Zhang, S.; Zhang, L.; Choi, H.-J.; Seo, J.-M.; Xia, Z.; Dai, L.; Baek, J.-B. Edge-Selectively Sulfurized Graphene Nanoplatelets as Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reaction: The Electron Spin Effect. Adv. Mater. 2013, 25, 6138–6145. [Google Scholar]
- Yang, D.-S.; Bhattacharjya, D.; Inamdar, S.; Park, J.; Yu, J.-S. Phosphorus-Doped Ordered Mesoporous Carbons with Different Lengths as Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reaction in Alkaline Media. J. Am. Chem. Soc. 2012, 134, 16127–16130. [Google Scholar]
- Qiao, X.; Deng, Y.; Cao, X.; Wu, J.; Guo, H.; Xiao, W.; Liao, S. Iron Carbide Nanoparticles Embedded in Edge-Rich, N and F Codoped Graphene/Carbon Nanotubes Hybrid for Oxygen Electrocatalysis. Catalysts 2022, 12, 1023. [Google Scholar] [CrossRef]
- Qu, L.; Liu, Y.; Baek, J.-B.; Dai, L. Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells. ACS Nano 2010, 4, 1321–1326. [Google Scholar]
- Gong, K.; Du, F.; Xia, Z.; Durstock, M.; Dai, L. Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction. Science 2009, 323, 760–764. [Google Scholar]
- Wu, G.; Santandreu, A.; Kellogg, W.; Gupta, S.; Ogoke, O.; Zhang, H.; Wang, H.-L.; Dai, L. Carbon Nanocomposite Catalysts for Oxygen Reduction and Evolution Reactions: From Nitrogen Doping to Transition-Metal Addition. Nano Energy 2016, 29, 83–110. [Google Scholar]
- Lu, X.; Yang, P.; Wan, Y.; Zhang, H.; Xu, H.; Xiao, L.; Li, R.; Li, Y.; Zhang, J.; An, M. Active Site Engineering toward Atomically Dispersed M−N−C Catalysts for Oxygen Reduction Reaction. Coord. Chem. Rev. 2023, 495, 215400. [Google Scholar]
- Wang, D.; Yang, P.; Xu, H.; Ma, J.; Du, L.; Zhang, G.; Li, R.; Jiang, Z.; Li, Y.; Zhang, J.; et al. The Dual-Nitrogen-Source Strategy to Modulate a Bifunctional Hybrid Co/Co–N–C Catalyst in the Reversible Air Cathode for Zn-Air Batteries. J. Power Sources 2021, 485, 229339. [Google Scholar] [CrossRef]
- Zhang, L.; Qi, C.; Zhao, A.; Xu, G.; Xu, J.; Zhang, L.; Zhang, C.; Jia, D. N-Doped Porous Carbon-Encapsulated Fe Nanoparticles as Efficient Electrocatalysts for Oxygen Reduction Reaction. Appl. Surf. Sci. 2018, 445, 462–470. [Google Scholar] [CrossRef]
- Luo, Z.; Zhong, G.; Meng, Z.; Fu, X.; Liao, W.; Zheng, S.; Xu, Y.; Luo, S. MOF-Derived Two-Dimensional FeNx Catalysts Based on Hexamethylenetetramine for Efficient Oxygen Reduction Reactions. Colloids Surf. Physicochem. Eng. Asp. 2023, 671, 131631. [Google Scholar] [CrossRef]
- Oliveira, F.E.R.; Galiote, N.A.; Lima, F.H.B. Investigation of Earth-Abundant Oxygen Reduction Electrocatalysts for the Cathode of Passive Air-Breathing Direct Formate Fuel Cells. Catalysts 2018, 8, 320. [Google Scholar] [CrossRef]
- Kumar, K.; Dubau, L.; Jaouen, F.; Maillard, F. Review on the Degradation Mechanisms of Metal-N-C Catalysts for the Oxygen Reduction Reaction in Acid Electrolyte: Current Understanding and Mitigation Approaches. Chem. Rev. 2023, 123, 9265–9326. [Google Scholar] [CrossRef]
- Tang, T.; Ding, L.; Jiang, Z.; Hu, J.-S.; Wan, L.-J. Advanced Transition Metal/Nitrogen/Carbon-Based Electrocatalysts for Fuel Cell Applications. Sci. China Chem. 2020, 63, 1517–1542. [Google Scholar] [CrossRef]
- Niu, W.-J.; Sun, Q.-Q.; Wang, Y.-P.; Gu, B.-N.; Liu, M.-J.; He, J.-Z.; Chen, J.-L.; Chung, C.-C.; Liu, W.-W.; Chueh, Y.-L. Design of Co Nanoparticles-Encapsulated by Boron and Nitrogen Co-Doped Carbon Nanosheets as Highly Efficient Electrocatalyst for Oxygen Reduction Reaction. Adv. Mater. Interfaces 2021, 8, 2101454. [Google Scholar] [CrossRef]
- Jang, J.-H.; Anto Jeffery, A.; Min, J.; Jung, N.; Jong Yoo, S. Emerging Carbon Shell-Encapsulated Metal Nanocatalysts for Fuel Cells and Water Electrolysis. Nanoscale 2021, 13, 15116–15141. [Google Scholar] [CrossRef]
- Sharma, M.; Jang, J.-H.; Shin, D.Y.; Kwon, J.A.; Lim, D.-H.; Choi, D.; Sung, H.; Jang, J.; Lee, S.-Y.; Lee, K.Y.; et al. Work Function-Tailored Graphene via Transition Metal Encapsulation as a Highly Active and Durable Catalyst for the Oxygen Reduction Reaction. Energy Environ. Sci. 2019, 12, 2200–2211. [Google Scholar] [CrossRef]
- Choi, C.H.; Park, S.H.; Woo, S.I. N-Doped Carbon Prepared by Pyrolysis of Dicyandiamide with Various MeCl2·xH2O (Me = Co, Fe, and Ni) Composites: Effect of Type and Amount of Metal Seed on Oxygen Reduction Reactions. Appl. Catal. B Environ. 2012, 119–120, 123–131. [Google Scholar] [CrossRef]
- Ahuja, I.S.; Singh, R.; Yadava, C.L. Structural Information on Cobalt(II), Nickel(II), Copper(II), Zinc(II), Silver(I) and Cadmium(II) Nitrate Complexes with Hexamethylenetetramine from Their Magnetic Moments, Electronic and Infrared Spectra. J. Mol. Struct. 1980, 68, 333–339. [Google Scholar]
- Liu, S.; Zhou, J.; Song, H. Tailoring Highly N-Doped Carbon Materials from Hexamine-Based MOFs: Superior Performance and New Insight into the Roles of N Configurations in Na-Ion Storage. Small 2018, 14, 1703548. [Google Scholar] [CrossRef] [PubMed]
- Zhong, G.; Zou, L.; Chi, X.; Meng, Z.; Chen, Z.; Li, T.; Huang, Y.; Fu, X.; Liao, W.; Zheng, S.; et al. Atomically Dispersed Mn–N Catalysts Derived from Mn-Hexamine Coordination Frameworks for Oxygen Reduction Reaction. Carbon Energy 2024, 6, e484. [Google Scholar]
- Kong, W.; Lu, C.; Zhang, W.; Pu, J.; Wang, Z. Homogeneous Core–Shell NiCo2S4 Nanostructures Supported on Nickel Foam for Supercapacitors. J. Mater. Chem. A 2015, 3, 12452–12460. [Google Scholar]
- Zhang, Z.; Sun, J.; Wang, F.; Dai, L. Efficient Oxygen Reduction Reaction (ORR) Catalysts Based on Single Iron Atoms Dispersed on a Hierarchically Structured Porous Carbon Framework. Angew. Chem. 2018, 130, 9176–9181. [Google Scholar] [CrossRef]
- Wu, X.; Yu, X.; Lin, Z.; Huang, J.; Cao, L.; Zhang, B.; Zhan, Y.; Meng, H.; Zhu, Y.; Zhang, Y. Nitrogen Doped Graphitic Carbon Ribbons from Cellulose as Non Noble Metal Catalyst for Oxygen Reduction Reaction. Int. J. Hydrogen Energy 2016, 41, 14111–14122. [Google Scholar] [CrossRef]
- Xing, T.; Li, L.H.; Hou, L.; Hu, X.; Zhou, S.; Peter, R.; Petravic, M.; Chen, Y. Disorder in Ball-Milled Graphite Revealed by Raman Spectroscopy. Carbon 2013, 57, 515–519. [Google Scholar]
- Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S.; Cançado, L.G.; Jorio, A.; Saito, R. Studying Disorder in Graphite-Based Systems by Raman Spectroscopy. Phys. Chem. Chem. Phys. 2007, 9, 1276–1290. [Google Scholar] [CrossRef]
- Zhong, H.; Luo, Y.; He, S.; Tang, P.; Li, D.; Alonso-Vante, N.; Feng, Y. Electrocatalytic Cobalt Nanoparticles Interacting with Nitrogen-Doped Carbon Nanotube in Situ Generated from a Metal–Organic Framework for the Oxygen Reduction Reaction. ACS Appl. Mater. Interfaces 2017, 9, 2541–2549. [Google Scholar]
- Wang, X.; Liu, T.; Li, H.; Han, C.; Su, P.; Ta, N.; Jiang, S.P.; Kong, B.; Liu, J.; Huang, Z. Balancing Mass Transfer and Active Sites to Improve Electrocatalytic Oxygen Reduction by B,N Codoped C Nanoreactors. Nano Lett. 2023, 23, 4699–4707. [Google Scholar]
- Fang, B.; Daniel, L.; Bonakdarpour, A.; Govindarajan, R.; Sharman, J.; Wilkinson, D.P. Dense Pt Nanowire Electrocatalyst for Improved Fuel Cell Performance Using a Graphitic Carbon Nitride-Decorated Hierarchical Nanocarbon Support. Small 2021, 17, 2102288. [Google Scholar]
- Sharifi, T.; Hu, G.; Jia, X.; Wågberg, T. Formation of Active Sites for Oxygen Reduction Reactions by Transformation of Nitrogen Functionalities in Nitrogen-Doped Carbon Nanotubes. ACS Nano 2012, 6, 8904–8912. [Google Scholar] [PubMed]
- Zhou, Q.; Yang, Y.; Ye, Q.; Xue, T.; Tu, M.; Liu, Y.; Li, H.; Yan, X.-H.; Zou, Z.-L.; Wang, B.-P.; et al. Graphitic-Nitrogen-Enriched Carbon Skeleton with Embedment of Fe3C for Superior Performance Air Cathode in Zinc-Air Battery. Mater. Today Energy 2023, 31, 101194. [Google Scholar]
- Wu, J.; Ma, L.; Yadav, R.M.; Yang, Y.; Zhang, X.; Vajtai, R.; Lou, J.; Ajayan, P.M. Nitrogen-Doped Graphene with Pyridinic Dominance as a Highly Active and Stable Electrocatalyst for Oxygen Reduction. ACS Appl. Mater. Interfaces 2015, 7, 14763–14769. [Google Scholar]
- Shen, S.Y.; Zhao, T.S.; Xu, J.B.; Li, Y.S. Synthesis of PdNi Catalysts for the Oxidation of Ethanol in Alkaline Direct Ethanol Fuel Cells. J. Power Sources 2010, 195, 1001–1006. [Google Scholar]
- Song, C.; Zhang, J. Electrocatalytic Oxygen Reduction Reaction. In PEM Fuel Cell Electrocatalysts and Catalyst Layers: Fundamentals and Applications; Zhang, J., Ed.; Springer: London, UK, 2008; pp. 89–134. [Google Scholar]
- Wu, Y.; Muthukrishnan, A.; Nagata, S.; Nabae, Y. Kinetic Understanding of the Reduction of Oxygen to Hydrogen Peroxide over an N-Doped Carbon Electrocatalyst. J. Phys. Chem. C 2019, 123, 4590–4596. [Google Scholar]
- Kirillov, A.M. Hexamethylenetetramine: An old new building block for design of coordination polymers. Coord. Chem. Rev. 2011, 255, 1603–1622. [Google Scholar]
- Reyes-Rodríguez, J.L.; Sathish-Kumar, K.; Solorza-Feria, O. Synthesis and Functionalization of Green Carbon as a Pt Catalyst Support for the Oxygen Reduction Reaction. Int. J. Hydrogen Energy 2015, 40, 17253–17263. [Google Scholar]
- Francioso, O.; Sanchez-Cortes, S.; Bonora, S.; Roldán, M.L.; Certini, G. Structural Characterization of Charcoal Size-Fractions from a Burnt Pinus Pinea Forest by FT-IR, Raman and Surface-Enhanced Raman Spectroscopies. J. Mol. Struct. 2011, 994, 155–162. [Google Scholar]
- Wang, R.; Jia, J.; Li, H.; Li, X.; Wang, H.; Chang, Y.; Kang, J.; Lei, Z. Nitrogen-Doped Carbon Coated Palygorskite as an Efficient Electrocatalyst Support for Oxygen Reduction Reaction. Electrochim. Acta 2011, 56, 4526–4531. [Google Scholar]
- Li, T.; Li, M.; Zhang, M.; Li, X.; Liu, K.; Zhang, M.; Liu, X.; Sun, D.; Xu, L.; Zhang, Y.; et al. Immobilization of Fe3N Nanoparticles within N-Doped Carbon Nanosheet Frameworks as a High-Efficiency Electrocatalyst for Oxygen Reduction Reaction in Zn-Air Batteries. Carbon 2019, 153, 364–371. [Google Scholar]
- Yang, T.; Chen, Y.; Liu, Y.; Liu, X.; Gao, S. Self-Sacrificial Template Synthesis of Fe, N Co-Doped Porous Carbon as Efficient Oxygen Reduction Electrocatalysts towards Zn-Air Battery Application. Chin. Chem. Lett. 2022, 33, 2171–2177. [Google Scholar]
- Deng, Y.; Tian, X.; Chi, B.; Wang, Q.; Ni, W.; Gao, Y.; Liu, Z.; Luo, J.; Lin, C.; Ling, L.; et al. Hierarchically Open-Porous Carbon Networks Enriched with Exclusive Fe–Nx Active Sites as Efficient Oxygen Reduction Catalysts towards Acidic H2–O2 PEM Fuel Cell and Alkaline Zn–Air Battery. Chem. Eng. J. 2020, 390, 124479. [Google Scholar]
- Liu, S.; Wang, Z.; Zhou, S.; Yu, F.; Yu, M.; Chiang, C.-Y.; Zhou, W.; Zhao, J.; Qiu, J. Metal–Organic-Framework-Derived Hybrid Carbon Nanocages as a Bifunctional Electrocatalyst for Oxygen Reduction and Evolution. Adv. Mater. 2017, 29, 1700874. [Google Scholar]
- Wang, Q.; Lei, Y.; Chen, Z.; Wu, N.; Wang, Y.; Wang, B.; Wang, Y. Fe/Fe3 C@C Nanoparticles Encapsulated in N-Doped Graphene–CNTs Framework as an Efficient Bifunctional Oxygen Electrocatalyst for Robust Rechargeable Zn–Air Batteries. J. Mater. Chem. A 2018, 6, 516–526. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.; Huang, J.; Zhong, G.; Xu, S.; Chen, H.; Fu, X.; Kang, S.; Tu, J.; Tuo, Y.; Liao, W.; et al. Carbon-Encapsulated Ni Nanoparticles Catalysts Derived from Ni-Hexamine Coordination Frameworks for Oxygen Reduction Reaction and Oxygen Evolution Reaction. Catalysts 2025, 15, 338. https://doi.org/10.3390/catal15040338
Huang H, Huang J, Zhong G, Xu S, Chen H, Fu X, Kang S, Tu J, Tuo Y, Liao W, et al. Carbon-Encapsulated Ni Nanoparticles Catalysts Derived from Ni-Hexamine Coordination Frameworks for Oxygen Reduction Reaction and Oxygen Evolution Reaction. Catalysts. 2025; 15(4):338. https://doi.org/10.3390/catal15040338
Chicago/Turabian StyleHuang, Huoxing, Jiaxing Huang, Guoyu Zhong, Shurui Xu, Hongwei Chen, Xiaobo Fu, Shimin Kang, Junling Tu, Yongxiao Tuo, Wenbo Liao, and et al. 2025. "Carbon-Encapsulated Ni Nanoparticles Catalysts Derived from Ni-Hexamine Coordination Frameworks for Oxygen Reduction Reaction and Oxygen Evolution Reaction" Catalysts 15, no. 4: 338. https://doi.org/10.3390/catal15040338
APA StyleHuang, H., Huang, J., Zhong, G., Xu, S., Chen, H., Fu, X., Kang, S., Tu, J., Tuo, Y., Liao, W., & Fang, B. (2025). Carbon-Encapsulated Ni Nanoparticles Catalysts Derived from Ni-Hexamine Coordination Frameworks for Oxygen Reduction Reaction and Oxygen Evolution Reaction. Catalysts, 15(4), 338. https://doi.org/10.3390/catal15040338