Rational Design of Ce–Ni Bimetallic MOF-Derived Nanocatalysts for Enhanced Hydrogenation of Dicyclopentadiene
Abstract
1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of Catalysts
2.2. Catalytic Hydrogenation Properties of Ni–CeO2(x:y) @C–T
3. Materials and Methods
3.1. Materials and Reagents
3.2. Synthesis of CexNiy–MOF–808
3.3. Synthesis of the Derivative Ni–CeO2(x:y) @C–T
3.4. Catalyst Characterization
3.5. DCPD Hydrogenation Catalytic Process
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Adegoke, K.A.; Ighalo, J.O.; Conradie, J.; Ohoro, C.R.; Amaku, J.F.; Oyedotun, K.O.; Maxakato, N.W.; Akpomie, K.G.; Okeke, E.S.; Olisah, C.; et al. Metal-organic framework composites for electrochemical CO2 reduction reaction. Sep. Purif. Technol. 2024, 341, 126532. [Google Scholar] [CrossRef]
- Sun, Z.; Zhang, Z.-H.; Yuan, T.-Q.; Ren, X.; Rong, Z. Raney Ni as a Versatile Catalyst for Biomass Conversion. ACS Catal. 2021, 11, 10508–10536. [Google Scholar] [CrossRef]
- Shafaghat, H.; Kim, J.M.; Lee, I.-G.; Jae, J.; Jung, S.-C.; Park, Y.-K. Catalytic hydrodeoxygenation of crude bio-oil in supercritical methanol using supported nickel catalysts. Renew. Energy 2019, 144, 159–166. [Google Scholar] [CrossRef]
- Chen, S.; Hai, G.; Gao, H.; Chen, X.; Li, A.; Zhang, X.; Dong, W. Modulation of the charge transfer behavior of Ni(II)-doped NH2-MIL-125(Ti): Regulation of Ni ions content and enhanced photocatalytic CO2 reduction performance. J. Mater. Chem. A 2024, 406, 126886. [Google Scholar] [CrossRef]
- Lin, J.; Ban, T.; Li, T.; Sun, Y.; Zhou, S.; Li, R.; Su, Y.; Kasemchainan, J.; Gao, H.; Shi, L.; et al. Machine-learning-assisted intelligent synthesis of UiO-66(Ce): Balancing the trade-off between structural defects and thermal stability for efficient hydrogenation of Dicyclopentadiene. Mater. Genome Eng. Adv. 2024, 2, e61. [Google Scholar] [CrossRef]
- Zhang, Z.; Shen, C.; Sun, K.; Jia, X.; Ye, J.; Liu, C.-J. Advances in studies of the structural effects of supported Ni catalysts for CO2 hydrogenation: From nanoparticle to single atom catalyst. J. Mater. Chem. A 2022, 10, 5792–5812. [Google Scholar] [CrossRef]
- Li, Y.; Jia, D.; Tao, Z.; Zhao, J. Ni nanocatalysts supported on MIL-53(Al) for DCPD hydrogenation. RSC Adv. 2022, 12, 9044–9050. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Huang, D.; Chen, J.; Ye, R.; Lin, Q.; Chen, S. Fabrication of novel electrochemical sensor based on bimetallic Ce-Ni-MOF for sensitive detection of bisphenol A. Anal. Bioanal. Chem. 2020, 412, 849–860. [Google Scholar] [CrossRef]
- Ban, T.; Yu, L.; Li, R.; Wang, C.; Lin, J.; Chen, J.; Xu, X.; Wang, Z.; Gao, H.; Wang, G. Microenvironment Modulation for Electronic Structure of Atomically Dispersed Ir Species in Metal–Organic Frameworks Toward Boosting Catalytic DCPD Hydrogenation Performance. Carbon Neutralization 2025, 4, e70004. [Google Scholar] [CrossRef]
- Xu, X.; Xi, Z.; Zhao, D.; Liu, Z.; Wang, L.; Ban, T.; Wang, J.; Zhao, S.; Gao, H.; Wang, G. Regulating electron transfer between valence-variable cuprum and cerium sites within bimetallic metal–organic framework towards enhanced catalytic hydrogenation performance. J. Colloid Interface Sci. 2025, 679, 1159–1170. [Google Scholar] [CrossRef]
- Jia, D.; Zhao, J.; Tao, Z.; Gao, H.; Fu, Z.; Yan, R.; Zhu, Z.; Shu, X.; Wang, G. Highly dispersed Ni nanocatalysts supported by MOFs derived hierarchical N-doped porous carbon for hydrogenation of dicyclopentadiene. Carbon 2021, 184, 855–863. [Google Scholar] [CrossRef]
- He, T.; Chen, S.; Ni, B.; Gong, Y.; Wu, Z.; Song, L.; Gu, L.; Hu, W.; Wang, X. Zirconium–Porphyrin-Based Metal–Organic Framework Hollow Nanotubes for Immobilization of Noble-Metal Single Atoms. Angew. Chem. Int. Ed. 2018, 57, 3493–3498. [Google Scholar] [CrossRef] [PubMed]
- Ahn, S.; Park, K.; Lee, K.R.; Haider, A.; Van Nguyen, C.; Jin, H.; Yoo, S.J.; Jung, K.-D. Atomically dispersed Ru(III) on N-doped mesoporous carbon hollow spheres as catalysts for CO2 hydrogenation to formate. Chem. Eng. J. 2022, 442, 136185. [Google Scholar] [CrossRef]
- Galhardo, T.S.; Braga, A.H.; Arpini, B.H.; Szanyi, J.; Gonçalves, R.V.; Zornio, B.F.; Miranda, C.R.; Rossi, L.M. Optimizing Active Sites for High CO Selectivity during CO2 Hydrogenation over Supported Nickel Catalysts. J. Am. Chem. Soc. 2021, 143, 4268–4280. [Google Scholar] [CrossRef]
- Zhou, S.; Ban, T.; Li, T.; Gao, H.; He, T.; Cheng, S.; Li, H.; Yi, J.; Zhao, F.; Qu, W. Defect Engineering in Ce-Based Metal–Organic Frameworks toward Enhanced Catalytic Performance for Hydrogenation of Dicyclopentadiene. ACS Appl. Mater. Interfaces 2024, 16, 38177–38187. [Google Scholar] [CrossRef]
- Dang, S.; Zhu, Q.-L.; Xu, Q. Nanomaterials derived from metal–organic frameworks. Nat. Rev. Mater. 2017, 3, 17075. [Google Scholar] [CrossRef]
- Li, X.; Liu, P.F.; Zhang, L.; Zu, M.Y.; Yang, Y.X.; Yang, H.G. Enhancing alkaline hydrogen evolution reaction activity through Ni–Mn3O4 nanocomposites. Chem. Commun. 2016, 52, 10566–10569. [Google Scholar] [CrossRef]
- He, J.; Xu, Y.; Wang, W.; Hu, B.; Wang, Z.; Yang, X.; Wang, Y.; Yang, L. Ce(III) nanocomposites by partial thermal decomposition of Ce-MOF for effective phosphate adsorption in a wide pH range. Chem. Eng. J. 2020, 379, 122431. [Google Scholar] [CrossRef]
- Paul, S.; Shakya, A.K.; Ghosh, P.K. Bacterially-assisted recovery of cadmium and nickel as their metal sulfide nanoparticles from spent Ni–Cd battery via hydrometallurgical route. J. Environ. Manag. 2020, 261, 110113. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Shi, Y.-Z.; Chen, Q.; Ye, B.-H.; Bi, J.-H.; Yu, J.C.; Wu, L. The defect-modulated UiO-66(Ce) MOFs for enhancing photocatalytic selective organic oxidations. Rare Met. 2024, 44, 2462–2473. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, L.; Wang, C.; Li, R.; Zhou, P.; Gao, H.; Wang, G. Modulating the strong metal-support interactions by regulating the chemical microenvironment of Pt confined in MOFs for low temperature hydrogenation of DCPD. Chem. Eng. J. 2024, 479, 147601. [Google Scholar] [CrossRef]
- Zhang, L.; Mao, D.; Qu, Y.; Chen, X.; Zhang, J.; Huang, M.; Wang, J. Facile Synthesis of Ce-MOF for the Removal of Phosphate, Fluoride, and Arsenic. Nanomaterials 2023, 13, 3048. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, C.; Yang, P.; Wang, W.; Gao, H.; An, G.; Liu, S.; Chen, J.; Guo, T.; Xu, X.; et al. Microenvironment and electronic state modulation of Pd nanoparticles within MOFs for enhancing low-temperature activity towards DCPD hydrogenation. Chin. J. Catal. 2024, 64, 112–122. [Google Scholar] [CrossRef]
- Yan, P.; Xi, S.; Peng, H.; Mitchell, D.R.G.; Harvey, L.; Drewery, M.; Kennedy, E.M.; Zhu, Z.; Sankar, G.; Stockenhuber, M. Facile and Eco-Friendly Approach to Produce Confined Metal Cluster Catalysts. J. Am. Chem. Soc. 2023, 145, 9718–9728. [Google Scholar] [CrossRef]
- Xu, X.; Wei, Q.; Xi, Z.; Zhao, D.; Chen, J.; Wang, J.; Zhang, X.; Gao, H.; Wang, G. Research progress of metal-organic frameworks-based materials for CO2 capture and CO2-to-alcohols conversion. Coord. Chem. Rev. 2023, 495, 215593. [Google Scholar] [CrossRef]
- Zhang, B.; Sun, Y.; Xu, H.; He, X. Hydrogen storage mechanism of metal–organic framework materials based on metal centers and organic ligands. Carbon Neutralization 2023, 2, 632–645. [Google Scholar] [CrossRef]
- Lu, Z.; He, J.; Song, M.; Zhang, Y.; Wu, F.; Zheng, J.; Zhang, L.; Chen, L. Bullet-like vanadium-based MOFs as a highly active catalyst for promoting the hydrogen storage property in MgH2. Int. J. Miner. Metall. Mater. 2022, 30, 44–53. [Google Scholar] [CrossRef]
- Lei, Y.; Zhou, Y.; Zhang, S.; Zhou, S.; Ma, N.; Liu, H.; Liu, Y.; Zhang, J.; Miao, H.; Cao, L. Nitrogen-doped bimetallic MOFs derivatives for efficient ionizing radiation catalytic degradation of chloramphenicol. Sep. Purif. Technol. 2023, 326, 124785. [Google Scholar] [CrossRef]
- Wu, C.; Chen, X.; Liang, J.; Fu, J.; Zhang, Z.; Wei, X.; Wang, L. MOF-templated fabrication of Ni@C/g-C3N4 catalyst with high-dense accessible active sites achieving dicyclopentadiene hydrogenation at ambient conditions and comprehensive mechanism insight. Chem. Eng. J. 2023, 462, 142141. [Google Scholar] [CrossRef]
- Li, R.; Wang, L.; Zhou, P.; Lin, J.; Liu, Z.; Chen, J.; Zhao, D.; Huang, X.; Tao, Z.; Wang, G. Electronic state, abundance and microenvironment modulation of Ru nanoclusters within hierarchically porous UiO-66(Ce) for efficient hydrogenation of dicyclopentadiene. Chin. J. Catal. 2024, 56, 150–165. [Google Scholar] [CrossRef]
- Chettibi, S.; Wojcieszak, R.; Boudjennad, E.; Belloni, J.; Bettahar, M.; Keghouche, N. Ni–Ce intermetallic phases in CeO2-supported nickel catalysts synthesized by γ-radiolysis. Catal. Today 2006, 113, 157–165. [Google Scholar] [CrossRef]
- Ezugwu, C.I.; Zhang, S.; Li, S.; Shi, S.; Li, C.; Verpoort, F.; Yu, J.; Liu, S. Efficient transformative HCHO capture by defective NH2-UiO-66(Zr) at room temperature. Environ. Sci. Nano 2019, 6, 2931–2936. [Google Scholar] [CrossRef]
- Kar, A.K.; Sarkar, R.; Manal, A.K.; Kumar, R.; Chakraborty, S.; Ahuja, R.; Srivastava, R. Unveiling and understanding the remarkable enhancement in the catalytic activity by the defect creation in UiO-66 during the catalytic transfer hydrodeoxygenation of vanillin with isopropanol. Appl. Catal. B Environ. 2023, 325, 122385. [Google Scholar] [CrossRef]
- Chen, Y.; Ding, R.; Li, J.; Liu, J. Highly active atomically dispersed platinum-based electrocatalyst for hydrogen evolution reaction achieved by defect anchoring strategy. Appl. Catal. B Environ. 2022, 301, 120830. [Google Scholar] [CrossRef]
- Yang, J.; Li, K.; Li, C.; Gu, J. Intrinsic Apyrase-Like Activity of Cerium-Based Metal–Organic Frameworks (MOFs): Dephosphorylation of Adenosine Tri- and Diphosphate. Angew. Chem. Int. Ed. 2020, 59, 22952–22956. [Google Scholar] [CrossRef]
- Sun, H.; Tian, C.; Fan, G.; Qi, J.; Liu, Z.; Yan, Z.; Cheng, F.; Chen, J.; Li, C.; Du, M. Boosting Activity on Co4N Porous Nanosheet by Coupling CeO2 for Efficient Electrochemical Overall Water Splitting at High Current Densities. Adv. Funct. Mater. 2020, 30, 1910596. [Google Scholar] [CrossRef]
- Li, Y.; Luo, W.; Wu, D.; Wang, Q.; Yin, J.; Xi, P.; Qu, Y.; Gu, M.; Zhang, X.; Lu, Z.; et al. Atomic-level correlation between the electrochemical performance of an oxygen-evolving catalyst and the effects of CeO2 functionalization. Nano Res. 2021, 15, 2994–3000. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, X.; Zheng, Z. CeO2 Functionalized Cobalt Layered Double Hydroxide for Efficient Catalytic Oxygen-Evolving Reaction. Small 2022, 18, 2107594. [Google Scholar] [CrossRef]
- Yao, N.; Meng, R.; Wu, F.; Fan, Z.; Cheng, G.; Luo, W. Oxygen-Vacancy-Induced CeO2/Co4N heterostructures toward enhanced pH-Universal hydrogen evolution reactions. Appl. Catal. B Environ. 2020, 277, 119282. [Google Scholar] [CrossRef]
- Wang, S.; Ai, Z.; Niu, X.; Yang, W.; Kang, R.; Lin, Z.; Waseem, A.; Jiao, L.; Jiang, H. Linker Engineering of Sandwich-Structured Metal–Organic Framework Composites for Optimized Photocatalytic H2 Production. Adv. Mater. 2023, 35, 2302512. [Google Scholar] [CrossRef]
- Yun, R.; Xu, R.; Shi, C.; Zhang, B.; Li, T.; He, L.; Sheng, T.; Chen, Z. Post-modification of MOF to fabricate single-atom dispersed hollow nanocages catalysts for enhancing CO2 conversion. Nano Res. 2023, 16, 8970–8976. [Google Scholar] [CrossRef]
- Jiang, T.; Liu, Z.; Yuan, Y.; Zheng, X.; Park, S.; Wei, S.; Li, L.; Ma, Y.; Liu, S.; Chen, J.; et al. Ultrafast Electrical Pulse Synthesis of Highly Active Electrocatalysts for Beyond-Industrial-Level Hydrogen Gas Batteries. Adv. Mater. 2023, 35, 2300502. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Gao, Y.; Wang, C.; Zhang, Y.; Gao, H.; Yang, P.; Liu, S.; Chen, J.; Liu, Z.; Wang, J.; et al. Lanthanum-mediated enhancement of low temperature hydrogenation activity and stability in nickel catalyst supported by MOFs. Chem. Eng. J. 2025, 512, 162497. [Google Scholar] [CrossRef]
- Hu, F.; Zhao, D.; Li, R.; Zhang, Y.; Zhang, T.; Huang, X.; Wang, G. Monocarboxylic acid etching strategy: Modulation of the chemical environment of Ni nanoparticles in defective Ce-UiO-66 to construct heterogeneous interfaces for dicyclopentadiene hydrogenation. J. Mater. Chem. A 2025, 13, 11874–11885. [Google Scholar] [CrossRef]
- Lin, J.; Zhao, D.; Lu, S.; Li, R.; Xu, X.; Wang, Z.; Li, W.; Ji, Y.; Zhang, C.; Shi, L.; et al. Conversational Large-Language-Model Artificial Intelligence Agent for Accelerated Synthesis of Metal-Organic Frameworks Catalysts in Olefin Hydrogenation. ACS Nano 2025, 19, 23840–23858. [Google Scholar] [CrossRef]
- Jia, D.; Zhao, J.; Yan, R.; Gao, H.; Fu, Z.; Zhu, Z.; Tao, Z. Hydrogenation of Dicyclopentadiene over Stable SiO2@Ni/C Catalysts under Mild Conditions. Energy Fuels 2024, 38, 12625–12631. [Google Scholar] [CrossRef]
Catalytic Materials | Reaction Conditions (Temperature/H2 Pressure/Time) | DCPD Conversion Rate (%) | DHDCPD Selectivity (%) | THDCPD Selectivity (%) | References |
---|---|---|---|---|---|
Ni–CeO2(3:7) @C–400 °C | 100 °C/2 MPa/2 h | 100 | 0 | >99.9 | This work |
Raney Ni | 120 °C/−/− | 96 | 0 | 96 | [2] |
Ni–53–500 | 60 °C/3 MPa/2 h | 100 | 0 | >99.9 | [7] |
MET–1000 | 120 °C/3 MPa/− | 100 | <1 | >99 | [11] |
Ni@C/g–C3N4 | 20 °C/1 MPa/3 h | >99 | 1.1 | 98.9 | [29] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, X.; Meng, H.; Wang, C.; Tao, J.; Gao, H. Rational Design of Ce–Ni Bimetallic MOF-Derived Nanocatalysts for Enhanced Hydrogenation of Dicyclopentadiene. Catalysts 2025, 15, 812. https://doi.org/10.3390/catal15090812
Gao X, Meng H, Wang C, Tao J, Gao H. Rational Design of Ce–Ni Bimetallic MOF-Derived Nanocatalysts for Enhanced Hydrogenation of Dicyclopentadiene. Catalysts. 2025; 15(9):812. https://doi.org/10.3390/catal15090812
Chicago/Turabian StyleGao, Xinru, Han Meng, Changan Wang, Jinzhang Tao, and Hongyi Gao. 2025. "Rational Design of Ce–Ni Bimetallic MOF-Derived Nanocatalysts for Enhanced Hydrogenation of Dicyclopentadiene" Catalysts 15, no. 9: 812. https://doi.org/10.3390/catal15090812
APA StyleGao, X., Meng, H., Wang, C., Tao, J., & Gao, H. (2025). Rational Design of Ce–Ni Bimetallic MOF-Derived Nanocatalysts for Enhanced Hydrogenation of Dicyclopentadiene. Catalysts, 15(9), 812. https://doi.org/10.3390/catal15090812