Triethanolamine-Modified CMPSF Anion Exchange Membranes for High-Efficiency Acid Recovery via Diffusion Dialysis
Abstract
1. Introduction
2. Results and Discussion
2.1. Membrane Characterizations
2.1.1. 1H NMR and XPS
2.1.2. FTIR Spectra
2.1.3. Microscopic Morphology of CMPSF Membranes
2.2. IEC, WCA, WU, and LER
2.3. DD Performance
2.4. Thermal Stability, Acid Resistance, and Mechanical Properties
3. Materials and Methods
3.1. Materials
3.2. Chloromethylation of Polysulfone (CMPSF)
3.3. Membrane Preparation
3.4. Membrane Characterization
3.4.1. 1H NMR, XPS, FTIR Spectroscopic, and Microscopic Studies
3.4.2. Ion Exchange Capacity
3.4.3. Water Uptake, Water Contact Angle, and Linear Expansion Rate
3.4.4. Diffusion Dialysis Test
3.4.5. Thermal Stability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Agrawal, A.; Sahu, K.K. An overview of the recovery of acid from spent acidic solutions from steel and electroplating industries. J. Hazard. Mater. 2009, 171, 61–75. [Google Scholar] [CrossRef] [PubMed]
- Irfan, M.; Afsar, N.U.; Bakangura, E.; Mondal, A.N.; Khan, M.I.; Emmanuel, K.; Yang, Z.; Wu, L.; Xu, T. Development of novel PVA-QUDAP based anion exchange membranes for diffusion dialysis and theoretical analysis therein. Sep. Purif. Technol. 2017, 178, 269–278. [Google Scholar] [CrossRef]
- Yadav, V.; Raj, S.K.; Rathod, N.H.; Kulshresth, V. Polysulfone/graphene quantum dots composite anion exchange membrane for acid recovery by diffusion dialysis. J. Membr. Sci. 2020, 611, 118331. [Google Scholar] [CrossRef]
- Zhu, C.; Li, J.; Liao, J.; Chen, Q.; Xu, Y.; Ruan, H.; Shen, J. Acid enrichment via electrodialyser fabricated with poly (vinyl chloride)-based anion exchange membrane: Effect of hydrophobicity of aliphatic side-chains tethered on imidazolium groups. Sep. Purif. Technol. 2022, 293, 120907. [Google Scholar] [CrossRef]
- Chen, X.; Huang, Z.-H.; Ji, Z.-Y.; Guo, X.-F.; Zhao, L.-M.; Yuan, J.-S. Efficient treatment of pure terephthalic acid wastewater with Na2S2O8 based on thermal activation. Environ. Technol. Innov. 2020, 19, 100897. [Google Scholar] [CrossRef]
- You, X.; Chen, J.; Pan, S.; Lu, G.; Teng, L.; Lin, X.; Zhao, S.; Lin, J. Piperazine-functionalized porous anion exchange membranes for efficient acid recovery by diffusion dialysis. J. Membr. Sci. 2022, 654, 120560. [Google Scholar] [CrossRef]
- Emmanuel, K.; Erigene, B.; Cheng, C.; Mondal, A.N.; Hossain, M.M.; Khan, M.I.; Afsar, N.U.; Ge, L.; Wu, L.; Xu, T. Facile synthesis of pyridinium functionalized anion exchange membranes for diffusion dialysis application. Sep. Purif. Technol. 2016, 167, 108–116. [Google Scholar] [CrossRef]
- Lin, X.; Kim, S.; Zhu, D.M.; Shamsaei, E.; Xu, T.; Fang, X.; Wang, H. Preparation of porous diffusion dialysis membranes by functionalization of polysulfone for acid recovery. J. Membr. Sci. 2017, 524, 557–564. [Google Scholar] [CrossRef]
- Tomaszewska, M.; Gryta, M.; Morawski, A.W. Mass transfer of HCl and H2O across the hydrophobic membrane during membrane distillation. J. Membr. Sci. 2000, 166, 149–157. [Google Scholar] [CrossRef]
- Sedighi, M.; Usefi, M.M.B.; Ismail, A.F.; Ghasemi, M. Environmental sustainability and ions removal through electrodialysis desalination: Operating conditions and process parameters. Desalination 2023, 549, 116319. [Google Scholar] [CrossRef]
- Zheng, X.; Chen, Y.; Zheng, L.; Cheng, R.; Hua, H. Recycling of aged RO membranes as NF/UF membranes: Biosafety evaluation and aging process. Desalination 2022, 538, 115845. [Google Scholar] [CrossRef]
- Afsar, N.U.; Erigene, B.; Irfan, M.; Wu, B.; Xu, T.; Ji, W.; Emmanuel, K.; Ge, L.; Xu, T. High performance anion exchange membrane with proton transport pathways for diffusion dialysis. Sep. Purif. Technol. 2018, 193, 11–20. [Google Scholar] [CrossRef]
- Sato, J.; Onuma, M.; Motomura, H.; Noma, Y. Recovery of nitric acid and hydrofluoric acid from the pickling solution by diffusion dialysis. J. Surf. Finish. Soc. Jpn. 1985, 32, 220–226. [Google Scholar] [CrossRef]
- Xu, J.; Lu, S.; Fu, D. Recovery of hydrochloric acid from the waste acid solution by diffusion dialysis. J. Hazard. Mater. 2009, 165, 832–837. [Google Scholar] [CrossRef]
- Wei, C.; Li, X.; Deng, Z.; Fan, G.; Li, M.; Li, C. Recovery of H2SO4 from an acid leach solution by diffusion dialysis. J. Hazard. Mater. 2010, 176, 226–230. [Google Scholar] [CrossRef]
- Liu, D.; Wang, C.; Miao, J.; Xia, R.; Chen, P.; Cao, M.; Wu, B.; Qian, J. Composite cationic exchange membranes prepared from polyvinyl alcohol (PVA) and boronic acid copolymers for alkaline diffusion dialysis. Materials 2018, 11, 1354. [Google Scholar] [CrossRef]
- Yang, J.; Dai, G.; Wang, J.; Pan, S.; Lu, G.; Shi, X.; Tang, D.; Chen, J.; Lin, X. Porous anion exchange membrane for effective acid recovery by diffusion dialysis. Processes 2021, 9, 1049. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhang, T.; Wang, Z. Preparation of an anion exchange membrane by pyridine-functionalized polyether ether ketone to improve alkali resistance stability for an alkali fuel cell. Energy Fuels 2021, 35, 3360–3367. [Google Scholar] [CrossRef]
- Cheng, C.; Shen, H.Y.; Gong, Y.; Chen, W.; Li, P. Auxiliary functional group diffusion dialysis membranes for acid recovery. J. Polym. Sci. 2022, 60, 3043–3053. [Google Scholar] [CrossRef]
- Yang, J.; Liu, C.; Hao, Y.; He, X.; He, R. Preparation and investigation of various imidazolium-functionalized poly (2,6-dimethyl-1,4-phenylene oxide) anion exchange membranes. Electrochim. Acta 2016, 207, 112–119. [Google Scholar] [CrossRef]
- Khan, M.I.; Shanableh, A.; Khraisheh, M.; AlMomani, F. Synthesis of porous BPPO-based anion exchange membranes for acid recovery via diffusion dialysis. Membranes 2022, 12, 95. [Google Scholar] [CrossRef]
- Yurekli, Y. Removal of heavy metals in wastewater by using zeolite nano-particles impregnated polysulfone membranes. J. Hazard. Mater. 2016, 309, 53–64. [Google Scholar] [CrossRef]
- Kheirieh, S.; Asghari, M.; Afsari, M. Application and modification of polysulfone membranes. Rev. Chem. Eng. 2018, 34, 657–693. [Google Scholar] [CrossRef]
- Zhang, S.; Zhou, J.; Wang, Z.; Xia, J.; Wang, Y. Preparation of polysulfone-based block copolymer ultrafiltration membranes by selective swelling and sacrificing nanofillers. Front. Chem. Sci. Eng. 2022, 21, 745–754. [Google Scholar] [CrossRef]
- Alenazi, N.A.; Hussein, M.A.; Alamry, K.A.; Asiri, A.M. Modified polyether-sulfone membrane: A mini review. Des. Monomers Polym. 2017, 5551, 532–546. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Obaid, M.; Jang, J.; Ham, M.-H.; Kim, I.S. Novel sulfonated graphene oxide incorporated polysulfone nanocomposite membranes for enhanced-performance in ultrafiltration process. Chemosphere 2018, 207, 581–589. [Google Scholar] [CrossRef] [PubMed]
- Mamah, S.C.; Goh, P.S.; Ismail, A.F.; Suzaimi, N.D.; Yogarathinam, L.T.; Raji, Y.O.; El-badawy, T.H. Recent development in modification of polysulfone membrane for water treatment application. J. Water Process Eng. 2021, 40, 101835. [Google Scholar] [CrossRef]
- Abdelrasoul, A.; Doan, H.; Lohi, A.; Cheng, C.-H. Morphology control of polysulfone membranes in filtration processes: A critical review. ChemBioEng Rev. 2015, 2, 22–43. [Google Scholar] [CrossRef]
- Gu, Y.; Zhao, J.; Zhou, H.; Jiang, H.; Li, J.; Zhang, B.; Ma, H. Crosslinking imidazolium-intercalated GO membrane for acid recovery from low concentration solution. Carbon 2021, 183, 830–839. [Google Scholar] [CrossRef]
- Kakihana, Y.; Ogawa, Y.; Takamura, K.; Kawamura, N.; Hara, R.; Higa, M. Characterization of cation-exchange membranes prepared from a graft-copolymer consisting of a polysulfone main chain and styrene sulfonic acid side chains. Electrochim. Acta 2014, 129, 120–126. [Google Scholar] [CrossRef]
- Lin, J.; Dan, X.; Wang, J.; Huang, S.; Fan, L.; Xie, M.; Zhao, S.; Lin, X. In-situ cross-linked porous anion exchange membranes with high performance for efficient acid recovery. J. Membr. Sci. 2023, 673, 121499. [Google Scholar] [CrossRef]
- Maniruzzaman, M.; Morgan, D.J.; Mendham, A.P.; Pang, J.; Snowden, M.J.; Douroumis, D. Drug-polymer intermolecular interactions in hot-melt extruded solid dispersions. Int. J. Pharm. 2013, 443, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Fayyazi, F.; Feijani, E.A.; Mahdavi, H. Chemically modified polysulfone membrane containing palladium nanoparticles: Preparation, characterization and application as an efficient catalytic membrane for Suzuki reaction. Chem. Eng. Sci. 2015, 134, 549–554. [Google Scholar] [CrossRef]
- Iravaninia, M.; Azizi, S.; Rowshanzamir, S. A comprehensive study on the stability and ion transport in cross-linked anion exchange membranes based on polysulfone for solid alkaline fuel cells. Int. J. Hydrogen Energy 2017, 42, 17229–17241. [Google Scholar] [CrossRef]
- Miao, L.; Bai, Y.; Yuan, Y.; Lu, C. Mussel-inspired strategy towards functionalized reduced graphene oxide-crosslinked polysulfone-based anion exchange membranes with enhanced properties. Int. J. Hydrogen Energy 2018, 43, 17461–17474. [Google Scholar] [CrossRef]
- Lin, J.; Huang, J.; Wang, J.; Yu, J.; You, X.; Lin, X.; Bruggen, B.V.; Zhao, S. High-performance porous anion exchange membranes for efficient acid recovery from acidic wastewater by diffusion dialysis. J. Membr. Sci. 2021, 624, 119116. [Google Scholar] [CrossRef]
- Cheng, C.; Yang, Z.; He, Y.; Mondal, A.N.; Bakangura, E.; Xu, T. Diffusion dialysis membranes with semi-interpenetrating network for acid recovery. J. Membr. Sci. 2015, 493, 645–653. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, T.; Yang, X.; Wang, X.; Zhang, Z. Superior diffusion dialysis anion exchange membranes from miscible polyether sulfone-poly (vinyl pyrrolidone-co-styrene) blends. J. Membr. Sci. 2023, 680, 121704. [Google Scholar] [CrossRef]
- Ashraf, M.A.; Islam, A.; Butt, M.A.; Mannan, H.A.; Khan, R.U.; Kamran, K.; Bashir, S.; Iqbal, J.; Al-Ghamdi, A.A.; Al-Ghamdi, A.G. Quaternized diaminobutane/poly (vinyl alcohol) cross-linked membranes for acid recovery via diffusion dialysis. Membranes 2021, 11, 786. [Google Scholar] [CrossRef] [PubMed]
- Irfan, M.; Bakangura, E.; Afsar, N.U.; Xu, T. Augmenting acid recovery from different systems by novel Q-DAN anion exchange membranes via diffusion dialysis. Sep. Purif. Technol. 2018, 201, 336–345. [Google Scholar] [CrossRef]
- Chen, W.; Shen, H.; Gong, Y.; Li, P.; Cheng, C. Anion exchange membranes with efficient acid recovery obtained by quaternized poly epichlorohydrin and polyvinyl alcohol during diffusion dialysis. J. Membr. Sci. 2023, 674, 121514. [Google Scholar] [CrossRef]
- Cheng, C.; Yang, Z.; Pan, J.; Tong, B.; Xu, T. Facile and cost effective PVA based hybrid membrane fabrication for acid recovery. Sep. Purif. Technol. 2014, 136, 250–257. [Google Scholar] [CrossRef]
- Mondal, A.N.; Cheng, C.; Yao, Z.; Pan, J.; Hossain, M.; Khan, M.I.; Yang, Z.; Wu, L.; Xu, T. Novel quaternized aromatic amine based hybrid PVA membranes for acid recovery. J. Membr. Sci. 2015, 490, 29–37. [Google Scholar] [CrossRef]
- Patnaik, P.; Sarkar, S.; Pal, S.; Chatterjee, U. Cu(I) catalyzed ATRP for the preparation of high-performance poly(vinylidene fluoride)-g-poly-2-(dimethylamino)ethyl methacrylate crosslinked anion exchange membranes for enhanced acid recovery. J. Membr. Sci. 2023, 671, 121387. [Google Scholar] [CrossRef]
- Khan, M.I.; Khraisheh, M.; AlMomani, F. Innovative BPPO anion exchange membranes formulation using diffusion dialysis-enhanced acid regeneration system. Membranes 2021, 11, 311. [Google Scholar] [CrossRef]
- Lan, Y.; Zhou, D.; Lai, L.; Qi, H.; Xia, L.; Depuydt, S.; Bruggen, B.V.; Zhao, Y. A monovalent selective anion exchange membrane made by poly (2,6-dimethyl-1,4-phenyl oxide) for bromide recovery. Sep. Purif. Technol. 2023, 305, 122377. [Google Scholar] [CrossRef]
- Khan, M.I.; Shanableh, A.; Osman, S.M.; Lashari, M.H.; Manzoor, S.; Rehman, A.; Luque, R. Fabrication of trimethylphosphine-functionalized anion exchange membranes for desalination application via electrodialysis process. Chemosphere 2022, 308, 136330. [Google Scholar] [CrossRef]
- Ji, W.; Afsar, N.U.; Wu, B.; Sheng, F.; Shehzad, M.A.; Ge, L.; Xu, T. In-situ crosslinked SPPO/PVA composite membranes for alkali recovery via diffusion dialysis. J. Membr. Sci. 2019, 590, 117267. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, J. Preparation of anion exchange membrane by efficient functionalization of polysulfone for electrodialysis. J. Membr. Sci. 2020, 596, 117591. [Google Scholar] [CrossRef]
- Chen, Y.; Fan, S.; Peng, C.; Song, B.; Qin, M.; Wang, Y.; Huang, Y.; Li, S.; Zhang, L. BPPO-based anion exchange membranes for acid recovery via diffusion dialysis. New J. Chem. 2025, 49, 845. [Google Scholar] [CrossRef]
- Khan, M.I.; Shanableh, A.; Manzoor, S.; Fernandez, J.; Osman, S.M.; Luque, R. Design of tropinium-functionalized anion exchange membranes for acid recovery via diffusion dialysis process. Environ. Res. 2023, 229, 115932. [Google Scholar] [CrossRef] [PubMed]
Atomic | CMPSF Substrate (%) | CMPSF-M50 AEM (%) |
---|---|---|
C | 81.55 | 78.89 |
O | 14.66 | 15.48 |
S | 2.47 | 2.53 |
N | 0.70 | 2.84 |
Cl | 0.62 | 0.26 |
Membrane Samples | CMPSF (g) | TEA (g) | LER (%) |
---|---|---|---|
TEA-CMPSF-M20 | 0.9 | 0.20 | 7.7 |
TEA-CMPSF-M30 | 0.9 | 0.30 | 12.8 |
TEA-CMPSF-M40 | 0.9 | 0.40 | 20.9 |
TEA-CMPSF-M50 | 0.9 | 0.50 | 25.6 |
Membrane | UH+ (×10−3 m h−1) | S (UH+/UFe2+) | Ref. |
---|---|---|---|
TEA–CMPSF | 8.3–47.9 | 3.87–21.26 | This work |
DF-120 | 9 | 18.5 | [7] |
Pyridinium salt and PVA | 17.4–24.8 | 30.49–51.51 | [7] |
HTA and quaternized brominated polyphenylene oxide | 11–33 | ≥35.6 | [19] |
TMA and BPPO | 4.3–12 | 13.14–32.87 | [21] |
Quaternized diaminobutane and PVA | 18.6–29.5 | 24.7–44.1 | [39] |
Quaternized poly epichlorohydrin and PVA | 11.1–30.0 | 24.79–42.24 | [41] |
EPTAC and PVA | 11.0–18.0 | 18.5–21.0 | [42] |
Quaternized aromatic amine and PVA | 17.2–25.2 | 14.0–21.0 | [43] |
Quaternized poly epichlorohydrin blending with PVA | 8.56–27.33 | 2.55–39.27 | [44] |
Triphenylphosphine (TPP) and BPPO | 6.7–26.3 | 27–49 | [45] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, H.; Chen, Y.; Yang, L.; Xiong, Z.; Yang, Y.; Wang, Z.; Fang, T.; Wang, Y.; Zhang, L. Triethanolamine-Modified CMPSF Anion Exchange Membranes for High-Efficiency Acid Recovery via Diffusion Dialysis. Catalysts 2025, 15, 815. https://doi.org/10.3390/catal15090815
Tang H, Chen Y, Yang L, Xiong Z, Yang Y, Wang Z, Fang T, Wang Y, Zhang L. Triethanolamine-Modified CMPSF Anion Exchange Membranes for High-Efficiency Acid Recovery via Diffusion Dialysis. Catalysts. 2025; 15(9):815. https://doi.org/10.3390/catal15090815
Chicago/Turabian StyleTang, Huanhuan, Yong Chen, Lin Yang, Ziyi Xiong, Yao Yang, Ziyi Wang, Tao Fang, Yi Wang, and Lei Zhang. 2025. "Triethanolamine-Modified CMPSF Anion Exchange Membranes for High-Efficiency Acid Recovery via Diffusion Dialysis" Catalysts 15, no. 9: 815. https://doi.org/10.3390/catal15090815
APA StyleTang, H., Chen, Y., Yang, L., Xiong, Z., Yang, Y., Wang, Z., Fang, T., Wang, Y., & Zhang, L. (2025). Triethanolamine-Modified CMPSF Anion Exchange Membranes for High-Efficiency Acid Recovery via Diffusion Dialysis. Catalysts, 15(9), 815. https://doi.org/10.3390/catal15090815