Amorphous MoSx Nanosheets with Abundant Interlayer Dislocations for Enhanced Photolytic Hydrogen Evolution Reaction
Abstract
1. Introduction
2. Results and Discussion
2.1. Morphological Characterization
2.2. Analysis of Interlayer Dislocations
2.3. Analysis of Structure and Elemental Composition
2.4. Photocatalytic Hydrogen Evolution Performance Test and Mechanisms
3. Materials and Methods
3.1. Materials Syntheses
3.2. Materials Characterization
3.3. Photocatalytic Hydrogen Evolution Performance Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Müller, A.; Pohl, S.; Dartmann, M.; Cohen, J.; Bennett, J.; Kirchner, R. Crystal Structure of (NH4)2[Mo3S(S2)6] Containing the Novel Isolated Cluster [Mo3S13]2−. Z. Für Naturforschung B 1979, 34, 434–436. [Google Scholar] [CrossRef]
- Pütz, J.; Aegerter, M.A. MoSx Thin Films by Thermolysis of a Single-Source Precursor. J. Sol-Gel Sci. Technol. 2000, 19, 821–824. [Google Scholar] [CrossRef]
- Pütz, J.; Aegerter, M.A. Spin Deposition of MoSx Thin Films. Thin Solid Film. 1999, 351, 119–124. [Google Scholar] [CrossRef]
- Han, G.-Q.; Li, X.; Xue, J.; Dong, B.; Shang, X.; Hu, W.-H.; Liu, Y.-R.; Chi, J.-Q.; Yan, K.-L.; Chai, Y.-M. Electrodeposited Hybrid Ni–P/MoSx Film as Efficient Electrocatalyst for Hydrogen Evolution in Alkaline Media. Int. J. Hydrogen Energy 2017, 42, 2952–2960. [Google Scholar] [CrossRef]
- Reddy, S.; Du, R.; Kang, L.; Mao, N.; Zhang, J. Three Dimensional CNTs Aerogel/MoSx as an Electrocatalyst for Hydrogen Evolution Reaction. Appl. Catal. B Environ. 2016, 194, 16–21. [Google Scholar] [CrossRef]
- Yu, H.; Yuan, R.; Gao, D.; Xu, Y.; Yu, J. Ethyl Acetate-Induced Formation of Amorphous MoSx Nanoclusters for Improved H2-Evolution Activity of TiO2 Photocatalyst. Chem. Eng. J. 2019, 375, 121934. [Google Scholar] [CrossRef]
- Li, B.; Jiang, L.; Li, X.; Cheng, Z.; Ran, P.; Zuo, P.; Qu, L.; Zhang, J.; Lu, Y. Controllable Synthesis of Nanosized Amorphous MoSx Using Temporally Shaped Femtosecond Laser for Highly Efficient Electrochemical Hydrogen Production. Adv. Funct. Mater. 2019, 29, 1806229. [Google Scholar] [CrossRef]
- Yang, P.; Wang, B.; Liu, Z. Towards Activation of Amorphous MoSx via Cobalt Doping for Enhanced Electrocatalytic Hydrogen Evolution Reaction. Int. J. Hydrogen Energy 2018, 43, 23109–23117. [Google Scholar] [CrossRef]
- Giuffredi, G.; Mezzetti, A.; Perego, A.; Mazzolini, P.; Prato, M.; Fumagalli, F.; Lin, Y.; Liu, C.; Ivanov, I.N.; Belianinov, A. Non-equilibrium Synthesis of Highly Active Nanostructured, Oxygen-incorporated Amorphous Molybdenum Sulfide Her Electrocatalyst. Small 2020, 16, 2004047. [Google Scholar] [CrossRef]
- Xu, T.; Xie, Y.; Qi, S.; Zhang, H.; Ma, W.; Wang, J.; Gao, Y.; Wang, L.; Zong, X. Simultaneous Defect Passivation and Co-Catalyst Engineering Leads to Superior Photocatalytic Hydrogen Evolution on Metal Halide Perovskites. Angew. Chem. Int. Ed. 2024, 63, e202409945. [Google Scholar] [CrossRef]
- Regner, J.; Mourdikoudis, S.; Gusmão, R.; Sofer, Z. ΜοS2 Nanoensembles Prepared by a Simple Solvothermal Route for Hydrogen Evolution Reaction. FlatChem 2023, 42, 100566. [Google Scholar] [CrossRef]
- Shang, Y.; Xu, X.; Gao, B.; Ren, Z. Thiomolybdate [Mo3S13]2– Nanoclusters Anchored on Reduced Graphene Oxide-Carbon Nanotube Aerogels for Efficient Electrocatalytic Hydrogen Evolution. ACS Sustain. Chem. Eng. 2017, 5, 8908–8917. [Google Scholar] [CrossRef]
- Chen, D.; Liu, M.; Yin, L.; Li, T.; Yang, Z.; Li, X.; Fan, B.; Wang, H.; Zhang, R.; Li, Z. Single-Crystalline MoO3 Nanoplates: Topochemical Synthesis and Enhanced Ethanol-Sensing Performance. J. Mater. Chem. 2011, 21, 9332–9342. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, H.; Zhang, W.; Yao, S. Urea-Assisted Synthesis of Amorphous Molybdenum Sulfide on P-Doped Carbon Nanotubes for Enhanced Hydrogen Evolution. J. Mater. Sci. 2018, 53, 8951–8962. [Google Scholar] [CrossRef]
- Chang, Y.; Lin, C.; Chen, T.; Hsu, C.; Lee, Y.; Zhang, W.; Wei, K.; Li, L. Highly Efficient Electrocatalytic Hydrogen Production by MoSx Grown on Graphene-protected 3D Ni Foams. Adv. Mater. 2013, 25, 756–760. [Google Scholar] [CrossRef]
- Shang, Y.; Xu, X.; Wang, Z.; Jin, B.; Wang, R.; Ren, Z.; Gao, B.; Yue, Q. rGO/CNTs Supported Pyrolysis Derivatives of [Mo3S13]2−Clusters as Promising Electrocatalysts for Enhancing Hydrogen Evolution Performances. ACS Sustain. Chem. Eng. 2018, 6, 6920–6931. [Google Scholar] [CrossRef]
- Vrubel, H.; Merki, D.; Hu, X. Hydrogen Evolution Catalyzed by MoS3 and MoS2 Particles. Energy Environ. Sci. 2012, 5, 6136–6144. [Google Scholar] [CrossRef]
- Wang, L.; Xie, L.; Zhao, W.; Liu, S.; Zhao, Q. Oxygen-Facilitated Dynamic Active-Site Generation on Strained MoS2 during Photocatalytic Hydrogen Evolution. Chem. Eng. J. 2021, 405, 127028. [Google Scholar] [CrossRef]
- Kanda, S.; Akita, T.; Fujishima, M.; Tada, H. Facile Synthesis and Catalytic Activity of MoS2/TiO2 by a Photodeposition-Based Technique and Its Oxidized Derivative MoO3/TiO2 with a Unique Photochromism. J. Colloid Interface Sci. 2010, 354, 607–610. [Google Scholar] [CrossRef] [PubMed]
- Zong, X.; Na, Y.; Wen, F.; Ma, G.; Yang, J.; Wang, D.; Ma, Y.; Wang, M.; Sun, L.; Li, C. Visible Light Driven H2 Production in Molecular Systems Employing Colloidal MoS2 Nanoparticles as Catalyst. Chem. Commun. 2009, 4536–4538. [Google Scholar] [CrossRef]
- Frame, F.A.; Osterloh, F.E. CdSe-MoS2: A Quantum Size-Confined Photocatalyst for Hydrogen Evolution from Water under Visible Light. J. Phys. Chem. C 2010, 114, 10628–10633. [Google Scholar] [CrossRef]
- Yuan, Y.; Shen, Z.; Wu, S.; Su, Y.; Pei, L.; Ji, Z.; Ding, M.; Bai, W.; Chen, Y.; Yu, Z.; et al. Liquid Exfoliation of g-C3N4 Nanosheets to Construct 2D-2D MoS2/g-C3N4 Photocatalyst for Enhanced Photocatalytic H2 Production Activity. Appl. Catalysis B Environ. Energy 2019, 246, 120–128. [Google Scholar] [CrossRef]
- Chen, J.; Wu, X.; Yin, L.; Li, B.; Hong, X.; Fan, Z.; Chen, B.; Xue, C.; Zhang, H. One-pot Synthesis of CdS Nanocrystals Hybridized with Single-Layer Transition-Metal Dichalcogenide Nanosheets for Efficient Photocatalytic Hydrogen Evolution. Angew. Chem. 2014, 127, 1226–1230. [Google Scholar] [CrossRef]
- Yuan, Y.; Chen, D.; Huang, Y.; Yu, Z.; Zhong, J.; Chen, T.; Tu, W.; Guan, Z.; Cao, D.; Zou, Z. MoS2 Nanosheet-modified CuInS2 Photocatalyst for Visible-light-driven Hydrogen Production from Water. ChemSusChem 2016, 9, 1003–1009. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, H.; Ke, J.; Zhang, J.; Tian, W.; Xu, X.; Duan, X.; Sun, H.; Tade, M.O.; Wang, S. 0D (MoS2)/2D (g-C3N4) Het-erojunctions in Z-Scheme for Enhanced Photocatalytic and Electrochemical Hydrogen Evolution. Appl. Catal. B Environ. 2018, 228, 64–74. [Google Scholar] [CrossRef]
- Meng, F.; Li, J.; Cushing, S.K.; Zhi, M.; Wu, N. Solar Hydrogen Generation by Nanoscale p–n Junction of p-Type Molybdenum Disulfide/n-Type Nitrogen-Doped Reduced Graphene Oxide. J. Am. Chem. Soc. 2013, 135, 10286–10289. [Google Scholar] [CrossRef] [PubMed]
- Maitra, U.; Gupta, U.; De, M.; Datta, R.; Govindaraj, A.; Rao, C. Highly Effective Visible-Light-Induced H2 Generation by Single-Layer 1T-MoS2 and a Nanocomposite of Few-Layer 2H-MoS2 with Heavily Nitrogenated Graphene. Angew. Chem. Int. Ed. 2013, 52, 13057–13061. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, L.; Lai, H.; Wei, Y.; Yang, G.; Yin, S.; Yi, Z. Graphene Decorated MoS2 for Eosin Y-Sensitized Hydrogen Evolution from Water under Visible Light. RSC Adv. 2017, 7, 46738–46744. [Google Scholar] [CrossRef]
- Xiang, Q.; Yu, J.; Jaroniec, M. Synergetic Effect of MoS2 and Graphene as Cocatalysts for Enhanced Photocatalytic H2 Production Activity of TiO2 Nanoparticles. J. Am. Chem. Soc. 2012, 134, 6575–6578. [Google Scholar] [CrossRef] [PubMed]
- Chou, S.S.; Sai, N.; Lu, P.; Coker, E.N.; Liu, S.; Artyushkova, K.; Luk, T.S.; Kaehr, B.; Brinker, C.J. Understanding Catalysis in a Multiphasic Two-Dimensional Transition Metal Dichalcogenide. Nat. Commun. 2015, 6, 8311. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Wu, Z.; Hu, W.; Sun, N.; Li, Z.; Feng, Z.; Zhao, Y.; Wang, L. Amorphous MoSx Nanosheets with Abundant Interlayer Dislocations for Enhanced Photolytic Hydrogen Evolution Reaction. Catalysts 2025, 15, 879. https://doi.org/10.3390/catal15090879
Xu X, Wu Z, Hu W, Sun N, Li Z, Feng Z, Zhao Y, Wang L. Amorphous MoSx Nanosheets with Abundant Interlayer Dislocations for Enhanced Photolytic Hydrogen Evolution Reaction. Catalysts. 2025; 15(9):879. https://doi.org/10.3390/catal15090879
Chicago/Turabian StyleXu, Xuyang, Zefei Wu, Weifeng Hu, Ning Sun, Zijun Li, Zhe Feng, Yinuo Zhao, and Longlu Wang. 2025. "Amorphous MoSx Nanosheets with Abundant Interlayer Dislocations for Enhanced Photolytic Hydrogen Evolution Reaction" Catalysts 15, no. 9: 879. https://doi.org/10.3390/catal15090879
APA StyleXu, X., Wu, Z., Hu, W., Sun, N., Li, Z., Feng, Z., Zhao, Y., & Wang, L. (2025). Amorphous MoSx Nanosheets with Abundant Interlayer Dislocations for Enhanced Photolytic Hydrogen Evolution Reaction. Catalysts, 15(9), 879. https://doi.org/10.3390/catal15090879