Enhancement of Hydrogen Storage Behavior of Complex Hydrides via Bimetallic Nanocatalysts Doping
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural and Chemical Characteristics of Multinary Complex Hydride LiBH4/2LiNH2/Nano MgH2 (XRD and FTIR Explorations)
2.2. Thermal Desorption Characteristics of Undoped and Bimetallic Catalysts Doped Multinary Complex Hydrides (LiBnMgNH)
3. Experimental Section
3.1. Synthesis and Nanocatalyst Doping of Complex Multinary Hydrides (LinMgBNH)
3.2. Characterization and Hydrogen Sorption Measurements of Catalyzed Multinary Complex Hydrides
4. Conclusions
Acknowledgments
Conflict of Interest
References
- Schlesinger, H.I.; Brown, H.C. Metallo Borohydrides. III. Lithium Borohydride. J. Am. Chem. Soc. 1940, 62, 3429–3435. [Google Scholar] [CrossRef]
- Knacke, O.; Kubaschewski, O.; Hesselmann, K. Thermochemical Properties of Inorganic Substances, 2nd ed; Springer-Verlag: Berlin, Germany, 1991. [Google Scholar]
- Bogdanovic, B.; Brand, R.A.; Marjanovic, A.; Schwickardi, M.; Tölle, J. Metal-doped sodium aluminium hydrides as potential new hydrogen storage materials. J. Alloys Compd. 2000, 302, 36–58. [Google Scholar] [CrossRef]
- Sandrock, G.; Thomas, G. The IEA/DOE/SNL on-line hydride databases. Appl. Phys. A 2001, 72, 153–155. [Google Scholar] [CrossRef]
- Yvon, K. Complex transition-metal hydrides. Chimia 1998, 52, 613–619. [Google Scholar]
- Soulié, J.P.; Renaudin, G.; Cerný, R.; Yvon, K. Lithium boro-hydride LiBH4: I. Crystal structure. J. Alloys Compd. 2002, 346, 200–205. [Google Scholar] [CrossRef]
- Stasinevitch, D.S.; Egorenko, G.A. Russ. J. Inorg. Chem. 1968, 13, 341–343.
- Züttel, A.; Rentsch, S.; Fischer, P.; Wenger, P.; Sudan, P.; Mauron, P.; Emmenegger, C. Hydrogen storage properties of LiBH4. J. Alloys Compd. 2003, 356-357, 515–520. [Google Scholar] [CrossRef]
- Dafert, F.W.; Miklauz, R. über einige neue Verbindungen von Stickstoff und Wasserstoff mit Lithium. Diese Sitzungsberichte 1910, CXVIII, 981–996. [Google Scholar]
- Hu, Y.H.; Ruckenstein, E. Ultrafast Reaction between LiH and NH3 during H2 Storage in Li3N. J. Phys. Chem. A 2003, 107, 9737–9739. [Google Scholar] [CrossRef]
- Ichikawa, T.; Isobe, S.; Hanada, N.; Fujii, H. Lithium nitride for reversible hydrogen storage. J. Alloys Compd. 2004, 365, 271–276. [Google Scholar] [CrossRef]
- Aoki, M.; Miwa, K.; Noritake, T.; Kitahara, G.; Nakamori, Y.; Orimo, S.; Towata, S. Destabilization of LiBH4 by mixing with LiNH2. Appl. Phys. A 2005, 80, 1409–1412. [Google Scholar] [CrossRef]
- Chen, P.; Xiong, Z.; Luo, J.; Lin, J.; Tan, K.L. Interaction of hydrogen with metal nitrides and imides. Nature 2002, 420, 302–304. [Google Scholar] [CrossRef]
- Diyabalanage, H.V.K.; Shrestha, R.P.; Semelsberger, T.A.; Scott, B.L.; Bowden, M.E.; Davis, B.L.; Burrell, A.K. Calcium Amidotrihydroborate: A Hydrogen Storage Material. Angew. Chem. Int. Ed. 2007, 46, 8995–8997. [Google Scholar]
- Hu, J.; Wu, G.; Liu, Y.; Xiong, Z.; Chen, P.; Murata, K.; Sakata, K.; Wolf, G. Hydrogen Release from Mg(NH2)2-MgH2 through Mechanochemical Reaction. J. Phys. Chem. B 2006, 110, 14688–14692. [Google Scholar] [CrossRef]
- Jeon, E.; Cho, Y. Mechanochemical synthesis and thermal decomposition of zinc borohydride. J. Alloys Compd. 2006, 422, 273–275. [Google Scholar] [CrossRef]
- Yang, A.S.J.; Siegel, D.J.; Halliday, D.; Drews, A.; Carter, R.O., III; Wolverton, C.; Lewis, G.J.; Sachtler, J.W.A.; Low, J.J.; Faheem, S.A.; et al. A Self-Catalyzing Hydrogen-Storage Material. Angew. Chem. Int. Ed. 2008, 47, 882–887. [Google Scholar]
- Kim, J.-H.; Jin, S.-A.; Shim, J.-H.; Cho, Y.W. Thermal decomposition behavior of calcium borohydride Ca(BH4)2. J. Alloys Compd. 2008, 461, L20–L22. [Google Scholar] [CrossRef]
- Kim, J.-H.; Jin, S.-A.; Shim, J.-H.; Cho, Y.W. Reversible hydrogen storage in calcium borohydride Ca(BH4)2. Scr. Mater. 2008, 58, 481–483. [Google Scholar] [CrossRef]
- Kojima, Y.; Matsumoto, M.; Kawai, Y.; Haga, T.; Ohba, N.; Miwa, K.; Towata, S.-I.; Nakamori, Y.; Orimo, S.-I. Hydrogen Absorption and Desorption by the Li-Al-N-H System. J. Phys. Chem. B 2006, 110, 9632–9636. [Google Scholar]
- Leng, H.Y.; Ichikawa, T.; Hino, S.; Hanada, N.; Isobe, S.; Fujii, H. New Metal-N-H System Composed of Mg(NH2)2 and LiH for Hydrogen Storage. J. Phys. Chem. B 2004, 108, 8763–8765. [Google Scholar]
- Chen, Y.; Wang, P.; Liu, C.; Cheng, H.-M. Improved hydrogen storage performance of Li-Mg-N-H materials by optimizing composition and adding single-walled carbon nanotubes. Int. J. Hydrog. Energy 2007, 32, 1262–1268. [Google Scholar] [CrossRef]
- Nakamori, Y.; Li, H.; Miwa, K.; Towata, S.-I.; Orimo, S.-I. Syntheses and Hydrogen Desorption Properties of Metal-Borohydrides M(BH4)n (M = Mg, Sc, Zr, Ti, and Zn; n = 2-4) as Advanced Hydrogen Storage Materials. Mater. Trans. 2006, 47, 1898–1901. [Google Scholar] [CrossRef]
- Nakamori, Y.; Orimo, S.-I. Destabilization of Li-based complex hydrides. J. Alloys Compd. 2004, 370, 271–275. [Google Scholar] [CrossRef]
- Orimo, S.-I.; Nakamori, Y.; Eliseo, J.R.; Zuttel, A.; Jensen, C.M. Complex Hydrides for Hydrogen Storage. Chem. Rev. 2007, 107, 4111–4132. [Google Scholar] [CrossRef]
- Pinkerton, F.E.; Meisner, G.P.; Meyer, M.S.; Balogh, M.P.; Kundrat, M.D. Hydrogen Desorption Exceeding Ten Weight Percent from the New Quaternary Hydride Li3BN2H8. J. Phys. Chem. B 2005, 109, 6–8. [Google Scholar]
- Soloveichik, G.; Her, J.-H.; Stephens, P.W.; Gao, Y.; Rijssenbeek, J.; Andrus, M.; Zhao, J.-C. Ammine Magnesium Borohydride Complex as a New Material for Hydrogen Storage: Structure and Properties of Mg(BH4)2-NH3. Inorg. Chem. 2008, 47, 4290–4298. [Google Scholar] [CrossRef]
- Stasinevich, D.S.; Egorenko, G.A. Russ. J. Inorg. Chem. 1968, 13, 341.
- Stephens, F.H.; Pons, V.; Baker, R.T. Ammonia-borane: the hydrogen source par excellence? Dalton Trans 2007. [Google Scholar] [CrossRef]
- Marder, T.B. Will We Soon Be Fueling our Automobiles with Ammonia-Borane? Angew. Chem. Int. Ed. 2007, 46, 8116–8118. [Google Scholar] [CrossRef]
- Vajo, J.J.; Skeith, S.L.; Mertens, F. Reversible Storage of Hydrogen in Destabilized LiBH4. J. Phys. Chem. B 2005, 109, 3219. [Google Scholar]
- Wu, G.; Xiong, Z.; Liu, T.; Liu, Y.; Hu, J.; Chen, P.; Feng, Y.; Wee, A.T.S. Synthesis and Characterization of a New Ternary Imide Li2Ca(NH)2. Inorg. Chem. 2007, 46, 517–521. [Google Scholar] [CrossRef]
- Xiong, Z.; Yong, C.K.; Wu, G.; Chen, P.; Shaw, W.; Karkamkar, A.; Autrey, T.; Jones, M.O.; Johnson, S.R.; Edwards, P.P.; et al. High-capacity hydrogen storage in lithium and sodium amidoboranes. Nature Mater. 2008, 7, 138–141. [Google Scholar] [CrossRef]
- Xiong, Z.T.; Hu, J.J.; Wu, G.T.; Liu, Y.F.; Chen, P. Large amount of hydrogen desorption and stepwise phase transition in the chemical reaction of NaNH2 and LiAlH4. Catal. Today 2007, 120, 287–291. [Google Scholar]
- Liu, Y.; Liu, T.; Xiong, Z.; Hu, J.; Wu, G.; Chen, P.; Wee, A.T.S.; Yang, P.; Murata, K.; Sakata, K. Synthesis and Structural Characterization of a New Alkaline Earth Imide: MgCa(NH)2. Eur. J. Inorg. Chem. 2006, 2006, 4368–4373. [Google Scholar]
- Xiong, G.W.Z.; Hu, J.; Chen, P. Ternary Imides for Hydrogen Storage. Adv. Mater. 2004, 16, 1522–1525. [Google Scholar] [CrossRef]
- Xiong, G.W.Z.; Hu, J.; Liu, Y.; Chen, P.; Luo, W.; Wang, J. Reversible Hydrogen Storage by a Li-Al-N-H Complex. Adv. Funct. Mater. 2007, 17, 1137–1142. [Google Scholar] [CrossRef]
- Zaluska, A.; Zaluski, L.; Ström-Olsen, J.O. Nanocrystalline magnesium for hydrogen storage. J. Alloys Compd. 1999, 288, 217–225. [Google Scholar] [CrossRef]
- Vigeholm, B.; Jensen, K.; Larsen, B.; Pedersen, A.S. Elements of hydride formation mechanisms in nearly spherical magnesium powder particles. J. Less-Common Met. 1987, 131, 133–141. [Google Scholar] [CrossRef]
- Vigeholm, B.; Kjoller, J.; Larsen, B.; Pedersen, A.S. Formation and decomposition of magnesium hydride. J. Less-Common Met. 1983, 89, 135–144. [Google Scholar] [CrossRef]
- Ryden, J.; Hjorvarsson, T.; Ericsson, T.; Karlsson, E.; Krozer, A.; Kasemo, B. Unusual kinetics of hydride formation in magnesium-palladium sandwiches, studied by hydrogen profiling and quartz crystal microbalance measurements. Z. Phys. Chem. 1989, 164, 1259–1260. [Google Scholar] [CrossRef]
- Chater, P.A.; Anderson, P.A.; Prendergast, J.W.; Walton, A.; Mann, V.S.J.; Book, D.; David, W.I.F.; Johnson, S.R.; Edwards, P.P. Synthesis and characterization of amide-borohydrides: New complex light hydrides for potential hydrogen storage. J. Alloys Compd. 2007, 446-447, 350–354. [Google Scholar] [CrossRef]
- Lewis, G.J.; Sachtler, J.W.A.; Low, J.J.; Lesch, D.A.; Faheem, S.A.; Dosek, P.M.; Knight, L.M.; Halloran, L.; Jensen, C.M.; Yang, J.; et al. High throughput screening of the ternary LiNH2-MgH2-LiBH4 phase diagram. J. Alloys Compd. 2007, 446-447, 355–359. [Google Scholar] [CrossRef]
- Yang, J.; Sudik, A.; Siegel, D.J.; Halliday, D.; Drews, A.; Carter, R.O., III; Wolverton, C.; Lewis, G.J.; Sachtler, J.W.A.; Low, J.J.; et al. Hydrogen storage properties of 2LiNH2 + LiBH4 + MgH2. J. Alloys Compd. 2007, 446-447, 345–349. [Google Scholar] [CrossRef]
- Chater, P.A.; David, W.I.F.; Johnson, S.R.; Edwards, P.P.; Anderson, P.A. Synthesis and crystal structure of Li4BH4(NH2)3. Chem. Commun. 2006, 23, 2439–2441. [Google Scholar]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Srinivasan, S.S.; Sharma, P.C. Enhancement of Hydrogen Storage Behavior of Complex Hydrides via Bimetallic Nanocatalysts Doping. Catalysts 2012, 2, 434-446. https://doi.org/10.3390/catal2040434
Srinivasan SS, Sharma PC. Enhancement of Hydrogen Storage Behavior of Complex Hydrides via Bimetallic Nanocatalysts Doping. Catalysts. 2012; 2(4):434-446. https://doi.org/10.3390/catal2040434
Chicago/Turabian StyleSrinivasan, Sesha S., and Prakash C. Sharma. 2012. "Enhancement of Hydrogen Storage Behavior of Complex Hydrides via Bimetallic Nanocatalysts Doping" Catalysts 2, no. 4: 434-446. https://doi.org/10.3390/catal2040434
APA StyleSrinivasan, S. S., & Sharma, P. C. (2012). Enhancement of Hydrogen Storage Behavior of Complex Hydrides via Bimetallic Nanocatalysts Doping. Catalysts, 2(4), 434-446. https://doi.org/10.3390/catal2040434