Enzyme Stability and Activity in Non-Aqueous Reaction Systems: A Mini Review
Abstract
: Enormous interest in biocatalysis in non-aqueous phase has recently been triggered due to the merits of good enantioselectivity, reverse thermodynamic equilibrium, and no water-dependent side reactions. It has been demonstrated that enzyme has high activity and stability in non-aqueous media, and the variation of enzyme activity is attributed to its conformational modifications. This review comprehensively addresses the stability and activity of the intact enzymes in various non-aqueous systems, such as organic solvents, ionic liquids, sub-/super-critical fluids and their combined mixtures. It has been revealed that critical factors such as Log P, functional groups and the molecular structures of the solvents define the microenvironment surrounding the enzyme molecule and affect enzyme tertiary and secondary structure, influencing enzyme catalytic properties. Therefore, it is of high importance for biocatalysis in non-aqueous media to elucidate the links between the microenvironment surrounding enzyme surface and its stability and activity. In fact, a better understanding of the correlation between different non-aqueous environments and enzyme structure, stability and activity can contribute to identifying the most suitable reaction medium for a given biotransformation.1. Introduction
2. Structure and Activity of Enzymes in Organic Solvents
2.1. Effect of Log P Value of Organic Solvent
2.2. Effect of the Functional Groups of Organic Solvent
2.3. Effect of Molecular Structure of Organic Solvent
3. Structure and Activity of Enzymes in Ionic Liquids (ILs)
3.1. Effect of Hydrophobicity of Ionic Liquid
3.2. Effects of Cation and Anion Types of Ionic Liquids
3.3. Biocatalysis in Mixture Solvents of Organic Solvent and Ionic Liquid
4. Structure and Activity of Enzymes in Sub-/Super-Critical Fluids
4.1. Effects of Pressure and Temperature on the Structure and Activity of Enzyme
4.2. Biocatalysis in Mixture Solvents of Organic Solvent and Supercritical Fluid
4.3. Biocatalysis in Combined Mixture Solvents of Ionic Liquid and Supercritical Fluid
5. Remarks and Prospects
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Klibanov, A.M. Improving enzymes by using them in organic solvents. Nature 2001, 409, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Cantone, S.; Hanefeld, U.; Basso, A. Biocatalysis in non-conventional media—Ionic liquids, supercritical fluids and the gas phase. Green Chem. 2007, 9, 954–971. [Google Scholar] [CrossRef]
- Bovara, R.; Carrea, G.; Ottolina, G.; Riva, S. Water activity does not influence the enantioselectivity of lipase PS and lipoprotein lipase in organic solvents. Biotechnol. Lett. 1993, 15, 169–174. [Google Scholar] [CrossRef]
- Lima, V.; Krieger, N.; Mitchell, D.; Fontana, J. Activity and stability of a crude lipase from Penicillium aurantiogriseum in aqueous media and organic solvents. Biochem. Eng. J. 2004, 18, 65–71. [Google Scholar] [CrossRef]
- Pan, S.; Liu, X.; Xie, Y.; Yi, Y.; Li, C.; Yan, Y.; Liu, Y. Esterification activity and conformation studies of Burkholderia cepacia lipase in conventional organic solvents, ionic liquids and their co-solvent mixture media. Bioresour. Technol. 2010, 101, 9822–9824. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, X.; Tan, H.; Yan, Y.; Hameed, B. Effect of pretreatment by different organic solvents on esterification activity and conformation of immobilized Pseudomonas cepacia lipase. Process Biochem. 2010, 45, 1176–1180. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, D.; Wang, S. Effect of sub- and super-critical CO2 pretreated on conformation and catalytic properties evaluation for two commercial enzymes of CALB and Lipase PS. J. Chem. Technol. Biotechnol. 2013, 88, 1750–1756. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, D.; Yan, Y. Effect of ionic liquids, organic solvents and supercritical CO2 pretreatment on the conformation and catalytic properties of Candida rugosa lipase. J. Mol. Catal. B 2013, 90, 123–127. [Google Scholar] [CrossRef]
- Secundo, F.; Carrea, G. Optimization of hydrolase efficiency in organic solvents. Chem. Eur. J. 2003, 9, 3194–3199. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.; Tyagi, R.; Sharma, S.; Karthikeyan, S.; Singh, T. Enhancement of catalytic efficiency of enzymes through exposure to anhydrous organic solvent at 70 °C. Three-dimensional structure of a treated serine proteinase at 2.2 Å resolution. Proteins Struct. Funct. Bioinform. 2000, 39, 226–234. [Google Scholar] [CrossRef]
- Klibanov, A.M. Why are enzymes less active in organic solvents than in water? Trends Biotechnol. 1997, 15, 97–101. [Google Scholar] [CrossRef]
- Khmelnitsky, Y.L.; Welch, S.H.; Clark, D.S.; Dordick, J.S. Salts dramatically enhance activity of enzymes suspended in organic solvents. J. Am. Chem. Soc. 1994, 116, 2647–2648. [Google Scholar] [CrossRef]
- Secundo, F.; Carrea, G. Mono- and disaccharides enhance the activity and enantioselectivity of Burkholderia cepacia lipase in organic solvent but do not significantly affect its conformation. Biotechnol. Bioeng. 2005, 92, 438–446. [Google Scholar] [CrossRef] [PubMed]
- Secundo, F.; Barletta, G.L.; Dumitriu, E.; Carrea, G. Can an inactivating agent increase enzyme activity in organic solvent? Effects of 18-crown-6 on lipase activity, enantioselectivity, and conformation. Biotechnol. Bioeng. 2007, 97, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Su, E.; Wei, D. Improvement in lipase-catalyzed methanolysis of triacylglycerols for biodiesel production using a solvent engineering method. J. Mol. Catal. B 2008, 55, 118–125. [Google Scholar] [CrossRef]
- Liu, Y.; Tan, H.; Zhang, X.; Yan, Y.; Hameed, B. Effect of monohydric alcohols on enzymatic transesterification for biodiesel production. Chem. Eng. J. 2010, 157, 223–229. [Google Scholar] [CrossRef]
- Trodler, P.; Pleiss, J. Modeling structure and flexibility of Candida antarctica lipase B in organic solvents. BMC Struct. Biol. 2008. [Google Scholar] [CrossRef] [PubMed]
- Secundo, F.; Fiala, S.; Fraaije, M.W.; de Gonzalo, G.; Meli, M.; Zambianchi, F.; Ottolina, G. Effects of water miscible organic solvents on the activity and conformation of the Baeyer-Villiger monooxygenases from Thermobifida fusca and Acinetobacter calcoaceticus: A comparative study. Biotechnol. Bioeng. 2011, 108, 491–499. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, K.; Jenab, E.; Temelli, F. Effects of water on enzyme performance with an emphasis on the reactions in supercritical fluids. Crit. Rev. Biotechnol. 2007, 27, 183–195. [Google Scholar] [CrossRef] [PubMed]
- Miroliaei, M.; Nemat-Gorgani, M. Effect of organic solvents on stability and activity of two related alcohol dehydrogenases: A comparative study. Int. J. Biochem. Cell B 2002, 34, 169–175. [Google Scholar] [CrossRef]
- Fasoli, E.; Ferrer, A.; Barletta, G.L. Hydrogen/deuterium exchange study of subtilisin Carlsberg during prolonged exposure to organic solvents. Biotechnol. Bioeng. 2009, 102, 1025–1032. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Castillo, Y.; Froeyen, M.; Cabrera-Pérez, M.Á.; Nowé, A. Molecular dynamics and docking simulations as a proof of high flexibility in E. coli FabH and its relevance for accurate inhibitor modeling. J. Comput. Aided Mol. Des. 2011, 25, 371–393. [Google Scholar] [CrossRef] [PubMed]
- Lousa, D.; Baptista, A.M.; Soares, C.M. A molecular perspective on nonaqueous biocatalysis: Contributions from simulation studies. Phys. Chem. Chem. Phys. 2013, 15, 13723–13736. [Google Scholar] [CrossRef] [PubMed]
- Tsuzuki, W.; Ue, A.; Nagao, A. Polar organic solvent added to an aqueous solution changes hydrolytic property of lipase. Biosci. Biotechnol. Biochem. 2003, 67, 1660–1666. [Google Scholar] [CrossRef] [PubMed]
- Mattos, C.; Bellamacina, C.R.; Peisach, E.; Pereira, A.; Vitkup, D.; Petsko, G.A.; Ringe, D. Multiple solvent crystal structures: Probing binding sites, plasticity and hydration. J. Mol. Biol. 2006, 357, 1471–1482. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Dordick, J.S.; Garde, S. Hydration of enzyme in nonaqueous media is consistent with solvent dependence of its activity. Biophys. J. 2004, 87, 812–821. [Google Scholar] [CrossRef] [PubMed]
- Yennawar, N.H.; Yennawar, H.P.; Farber, G.K. X-ray Crystal Structure of gamma-Chymotrypsin in Hexane. Biochemistry 1994, 33, 7326–7336. [Google Scholar] [CrossRef] [PubMed]
- Wangikar, P.P.; Michels, P.C.; Clark, D.S.; Dordick, J.S. Structure and function of subtilisin BPN’ solubilized in organic solvents. J. Am. Chem. Soc. 1997, 119, 70–76. [Google Scholar] [CrossRef]
- Burke, P.A.; Smith, S.O.; Bachovchin, W.W.; Klibanov, A.M. Demonstration of structural integrity of an enzyme in organic solvents by solid-state NMR. J. Am. Chem. Soc. 1989, 111, 8290–8291. [Google Scholar] [CrossRef]
- Guinn, R.M.; Skerker, P.S.; Kavanaugh, P.; Clark, D.S. Activity and flexibility of alcohol dehydrogenase in organic solvents. Biotechnol. Bioeng. 1991, 37, 303–308. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.S.; Yoo, Y.J. A hydrophilic and hydrophobic organic solvent mixture enhances enzyme stability in organic media. Biotechnol. Lett. 2012, 34, 1131–1135. [Google Scholar] [CrossRef] [PubMed]
- Park, H.J.; Park, K.; Yoo, Y.J. Understanding the effect of tert-butanol on Candida antarctica lipase B using molecular dynamics simulations. Mol. Simulat. 2013, 39, 1–7. [Google Scholar] [CrossRef]
- Micaelo, N.M.; Soares, C.M. Modeling hydration mechanisms of enzymes in nonpolar and polar organic solvents. FEBS J. 2007, 274, 2424–2436. [Google Scholar] [CrossRef] [PubMed]
- Kamal, M.Z.; Yedavalli, P.; Deshmukh, M.V.; Rao, N.M. Lipase in aqueous-polar organic solvents: Activity, structure, and stability. Protein Sci. 2013, 22, 904–915. [Google Scholar] [CrossRef] [PubMed]
- Llerena-Suster, C.R.; José, C.; Collins, S.E.; Briand, L.E.; Morcelle, S.R. Investigation of the structure and proteolytic activity of papain in aqueous miscible organic media. Process Biochem. 2012, 47, 47–56. [Google Scholar] [CrossRef]
- Simon, L.; Kotorman, M.; Garab, G.; Laczko, I. Structure and activity of α-chymotrypsin and trypsin in aqueous organic media. Biochem. Biophys. Res. Commun. 2001, 280, 1367–1371. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.N.; Roy, I. Enzymes in organic media. Eur. J. Biochem. 2004, 271, 2575–2583. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Yang, W.; Meng, Y.Y.; Xiao, X.; Guo, Y.; Pu, X.; Li, M. Effects of organic solvent and crystal water on gamma-chymotrypsin in acetonitrile media: Observations from molecular dynamics simulation and DFT calculation. J. Phys. Chem. B 2012, 116, 3292–3304. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.N.; Batra, R.; Tyagi, R.; Sharma, A. Polarity Index: The guiding solvent parameter for enzyme stability in aqueous-organic cosolvent mixtures. Biotechnol. Prog. 1997, 13, 284–288. [Google Scholar] [CrossRef]
- Roy, S.; Jana, B.; Bagchi, B. Dimethyl sulfoxide induced structural transformations and non-monotonic concentration dependence of conformational fluctuation around active site of lysozyme. J. Chem. Phys. 2012, 136, 115103. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Han, S.; Han, Z.; Lin, Y. Biodiesel production catalyzed by Rhizomucor miehei lipase-displaying Pichia pastoris whole cells in an isooctane system. Biochem. Eng. J. 2012, 63, 10–14. [Google Scholar] [CrossRef]
- Batistella, L.; Ustra, M.K.; Richetti, A.; Pergher, S.B.; Treichel, H.; Oliveira, J.; Lerin, L.; de Oliveira, D. Assessment of two immobilized lipases activity and stability to low temperatures in organic solvents under ultrasound-assisted irradiation. Bioprocess Biosyst. Eng. 2012, 35, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Tran, D.-T.; Yeh, K.-L.; Chen, C.-L.; Chang, J.-S. Enzymatic transesterification of microalgal oil from Chlorella vulgaris ESP-31 for biodiesel synthesis using immobilized Burkholderia lipase. Bioresour. Technol. 2012, 108, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Mozhaev, V.V.; Khmelnitsky, Y.L.; Sergeeva, M.V.; Belova, A.B.; Klyachko, N.L.; Levashov, A.V.; Martinek, K. Catalytic activity and denaturation of enzymes in water/organic cosolvent mixtures. Eur. J. Biochem. 1989, 184, 597–602. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.-C.; Song, B.-D.; Xing, A.-H.; Hayashi, Y.; Talukder, M.; Wang, S.-C. Esterification reactions catalyzed by surfactant-coated Candida rugosa lipase in organic solvents. Process Biochem. 2002, 37, 1229–1233. [Google Scholar] [CrossRef]
- Mora-Pale, M.; Meli, L.; Doherty, T.V.; Linhardt, R.J.; Dordick, J.S. Room temperature ionic liquids as emerging solvents for the pretreatment of lignocellulosic biomass. Biotechnol. Bioeng. 2011, 108, 1229–1245. [Google Scholar] [CrossRef] [PubMed]
- Gorke, J.; Srienc, F.; Kazlauskas, R. Toward advanced ionic liquids. Polar, enzyme-friendly solvents for biocatalysis. Biotechnol. Bioprocess Eng. 2010, 15, 40–53. [Google Scholar] [CrossRef]
- Weingärtner, H.; Cabrele, C.; Herrmann, C. How ionic liquids can help to stabilize native proteins. Phys. Chem. Chem. Phys. 2012, 14, 415–426. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, K.; Maruyama, T.; Kamiya, N.; Goto, M. Homogeneous enzymatic reactions in ionic liquids with poly (ethylene glycol)-modified subtilisin. Org. Biomol. Chem. 2006, 4, 3462–3467. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, K.; Okada, J.; Maruyama, T.; Kamiya, N.; Goto, M. Activation of lipase in ionic liquids by modification with comb-shaped poly (ethylene glycol). Sci. Technol. Adv. Mater. 2006, 7, 692–698. [Google Scholar] [CrossRef]
- Zhang, W.-G.; Wei, D.-Z.; Yang, X.-P.; Song, Q.-X. Penicillin acylase catalysis in the presence of ionic liquids. Bioprocess Biosyst. Eng. 2006, 29, 379–383. [Google Scholar] [CrossRef] [PubMed]
- De Los Ríos, A.P.; Hernández-Fernández, F.J.; Martínez, F.A.; Rubio, M.; Víllora, G. The effect of ionic liquid media on activity, selectivity and stability of Candida antarctica lipase B in transesterification reactions. Biocatal. Biotransform. 2007, 25, 151–156. [Google Scholar] [CrossRef]
- Lozano, P.; de Diego, T.; Guegan, J.P.; Vaultier, M.; Iborra, J.L. Stabilization of α-chymotrypsin by ionic liquids in transesterification reactions. Biotechnol. Bioeng. 2001, 75, 563–569. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chen, D.; Yan, Y.; Peng, C.; Xu, L. Biodiesel synthesis and conformation of lipase from Burkholderia cepacia in room temperature ionic liquids and organic solvents. Bioresour. Technol. 2011, 102, 10414–10418. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, T.; Wang, X.; Xu, L.; Yan, Y. Biodiesel synthesis catalyzed by Burkholderia cenocepacia lipase supported on macroporous resin NKA in solvent-free and isooctane systems. Energy Fuel 2011, 25, 1206–1212. [Google Scholar] [CrossRef]
- Sunitha, S.; Kanjilal, S.; Reddy, P.; Prasad, R. Ionic liquids as a reaction medium for lipase-catalyzed methanolysis of sunflower oil. Biotechnol. Lett. 2007, 29, 1881–1885. [Google Scholar] [CrossRef] [PubMed]
- Devi, B.; Guo, Z.; Xu, X. Characterization of ionic liquid-based biocatalytic two-phase reaction system for production of biodiesel. AIChE J. 2011, 57, 1628–1637. [Google Scholar] [CrossRef]
- Gamba, M.; Lapis, A.A.; Dupont, J. Supported ionic liquid enzymatic catalysis for the production of biodiesel. Adv. Synth. Catal. 2008, 350, 160–164. [Google Scholar] [CrossRef]
- Shen, Z.-L.; Zhou, W.-J.; Liu, Y.-T.; Ji, S.-J.; Loh, T.-P. One-pot chemoenzymatic syntheses of enantiomerically-enriched O-acetyl cyanohydrins from aldehydes in ionic liquid. Green Chem. 2008, 10, 283–286. [Google Scholar] [CrossRef]
- Lou, W.Y.; Zong, M.H. Efficient kinetic resolution of (R,S)-1-trimethylsilylethanol via lipase-mediated enantioselective acylation in ionic liquids. Chirality 2006, 18, 814–821. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Fernández, F.J.; de los Rios, A.P.; Rubio, M.; Gómez, D.; Villora, G. Enhancement of activity and selectivity in lipase-catalyzed transesterification in ionic liquids by the use of additives. J. Chem. Technol. Biotechnol. 2007, 82, 882–887. [Google Scholar] [CrossRef]
- Li, N.; Du, W.; Huang, Z.; Zhao, W.; Wang, S. Effect of imidazolium ionic liquids on the hydrolytic activity of lipase. Chin. J. Catal. 2013, 34, 769–780. [Google Scholar] [CrossRef]
- Lau, R.M.; Sorgedrager, M.J.; Carrea, G.; van Rantwijk, F.; Secundo, F.; Sheldon, R.A. Dissolution of Candida antarctica lipase B in ionic liquids: Effects on structure and activity. Green Chem. 2004, 6, 483–487. [Google Scholar]
- Ajloo, D.; Sangian, M.; Ghadamgahi, M.; Evini, M.; Saboury, A.A. Effect of two imidazolium derivatives of ionic liquids on the structure and activity of adenosine deaminase. Int. J. Biol. Macromol. 2013, 55, 47–61. [Google Scholar] [CrossRef] [PubMed]
- Galonde, N.; Nott, K.; Richard, G.; Debuigne, A.; Nicks, F.; Jerome, C.; Fauconnier, M.-L. Study of the influence of pure ionic liquids on the lipase-catalyzed (trans)esterification of mannose based on their anion and cation nature. Curr. Org. Chem. 2013, 17, 763–770. [Google Scholar] [CrossRef]
- Van Rantwijk, F.; Secundo, F.; Sheldon, R.A. Structure and activity of Candida antarctica lipase B in ionic liquids. Green Chem. 2006, 8, 282–286. [Google Scholar] [CrossRef]
- Dabirmanesh, B.; Khajeh, K.; Ranjbar, B.; Ghazi, F.; Heydari, A. Inhibition mediated stabilization effect of imidazolium based ionic liquids on alcohol dehydrogenase. J. Mol. Liquids 2012, 170, 66–71. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; Kamiya, N.; Goto, M. Activation and stabilization of enzymes in ionic liquids. Org. Biomol. Chem. 2010, 8, 2887–2899. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Singh, R.S.; Banerjee, U.C. Enantioselective transesterification of racemic phenyl ethanol and its derivatives in organic solvent and ionic liquid using Pseudomonas aeruginosa lipase. Process Biochem. 2010, 45, 25–29. [Google Scholar] [CrossRef]
- Lozano, P.; de Diego, T.; Sauer, T.; Vaultier, M.; Gmouh, S.; Iborra, J.L. On the importance of the supporting material for activity of immobilized Candida antarctica lipase B in ionic liquid/hexane and ionic liquid/supercritical carbon dioxide biphasic media. J. Supercrit. Fluids 2007, 40, 93–100. [Google Scholar] [CrossRef]
- Pilissão, C.; Nascimento, M.D.G. Effects of organic solvents and ionic liquids on the aminolysis of (RS)-methyl mandelate catalyzed by lipases. Tetrahedron Asymmetry 2006, 17, 428–433. [Google Scholar] [CrossRef]
- Le Joubioux, F.; Bridiau, N.; Henda, Y.B.; Achour, O.; Graber, M.; Maugard, T. The control of Novozym® 435 chemoselectivity and specificity by the solvents in acylation reactions of amino-alcohols. J. Mol. Catal. B 2013, 95, 99–110. [Google Scholar] [CrossRef]
- Li, X.-F.; Zong, M.-H.; Zhao, G.-L.; Yu, Y.-G.; Wu, H. Application of organic solvent system for lipase-catalyzed regioselective benzoylation of 1-β-d-arabinofuranosylcytosine. Biotechnol. Bioprocess Eng. 2010, 15, 608–613. [Google Scholar] [CrossRef]
- Bitencourt, T.B.; Nascimento, M.G. The influence of organic solvent and ionic liquids on the selective formation of 2-(2-ethylhexyl)-3-phenyl-1, 2-oxaziridine mediated by lipases. J. Phys. Org. Chem. 2010, 23, 995–999. [Google Scholar] [CrossRef]
- Chen, B.; Liu, H.; Guo, Z.; Huang, J.; Wang, M.; Xu, X.; Zheng, L. Lipase-catalyzed esterification of ferulic acid with oleyl alcohol in ionic liquid/isooctane binary systems. J. Agric. Food Chem. 2011, 59, 1256–1263. [Google Scholar] [CrossRef] [PubMed]
- Pavlidis, I.V.; Gournis, D.; Papadopoulos, G.K.; Stamatis, H. Lipases in water-in-ionic liquid microemulsions: Structural and activity studies. J. Mol. Catal. B 2009, 60, 50–56. [Google Scholar] [CrossRef]
- Xue, L.; Li, Y.; Zou, F.; Lu, L.; Zhao, Y.; Huang, X.; Qu, Y. The catalytic efficiency of lipase in a novel water-in-[Bmim][PF6] microemulsion stabilized by both AOT and Triton X-100. Colloids Surf. B Biointerfaces 2012, 92, 360–366. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.-P.; Fang, Y.; Wan, H.-D.; Xia, Y.-M. Effect of low dosage ionic liquid on R. miehei lipase-catalyzed synthesis of amyl caprylate in organic solvent. Acta Chimica Sinica 2008, 66, 823–826. [Google Scholar]
- Lee, J.K.; Kim, M.-J. Room temperature solid-phase ionic liquid-immobilized enzyme for biocatalysis in organic solvent: Markedly enhanced enantioselectivity. Bull. Korean Chem. Soc. 2011, 32, 3149–3151. [Google Scholar] [CrossRef]
- Hara, P.; Hanefeld, U.; Kanerva, L.T. Immobilised Burkholderia cepacia lipase in dry organic solvents and ionic liquids: A comparison. Green Chem. 2009, 11, 250–256. [Google Scholar] [CrossRef]
- Singh, M.; Singh, R.S.; Banerjee, U.C. Stereoselective synthesis of (R)-1-chloro-3(3,4-difluorophenoxy)-2-propanol using lipases from Pseudomonas aeruginosa in ionic liquid-containing system. J. Mol. Catal. B Enzym. 2009, 56, 294–299. [Google Scholar] [CrossRef]
- Kragl, U.; Eckstein, M.; Kaftzik, N. Enzyme catalysis in ionic liquids. Curr. Opin. Biotechnol. 2002, 13, 565–571. [Google Scholar] [CrossRef]
- Ganske, F.; Bornscheuer, U.T. Lipase-catalyzed glucose fatty acid ester synthesis in ionic liquids. Org. Lett. 2005, 7, 3097–3098. [Google Scholar] [CrossRef] [PubMed]
- Tan, Z.-Y.; Wu, H.; Zong, M.-H. Novozym 435-catalyzed regioselective benzoylation of 1-β-d-arabinofuranosylcytosine in a co-solvent mixture of C4MIm·PF6 and pyridine. Biocatal. Biotransform. 2007, 25, 408–413. [Google Scholar] [CrossRef]
- Contesini, F.J.; de Oliveira Carvalho, P. Esterification of (RS)-Ibuprofen by native and commercial lipases in a two-phase system containing ionic liquids. Tetrahedron Asymmetry 2006, 17, 2069–2073. [Google Scholar] [CrossRef]
- Housaindokht, M.R.; Bozorgmehr, M.R.; Monhemi, H. Structural behavior of Candida antarctica lipase B in water and supercritical carbon dioxide: A molecular dynamic simulation study. J. Supercrit. Fluids 2012, 63, 180–186. [Google Scholar] [CrossRef]
- Fernandez-Alvaro, E.; Dominguez-de-Maria, P. Ionic liquids in biocatalytic oxidations: From non-conventional media to non-solvent applications. Curr. Org. Chem. 2012, 16, 2492–2507. [Google Scholar] [CrossRef]
- Knez, Ž.; Habulin, M. Compressed gases as alternative enzymatic-reaction solvents: A short review. J. Supercrit. Fluids 2002, 23, 29–42. [Google Scholar] [CrossRef]
- Kamat, S.; Beckman, E.J.; Russell, A.J. Role of diffusion in nonaqueous enzymology. 1. Theory. Enzym. Microb. Technol. 1992, 14, 265–271. [Google Scholar] [CrossRef]
- Gui, F.; Chen, F.; Wu, J.; Wang, Z.; Liao, X.; Hu, X. Inactivation and structural change of horseradish peroxidase treated with supercritical carbon dioxide. Food Chem. 2006, 97, 480–489. [Google Scholar] [CrossRef]
- Liao, X.; Zhang, Y.; Bei, J.; Hu, X.; Wu, J. Alterations of molecular properties of lipoxygenase induced by dense phase carbon dioxide. Innov. Food Sci. Emerg. Technol. 2009, 10, 47–53. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, D.; Xu, L.; Yan, Y. Evaluation of structure and hydrolysis activity of Candida rugosa Lip7 in presence of sub-/super-critical CO2. Enzym. Microb. Technol. 2012, 51, 354–358. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Zhang, Y.; Wang, Y.; Zhou, L.; Leng, X.; Liao, X.; Hu, X. Aggregation and homogenization, surface charge and structural change, and inactivation of mushroom tyrosinase in an aqueous system by subcritical/supercritical carbon dioxide. Langmuir 2010, 27, 909–916. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Liu, J.; Liu, C.; Zhong, Y.; Liu, W.; Wan, J. Activation and conformational changes of mushroom polyphenoloxidase by high pressure microfluidization treatment. Innov. Food Sci. Emerg. Technol. 2009, 10, 142–147. [Google Scholar] [CrossRef]
- Natalia, D.; Greiner, L.; Leitner, W.; Ansorge-Schumacher, M.B. Stability, activity, and selectivity of benzaldehyde lyase in supercritical fluids. J. Supercrit. Fluids 2012, 62, 173–177. [Google Scholar] [CrossRef]
- Ottosson, J.; Fransson, L.; Hult, K. Substrate entropy in enzyme enantioselectivity: An experimental and molecular modeling study of a lipase. Protein Sci. 2002, 11, 1462–1471. [Google Scholar] [CrossRef] [PubMed]
- Randolph, T.; Clark, D.; Blanch, H.; Prausnitz, J. Enzymatic oxidation of cholesterol aggregates in supercritical carbon dioxide. Science 1988, 239, 387–390. [Google Scholar] [CrossRef] [PubMed]
- Bermejo, M.D.; Kotlewska, A.J.; Florusse, L.J.; Cocero, M.J.; van Rantwijk, F.; Peters, C.J. Influence of the enzyme concentration on the phase behaviour for developing a homogeneous enzymatic reaction in ionic liquid-CO2 media. Green Chem. 2008, 10, 1049–1054. [Google Scholar] [CrossRef]
- Fan, Y.; Qian, J. Lipase catalysis in ionic liquids/supercritical carbon dioxide and its applications. J. Mol. Catal. B 2010, 66, 1–7. [Google Scholar] [CrossRef]
- Monhemi, H.; Housaindokht, M.R.; Bozorgmehr, M.R.; Googheri, M.S.S. Enzyme is stabilized by a protection layer of ionic liquids in supercritical CO2: Insights from molecular dynamic simulation. J. Supercrit. Fluids 2012, 69, 1–7. [Google Scholar] [CrossRef]
- Bogel-Łukasik, R.; Najdanovic-Visak, V.; Barreiros, S.; Nunes-da-Ponte, M. Distribution ratios of lipase-catalyzed reaction products in ionic liquid supercritical CO2 systems: Resolution of 2-octanol enantiomers. Ind. Eng. Chem. Res. 2008, 47, 4473–4480. [Google Scholar] [CrossRef]
- Lozano, P.; de Diego, T.; Carrié, D.; Vaultier, M.; Iborra, J.L. Continuous green biocatalytic processes using ionic liquids and supercritical carbon dioxide. Chem. Commun. 2002, 692–693. [Google Scholar] [CrossRef]
- Lozano, P.; de Diego, T.; Gmouh, S.; Vaultier, M.; Iborra, J.L. Criteria to design green enzymatic processes in ionic liquid/supercritical carbon dioxide systems. Biotechnol. Prog. 2004, 20, 661–669. [Google Scholar] [CrossRef] [PubMed]
- Hernández, F.J.; de los Rios, A.P.; Gómez, D.; Rubio, M.; Víllora, G. A new recirculating enzymatic membrane reactor for ester synthesis in ionic liquid/supercritical carbon dioxide biphasic systems. Appl. Catal. B 2006, 67, 121–126. [Google Scholar] [CrossRef]
- Jin, Z.; Han, S.-Y.; Zhang, L.; Zheng, S.-P.; Wang, Y.; Lin, Y. Combined utilization of lipase-displaying Pichia pastoris whole-cell biocatalysts to improve biodiesel production in co-solvent media. Bioresour. Technol. 2013, 130, 102–109. [Google Scholar] [CrossRef] [PubMed]
ILs | Lipase * | Biodiesel Yield (%) | Refernce |
---|---|---|---|
[OmPy][BF4] | BCL | 82.2 ± 1.2 | [55] |
[Bmim][PF6] | CALB | 38 ± 1.5 | [56] |
[Bmim][PF4] | CALB | 2.3 ± 0.2 | [57] |
[Bmim][Tf2N] | PS-D Amano Ι | 24.7 | [58] |
[Bmim][Tf2N] | PS-C Amano Ι | 73.9 | [58] |
[Bmim][Tf2N] | PS | 21.2 | [58] |
Enzyme * | Mixture Solvents | Applications | Reference |
---|---|---|---|
BCL | [Bmim][PF6], [Bmim][Tf2N], [Hmim][PF6], and [Bmim][NO3]/hexane, benzene, and tert-butanol | Esterification of lauric acid with dodecanol | [5] |
PAL | [Bmim][PF6]/hexane | Transesterification of 1-phenyl ethanol | [69] |
CALB | [Btma][Tf2N] and [Toma][Tf2N]/hexane | Transesterification of rac-1-phenylethanol | [70] |
PSL | [Bmim][PF6] and [Bmim][BF4]/tert-butanol, and chloroform | Aminolysis of (R,S)-methyl mandelate | [71] |
CALB | [Bmim][PF6]/tert-amyl alcohol and hexane | Acylation of alaninol, 4-amino-1-pentanol and 6-amino-1-hexanol with myristic acid | [72] |
[Bmim][PF6]/pyridine | Acylation of 1-β-d-arabinofuranosylcytosine with vinyl benzoate | [73] | |
[Bmim][SCN], [Bmim]Cl [Bmim][BF4], and [Bmim][PF6]/various organic solvents | oxidation of N-benzyliden-2-ethylhexylamine to form E- and Z-isomers of oxaziridines | [74] | |
[Hmim][PF6], [Omim][PF6]/isooctane) | Esterification of ferulic acid to form oleyl alcohol ester | [75] | |
CRL | [Bmim][PF6]/Tween 20 or Triton X-100 | Esterification of natural fatty acids with various aliphatic alcohols | [76] |
[Bmim][PF6]/AOT and Triton X-100 | Hydrolysis of 4-nitrophenyl butyrate (p-NPB) | [77] | |
RML | [Bmim][PF6]/benzene, toluene, ethylbenzene, hexane, heptane, octane, and nonane | Esterification of amyl caprylate | [78] |
BCL | [MOPMIM][PF6]/tBuOMe, THF, CHCl3 | Transesterification of various bulky secondary alcohols | [79] |
[Emim][Tf2N], [Emim][BF4], and [Bmim][PF6]/several organic solvents | Acylations of secondary alcohols | [79] | |
PSL | [Bmim]Cl and [Hmim]Cl/methanol and 2-propanol | Hydrolysis of p-NPB | [80] |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Meng, X.; Zhou, H.; Liu, Y.; Secundo, F.; Liu, Y. Enzyme Stability and Activity in Non-Aqueous Reaction Systems: A Mini Review. Catalysts 2016, 6, 32. https://doi.org/10.3390/catal6020032
Wang S, Meng X, Zhou H, Liu Y, Secundo F, Liu Y. Enzyme Stability and Activity in Non-Aqueous Reaction Systems: A Mini Review. Catalysts. 2016; 6(2):32. https://doi.org/10.3390/catal6020032
Chicago/Turabian StyleWang, Shihui, Xianghe Meng, Hua Zhou, Yang Liu, Francesco Secundo, and Yun Liu. 2016. "Enzyme Stability and Activity in Non-Aqueous Reaction Systems: A Mini Review" Catalysts 6, no. 2: 32. https://doi.org/10.3390/catal6020032
APA StyleWang, S., Meng, X., Zhou, H., Liu, Y., Secundo, F., & Liu, Y. (2016). Enzyme Stability and Activity in Non-Aqueous Reaction Systems: A Mini Review. Catalysts, 6(2), 32. https://doi.org/10.3390/catal6020032