A Comparative Discussion of the Catalytic Activity and CO2-Selectivity of Cu-Zr and Pd-Zr (Intermetallic) Compounds in Methanol Steam Reforming
Abstract
:1. Introduction
2. Results and Discussion
2.1. Inverse Pd/ZrOxHy Samples and Pd-Zr Intermetallic Compounds
2.1.1. Methanol Steam Reforming on the Inverse Pd/ZrOxHy Sample
2.1.2. Methanol Steam Reforming on the Pd-Zr Bulk Sample
2.2. Cu-Zr Bulk Intermetallic Compounds
3. Materials and Methods
3.1. UHV Setup
3.2. Preparation of Materials
3.3. Catalytic Measurements
3.4. Structural Characterization
3.5. In Situ XPS Setup
3.6. Analysis of the XPS Data
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Fujimoto, K.-I.; Ribeiro, F.H.; Avalos-Borja, M.; Iglesia, E. Structure and Reactivity of PdOx/ZrO2 Catalysts for Methane Oxidation at Low Temperatures. J. Catal. 1998, 179, 431–442. [Google Scholar] [CrossRef]
- Liu, S.H.; Chuah, G.K.; Jaenicke, S. Liquid-phase Oppenauer Oxidation of Primary Allylic and Benzylic Alcohols to Corresponding Aldehydes by Solid Zirconia Catalysts. J. Mol. Catal. A Chem. 2004, 220, 267–274. [Google Scholar] [CrossRef]
- He, D.; Ding, Y.; Luo, H.; Li, C. Effects of Zirconia Phase on the Synthesis of Higher Alcohols over Zirconia and Modified Zirconia. J. Mol. Catal. A Chem. 2004, 208, 267–271. [Google Scholar] [CrossRef]
- Behrens, M.; Armbrüster, M. Methanol Steam Reforming. In Catalysis for Alternative Energy Generation; Guczi, L., Erdôhelyi, A., Eds.; Springer: New York, NY, USA, 2012; pp. 175–235. [Google Scholar]
- Sudarsanam, P.; Mallesham, B.; Reddy, P.; Großmann, S.; Grünert, D.; Reddy, B.M. Nano-Au/CeO2 Catalysts for CO Oxidation: Influence of Dopants (Fe, La and Zr) on the Physicochemical Properties and Catalytic Activity. Appl. Catal. B Environ. 2014, 144, 900–908. [Google Scholar] [CrossRef]
- Du, W.; Zhao, G.; Chang, H.; Shi, F.; Zhu, Z.; Qian, X. Photocatalytic Studies of Ho-Zr-O Nano-Composite with Controllable Composition and Defects. Mater. Charact. 2013, 83, 178–186. [Google Scholar] [CrossRef]
- Behrens, M.; Brennecke, D.; Girgsdies, F.; Kißner, S.; Trunschke, A.; Nasrudin, N.; Zakaria, S.; Fadilah Idris, N.; Abd Hamid, S.B.; Kniep, B.; et al. Understanding the Complexity of a Catalyst Synthesis: Co-Precipitation of Mixed Cu, Zn, Al Hydroxycarbonate Precursors for Cu/ZnO/Al2O3 Catalysts Investigated by Titration Experiments. Appl. Catal. A Gen. 2011, 392, 93–102. [Google Scholar] [CrossRef]
- Velu, S.; Suzuki, S.; Gopinath, K.; Yoshida, C.S.; Hattori, H. XPS, XANES and EXAFS Investigations of CuO/ZnO/Al2O3/ZrO2 Mixed Oxide Catalysts. Phys. Chem. Chem. Phys. 2002, 4, 1990–1999. [Google Scholar] [CrossRef]
- Purnama, H.; Girgsdies, F.; Ressler, T.; Schattka, J.H.; Caruso, R.A.; Schomacker, R.; Schlögl, R. Activity and Selectivity of a Nanostructured CuO/ZrO2 Catalyst in the Steam Reforming of Methanol. Catal. Lett. 2004, 94, 61–68. [Google Scholar] [CrossRef]
- Purnama, H.; Ressler, T.; Jentoft, R.E.; Soerijanto, H.; Schlögl, R.; Schomäcker, R. CO Formation/Selectivity for Steam Reforming of Methanol with a Commercial CuO/ZnO/Al2O3 catalyst. Appl. Catal. A Gen. 2004, 259, 83–94. [Google Scholar] [CrossRef]
- Velu, S.; Suzuki, K.; Kapoor, M.P.; Ohashi, F.; Osaki, T. Selective Production of Hydrogen for Fuel Cells via Oxidative Steam Reforming of Methanol over CuZnAl(Zr)-oxide Catalysts. Appl. Catal. A Gen. 2001, 213, 47–63. [Google Scholar] [CrossRef]
- Wu, G.-S.; Mao, D.-S.; Lu, G.-Z.; Cao, Y.; Fan, K.-N. The Role of the Promoters in Cu Based Catalysts for Methanol Steam Reforming. Catal. Lett. 2009, 130, 177–184. [Google Scholar] [CrossRef]
- Breen, J.P.; Ross, J.R. Methanol Reforming for Fuel-Cell Applications: Development of Zr-Containing Cu-Zn-Al Catalysts. Catal. Today 1999, 51, 521–533. [Google Scholar] [CrossRef]
- Mayr, L.; Klötzer, B.; Zemlyanov, D.; Penner, S. Steering of Methanol Reforming Selectivity by Zirconia–Copper Interaction. J. Catal. 2015, 321, 123–132. [Google Scholar] [CrossRef]
- Mayr, L.; Shi, X.; Köpfle, N.; Klötzer, B.; Zemlyanov, D.; Penner, S. Tuning of the Copper-Zirconia Phase Boundary for Selectivity Control of Methanol Conversion. J. Catal. 2016, 339, 111–122. [Google Scholar] [CrossRef]
- Mayr, L.; Shi, X.; Köpfle, N.; Klötzer, B.; Schmidmair, D.; Bernardi, J.; Schwarz, S.; Penner, S. Boosting Hydrogen Production from Methanol/Water by In Situ Activating Bimetallic Cu-Zr. ChemCatChem 2016, 8, 1778–1781. [Google Scholar] [CrossRef]
- Palo, D.R.; Dagle, R.A.; Holladay, J.D. Methanol steam reforming for hydrogen production. Chem. Rev. 2007, 107, 3992–4021. [Google Scholar] [CrossRef] [PubMed]
- Rameshan, C.; Stadlmayr, W.; Weilach, C.; Penner, S.; Lorenz, H.; Hävecker, M.; Blume, R.; Rocha, T.; Teschner, D.; Knop-Gericke, A.; et al. Subsurface-Controlled CO2 Selectivity of PdZn Near-Surface Alloys in H2 Generation by Methanol Steam Reforming. Angew. Chem. Int. Ed. 2010, 49, 3224–3227. [Google Scholar] [CrossRef] [PubMed]
- Rameshan, C.; Stadlmayr, W.; Penner, S.; Lorenz, H.; Memmel, N.; Hävecker, M.; Blume, R.; Teschner, D.; Rocha, T.; Zemlyanov, D.; et al. Hydrogen Production by Methanol Steam Reforming on Copper Boosted by Zinc-Assisted Water Activation. Angew. Chem. Int. Ed. 2012, 124, 3057–3061. [Google Scholar] [CrossRef]
- Mayr, L.; Shi, X.-R.; Köpfle, N.; Milligan, C.; Zemlyanov, D.; Knop-Gericke, A.; Hävecker, M.; Klötzer, B.; Penner, S. Chemical vapor deposition-prepared sub-nanometer Zr clusters on Pd surfaces: Promotion of methane dry reforming. Phys. Chem. Chem. Phys. 2016, 18, 31586–31599. [Google Scholar] [CrossRef] [PubMed]
- Lim, K.H.; Chen, Z.X.; Neyman, K.M.; Rösch, N. Comparative Theoretical Study of Formaldehyde Decomposition on PdZn, Cu, and Pd Surfaces. J. Phys. Chem. B 2006, 110, 14890–14897. [Google Scholar] [CrossRef] [PubMed]
- Yazyev, O.V.; Louie, S.G. Electron Transport in Polycrystalline Graphene. Nat. Mater. 2010, 9, 806–809. [Google Scholar] [CrossRef] [PubMed]
- Schubert, K.; Bhan, S.; Burkhardt, W.; Gohle, R.; Meissner, H.G.; Poetzschke, M.; Stolz, E. Einige strukturelle Ergebnisse an metallischen Phasen (5). Naturwissenschaften 1960, 47, 303. [Google Scholar] [CrossRef]
- Harris, I.E.; Norman, M. Observations on the lattice spacings of some αPd-X solid solutions and some Pd3X phases. J. Less Common Met. 1970, 22, 127–133. [Google Scholar] [CrossRef]
- Hu, J.Q.; Xie, M.; Pan, Y.; Yang, Y.C.; Liu, M.M.; Zhang, J.M. The electronic, elastic and structural properties of Pd-Zr intermetallic. Comput. Mater. Sci. 2012, 51, 1–6. [Google Scholar] [CrossRef]
- Mayr, L.; Köpfle, N.; Klötzer, B.; Götsch, T.; Bernardi, J.; Schwarz, S.; Keilhauer, T.; Armbrüster, M.; Penner, S. Microstructural and Chemical Evolution and Analysis of a Self-Activating CO2-Selective Cu-Zr Bimetallic Methanol Steam Reforming Catalyst. J. Phys. Chem. C 2016, 120, 25395–25404. [Google Scholar] [CrossRef]
- Okamoto, H. Cu-Zr (Copper-Zirconium) Phase Diagram, H. J. Phase Equilib. Diffus. 2008, 29, 204. [Google Scholar] [CrossRef]
- Forey, P.; Glimois, J.L.; Feron, J.L.; Develey, G.; Becle, C.C.R. Synthesis, Characterization and Crystal Structure of Cu5Zr. Seances Acad. Sci. Ser. C 1980, 291, 177–181. [Google Scholar]
- Ahlyen, P.J.; Andersson, Y.; Rundqvist, S.; Tellgren, R. A neutron diffraction study of Zr3PD3−x. J. Less Common Met. 1990, 161, 269–278. [Google Scholar] [CrossRef]
- Bouvier, P.; Djurado, E.; Ritter, C.; Dianoux, A.J.; Lucazeau, G. Low temperature phase transformation of nanocrystalline tetragonal ZrO2 by neutron and Raman scattering studies. Int. J. Inorg. Mater. 2001, 3, 647–654. [Google Scholar] [CrossRef]
- Mayr, L.; Rameshan, R.; Klötzer, B.; Penner, S.; Rameshan, C. Combined UHV/High-Pressure Catalysis Setup for Depth-Resolved Near-Surface Spectroscopic Characterization and Catalytic Testing of Model Catalysts. Rev. Sci. Instrum. 2014, 85, 055104. [Google Scholar] [CrossRef]
- Gharachorlou, A.; Detwiler, M.D.; Gu, X.K.; Mayr, L.; Klötzer, B.; Greeley, J.; Reifenberger, R.G.; Delgass, W.N.; Ribeiro, F.H.; Zemlyanov, D.Y. Trimethylaluminum and Oxygen Atomic Layer Deposition on Hydroxyl-Free Cu(111). ACS Appl. Mater. Interfaces 2015, 7, 16428–16439. [Google Scholar] [CrossRef] [PubMed]
- Gharachorlou, A.; Detwiler, M.D.; Mayr, L.; Gu, X.K.; Greeley, J.; Reifenberger, R.G.; Delgass, W.N.; Ribeiro, F.H.; Zemlyanov, D.Y. Surface Chemistry of Trimethylaluminum on Pd(111) and Pt(111). J. Phys. Chem. C 2015, 119, 19059–19072. [Google Scholar] [CrossRef]
- Gharachorlou, A.; Detwiler, M.D.; Nartova, A.V.; Lei, Y.; Lu, J.; Elam, J.W.; Delgass, W.N.; Ribeiro, F.H.; Zemlyanov, D.Y. Palladium Nanoparticle Formation on TiO2(110) by Thermal Decomposition of Palladium(II) Hexafluoroacetylacetonate. ACS Appl. Mater. Interfaces 2014, 6, 14702–14711. [Google Scholar] [CrossRef] [PubMed]
- Paul, R.; Reifenberger, R.G.; Fisher, T.S.; Zemlyanov, D.Y. Atomic Layer Deposition of FeO on Pt(111) by Ferrocene Adsorption and Oxidation. Chem. Mater. 2015, 27, 5915–5924. [Google Scholar] [CrossRef]
- Knop-Gericke, A.; Kleimenov, E.V.; Hävecker, M.; Blume, R.; Teschner, D.; Zafeiratos, S.; Schlögl, R. X-ray Photoelectron Spectroscopy for Investigation of Heterogeneous Catalytic Processes. Adv. Catal. 2009, 52, 213–272. [Google Scholar]
- CasaXPS Version 2.3.16 Pre-rel 1.4, Casa Software Ltd.: Devon, UK, 2011.
- Wagner, C.D.; Riggs, W.M.; Davis, L.E.; Moulder, J.F.; Muilenberg, G.E. Handbook of X-ray Photoelectron Spectroscopy; Perkin-Elmer Corporation, Physical Electronics Division: Eden Prairie, MN, USA, 1979; Volume 55344. [Google Scholar]
- Majumdar, D.; Chatterjee, D. X-ray Photoelectron Spectroscopic Studies on Yttria, Zirconia, and Yttria-Stabilized Zirconia. J. Appl. Phys. 1991, 70, 988–992. [Google Scholar] [CrossRef]
- Powell, C.J.; Jablonski, A. NIST Electron Effective-Attenuation-Length Database SRD 82, version 1.3; National Instititue of Standards and Technology: Gaithersburg, MD, USA, 2011. [Google Scholar]
- Yeh, J.J. Atomic Calculation of Photoionization Cross-Sections and Asymmetry Parameters; Gordon and Breach Science Publishers: Langhorne, PE, USA, 1993. [Google Scholar]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Köpfle, N.; Mayr, L.; Schmidmair, D.; Bernardi, J.; Knop‐Gericke, A.; Hävecker, M.; Klötzer, B.; Penner, S. A Comparative Discussion of the Catalytic Activity and CO2-Selectivity of Cu-Zr and Pd-Zr (Intermetallic) Compounds in Methanol Steam Reforming. Catalysts 2017, 7, 53. https://doi.org/10.3390/catal7020053
Köpfle N, Mayr L, Schmidmair D, Bernardi J, Knop‐Gericke A, Hävecker M, Klötzer B, Penner S. A Comparative Discussion of the Catalytic Activity and CO2-Selectivity of Cu-Zr and Pd-Zr (Intermetallic) Compounds in Methanol Steam Reforming. Catalysts. 2017; 7(2):53. https://doi.org/10.3390/catal7020053
Chicago/Turabian StyleKöpfle, Norbert, Lukas Mayr, Daniela Schmidmair, Johannes Bernardi, Axel Knop‐Gericke, Michael Hävecker, Bernhard Klötzer, and Simon Penner. 2017. "A Comparative Discussion of the Catalytic Activity and CO2-Selectivity of Cu-Zr and Pd-Zr (Intermetallic) Compounds in Methanol Steam Reforming" Catalysts 7, no. 2: 53. https://doi.org/10.3390/catal7020053
APA StyleKöpfle, N., Mayr, L., Schmidmair, D., Bernardi, J., Knop‐Gericke, A., Hävecker, M., Klötzer, B., & Penner, S. (2017). A Comparative Discussion of the Catalytic Activity and CO2-Selectivity of Cu-Zr and Pd-Zr (Intermetallic) Compounds in Methanol Steam Reforming. Catalysts, 7(2), 53. https://doi.org/10.3390/catal7020053