Improved H2 Production by Ethanol Steam Reforming over Sc2O3-Doped Co-ZnO Catalysts
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalyst Performance
2.2. TEM Characterization
2.3. XRD and XPS Characterization
2.4. H2-TPR
3. Discussion
4. Experimental
4.1. Catalyst Preparation
4.2. Catalytic Evaluation
4.3. Characterizations
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Mattos, L.V.; Jacobs, G.; Davis, B.H.; Noronha, F.B. Production of hydrogen from ethanol: Review of reaction mechanism and catalyst deactivation. Chem. Rev. 2012, 112, 4094–4123. [Google Scholar] [CrossRef] [PubMed]
- Ni, M.; Leung, D.Y.C.; Leung, M.K.H. A review on reforming bio-ethanol for hydrogen production. Int. J. Hydrogen Energy 2007, 32, 3238–3247. [Google Scholar] [CrossRef]
- Breen, J.P.; Burch, R.; Coleman, H.M. Metal-catalysed steam reforming of ethanol in the production of hydrogen for fuel cell applications. Appl. Catal. B Environ. 2002, 39, 65–74. [Google Scholar] [CrossRef]
- Auprêtre, F.; Descorme, C.; Duprez, D. Bio-ethanol catalytic steam reforming over supported metal catalysts. Catal. Commun. 2002, 3, 263–267. [Google Scholar] [CrossRef]
- Kugai, J.; Subramani, V.; Song, C.; Engelhard, M.H.; Chin, Y.H. Effects of nanocrystalline CeO2 supports on the properties and performance of Ni-Rh bimetallic catalyst for oxidative steam reforming of ethanol. J. Catal. 2006, 238, 430–440. [Google Scholar] [CrossRef]
- Cai, W.; Wang, F.; Zhan, E.; Van Veen, A.C.; Mirodatos, C.; Shen, W. Hydrogen production from ethanol over Ir/CeO2 catalysts: A comparative study of steam reforming, partial oxidation and oxidative steam reforming. J. Catal. 2008, 257, 96–107. [Google Scholar] [CrossRef]
- De Lima, S.M.; Silva, A.M.; Graham, U.M.; Jacobs, G.; Davis, B.H.; Mattos, L.V.; Noronha, F.B. Ethanol decomposition and steam reforming of ethanol over CeZrO2 and Pt/CeZrO2 catalyst: Reaction mechanism and deactivation. Appl. Catal. A Gen. 2009, 352, 95–113. [Google Scholar] [CrossRef]
- Llorca, J.; Piscina, P.R.; Dalmon, J.A.; Sales, J.; Homs, N. CO-free hydrogen from steam reforming of bioethanol over ZnO-supported cobalt catalysts: Effect of the metallic precursor. Appl. Catal. B Environ. 2003, 43, 355–369. [Google Scholar] [CrossRef]
- Llorca, J.; Homs, N.; Sales, J.; Fierro, J.L.; Piscina, P.R. Effect of sodium addition on the performance of Co-ZnO-based catalysts for hydrogen production from bioethanol. J. Catal. 2004, 222, 470–480. [Google Scholar] [CrossRef]
- Batista, M.S.; Santos, R.K.S.; Assaf, E.M.; Assaf, J.M.; Ticianelli, E.A. Characterization of the activity and stability of supported cobalt catalysts for the steam reforming of ethanol. J. Power Sources 2003, 124, 99–103. [Google Scholar] [CrossRef]
- Song, H.; Zhang, L.; Watson, R.B.; Braden, D.; Ozkan, U.S. Investigation of bio-ethanol steam reforming over cobalt-based catalysts. Catal. Today 2007, 129, 346–354. [Google Scholar] [CrossRef]
- Song, H.; Ozkan, U.S. Ethanol steam reforming over Co-based catalysts: Role of oxygen mobility. J. Catal. 2009, 261, 66–74. [Google Scholar] [CrossRef]
- De Lima, S.M.; da Silva, A.M.; da Costa, L.O.O.; Graham, U.M.; Jacobs, G.; Davis, B.H.; Mattos, L.V.; Noronha, F.B. Study of catalyst deactivation and reaction mechanism of steam reforming, partial oxidation, and oxidative steam reforming of ethanol over Co/CeO2 catalyst. J. Catal. 2009, 268, 268–281. [Google Scholar] [CrossRef]
- Chiou, J.Y.Z.; Wang, W.Y.; Yang, S.Y.; Lai, C.L.; Huang, H.H.; Wang, C.B. Ethanol steam reforming to produce hydrogen over Co/ZnO and PtCo/ZnO catalysts. Catal. Lett. 2013, 143, 501–507. [Google Scholar] [CrossRef]
- Bellido, J.D.A.; Assaf, E.M. Nickel catalysts supported on ZrO2, Y2O3-stabilized ZrO2 and CaO-stabilized ZrO2 for the steam reforming of ethanol: Effect of the support and nickel load. J. Power Sources 2008, 177, 24–32. [Google Scholar] [CrossRef]
- Rossetti, I.; Biffi, C.; Bianchi, C.L.; Nichele, V.; Signoretto, M.; Menegazzo, F.; Finocchio, E.; Ramis, G.; Di Michele, A. Ni/SiO2 and Ni/ZrO2 catalysts for the steam reforming of ethanol. Appl. Catal. B Environ. 2012, 117–118, 384–396. [Google Scholar] [CrossRef]
- Akiyama, M.; Oki, Y.; Nagai, M. Steam reforming of ethanol over carburized alkali-doped nickel on zirconia and various supports for hydrogen production. Catal. Today 2012, 181, 4–13. [Google Scholar] [CrossRef]
- Coleman, L.J.I.; Epling, W.; Hudgins, R.R.; Croiset, E. Ni/Mg-Al mixed oxide catalyst for the steam reforming of ethanol. Appl. Catal. A Gen. 2009, 363, 52–63. [Google Scholar] [CrossRef]
- Galetti, A.E.; Barroso, M.N.; Gomez, M.F.; Arrua, L.A.; Monzón, A.; Abello, M.C. Promotion of Ni/MgAl2O4 catalysts with rare earths for the ethanol steam reforming reaction. Catal. Lett. 2012, 142, 1461–1469. [Google Scholar] [CrossRef]
- Hou, J.; Liu, Z.M.; Lin, G.D.; Zhang, H.B. Novel Ni-ZrO2 catalyst doped with Yb2O3 for ethanol steam reforming. Int. J. Hydrogen Energy 2014, 39, 1315–1324. [Google Scholar] [CrossRef]
- Lin, J.Y.; Chen, L.W.; Choong, C.K.S.; Zhong, Z.Y.; Huang, L. Molecular catalysis for the steam reforming of ethanol. Sci. China Chem. 2015, 58, 60–78. [Google Scholar] [CrossRef]
- Vargas, J.C.; Libs, S.; Roger, A.C.; Kiennemann, A. Study of Ce-Zr-Co fluorite-type oxide as catalysts for hydrogen production by steam reforming of bioethanol. Catal. Today 2005, 107–108, 417–425. [Google Scholar] [CrossRef]
- Erdőhelyi, A.; Raskó, J.; Kecskés, T.; Tóth, M.; Dömök, M.; Baán, K. Hydrogen formation in ethanol reforming on supported noble metal catalysts. Catal. Today 2006, 116, 367–376. [Google Scholar] [CrossRef]
- Frusteri, F.; Freni, S.; Chiodo, V.; Donato, S.; Bonura, G.; Cavallaro, S. Steam and auto-thermal reforming of bio-ethanol over MgO and CeO2 Ni supported catalysts. Int. J. Hydrogen Energy 2006, 31, 2193–2199. [Google Scholar] [CrossRef]
- Romero-Sarria, F.; Vargas, J.C.; Roger, A.; Kiennemann, A. Hydrogen production by steam reforming of ethanol: Study of mixed oxide catalysts Ce2Zr1.5Me0.5O8: Comparison of Ni/Co and effect of Rh. Catal. Today 2008, 133, 149–153. [Google Scholar] [CrossRef]
- Galetti, A.E.; Gomez, M.F.; Arrua, L.A.; Marchi, A.J.; Abello, M.C. Study of CuCoZnAl oxide as catalyst for the hydrogen production from ethanol reforming. Catal. Commun. 2008, 9, 1201–1208. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Y.; Wang, L.; Qin, Y.N. Study on the carbon deposition in steam reforming of ethanol over Co/CeO2 catalyst. Chem. Eng. J. 2008, 145, 25–31. [Google Scholar] [CrossRef]
- Choong, C.K.S.; Chen, L.W.; Du, Y.H.; Schreyer, M.; Daniel Ong, S.W.; Poh, C.K.; Hong, L.; Borgna, A. The role of metal-support interaction for CO-free hydrogen from low temperature ethanol steam reforming on Rh-Fe catalysts. Phys. Chem. Chem. Phys. 2017, 19, 4199–4207. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Mao, D.S.; Ding, D.; Guo, X.M.; Lu, G.Z. New insights into the effects of Mn and Li on the mechanistic pathway for CO hydrogenation on Rh-Mn-Li/SiO2 catalysts. J. Mol. Catal. A Chem. 2016, 423, 151–159. [Google Scholar] [CrossRef]
- Qin, Z.Z.; Zhou, X.H.; Su, M.T.; Jiang, Y.X.; Ji, H.B. Hydrogenation of CO2 to dimethyl ether on La-, Ce-modified Cu-Fe/HZSM-5 catalysts. Catal. Commun. 2016, 75, 78–82. [Google Scholar] [CrossRef]
- Lu, J.Z.; Yang, L.J.; Xu, B.L.; Wu, Q.; Zhang, D.; Yuan, S.J.; Zhai, Y.; Wang, X.; Fan, Y.; Hu, Z. Promotion effects of nitrogen doping into carbon nanotubes on supported iron Fischer-Tropsch catalysts for lower olefins. ACS Catal. 2014, 4, 613–621. [Google Scholar] [CrossRef]
- Zhou, J.F.; Duan, X.P.; Ye, L.M.; Zheng, J.W.; Li, M.M.J.; Tsang, S.E.; Yuan, Y.Z. Enhanced chemoselective hydrogenation of dimethyl oxalate to methyl glycolate over bimetallic Ag-Ni/SBA-15 catalysts. Appl. Catal. A Gen. 2015, 505, 344–353. [Google Scholar] [CrossRef]
- Huang, Y.; Ariga, H.; Zheng, X.L.; Duan, X.P.; Takakusagi, S.; Asakura, K.; Yuan, Y.Z. Silver-modulated SiO2-supported copper catalysts for selective hydrogenation of dimethyl oxalate to ethylene glycol. J. Catal. 2013, 307, 74–83. [Google Scholar] [CrossRef]
- Moulder, J.F.; Stickle, W.F.; Sobol, P.E.; Bomben, K.D. Handbook of X-ray Photoelectron Spectroscopy—A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data; Physical Electronics Inc.: Eden Prairie, MN, USA, 1995. [Google Scholar]
- Ernst, B.; Libs, S.; Chaumette, P.; Kiennemann, A. Preparation and characterization of Fischer-Tropsch active Co/SiO2 catalysts. Appl. Catal. A Gen. 1999, 186, 145–168. [Google Scholar] [CrossRef]
- Venezia, A.M.; La Parola, V.; Liotta, L.F.; Pantaleo, G.; Lualdi, M.; Boutonnet, M.; Jaras, S. Co/SiO2 catalysts for Fischer-Tropsch synthesis; effect of Co loading and support modification by TiO2. Catal. Today 2012, 197, 18–23. [Google Scholar] [CrossRef]
- Dong, X.; Liang, X.L.; Li, H.Y.; Lin, G.D.; Zhang, P.; Zhang, H.B. Preparation and characterization of carbon nanotube-promoted Co-Cu catalyst for higher alcohol synthesis from syngas. Catal. Today 2009, 147, 158–165. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, Z.Y.; Zheng, B.J.; Xie, Z.X.; Zheng, L.S. Synthesis and shape-dependent catalytic properties of CeO2 nanocubes and truncated octahedra. CrystEngComm 2012, 14, 7579–7582. [Google Scholar] [CrossRef]
- Sun, Y.F.; Li, J.H.; Wang, M.N.; Hua, B.; Li, J.; Luo, J.L. A-site deficient chromite perovskite with in situ exsolution of nano-Fe: A promising bi-functional catalyst bridging the growth of CNTs and SOFCs. J. Mater. Chem. A 2015, 3, 14625–14630. [Google Scholar] [CrossRef]
- Ogo, S.; Shimizu, T.; Nakazawa, Y.; Mukawa, K.; Mukai, D.; Sekine, Y. Steam reforming of ethanol over K promoted Co catalyst. Appl. Catal. A Gen. 2015, 495, 30–38. [Google Scholar] [CrossRef]
- Wu, C.F.; Dupont, V.; Nahil, M.A.; Dou, B.L.; Chen, H.S.; Williams, P.T. Investigation of Ni/SiO2 catalysts prepared at different conditions for hydrogen production from ethanol steam reforming. J. Energy Inst. 2017, 90, 276–284. [Google Scholar] [CrossRef]
- Compagnoni, M.; Tripodi, A.; Rossetti, L. Parametric study and kinetic testing for ethanol steam reforming. Appl. Catal. B Environ. 2017, 203, 899–909. [Google Scholar] [CrossRef]
- Yang, L.; Lin, G.D.; Zhang, H.B. Highly efficient Pd-ZnO catalyst doubly promoted by CNTs and Sc2O3 for methanol steam reforming. Appl. Catal. A Gen. 2013, 455, 137–144. [Google Scholar] [CrossRef]
Catalyst | SBET (m2·g−1) | X-EtOH (%) | STY-H2 (mol·g−1·h−1) | Selectivity of C-Containing Products (%) | Reference | ||
---|---|---|---|---|---|---|---|
CO2 | CO | CH4 | |||||
Co2Zn1Sc0.3 a | 134.2 | 16.6 | 1.099 | 80.6 | 7.9 | 11.5 | This work |
Co2Zn1 a | 61.7 | 10.8 | 0.684 | 73.5 | 8.1 | 18.4 | |
Ni1.25Zr1 b | 134.6 | 11.0 | 0.247 | 70.0 | 4.7 | 25.3 | [20] |
Ni1.25Zr1Yb0.8 b | 161.8 | 18.2 | 0.396 | 83.0 | 11.4 | 5.6 | |
RhFe/Ca–Al2O3 c | 94.3 | 100 | 0.052 | 60.3 | 0.0 | 39.7 | [28] |
Catalyst | B.E. (Co 2p3/2)/eV | Relative Content/mol % | ||||
---|---|---|---|---|---|---|
Co0 | CoO | Co(OH)2 | Co0 | CoO | Co(OH)2 | |
Co2Zn1 | 778.5 | 780.4 | 781.8 | 7.7 | 15.5 | 76.8 |
Co2Zn1Sc0.3 | 778.4 | 780.4 | 781.9 | 1.2 | 48.2 | 50.6 |
Catalyst | B.E. (Co 2p3/2)/eV | Relative Content/mol % | ||||
---|---|---|---|---|---|---|
O2− | Oads | OH− | O2− | Oads | OH− | |
Co2Zn1 | 530.6 | 531.5 | 532.4 | 27.6 | 36.5 | 35.9 |
Co2Zn1Sc0.3 | 530.5 | 531.6 | 532.5 | 33.9 | 21.5 | 44.6 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, X.; Shi, X.; Zhang, F.; Li, Y.; Zhang, H.; Yuan, Y. Improved H2 Production by Ethanol Steam Reforming over Sc2O3-Doped Co-ZnO Catalysts. Catalysts 2017, 7, 241. https://doi.org/10.3390/catal7080241
Liang X, Shi X, Zhang F, Li Y, Zhang H, Yuan Y. Improved H2 Production by Ethanol Steam Reforming over Sc2O3-Doped Co-ZnO Catalysts. Catalysts. 2017; 7(8):241. https://doi.org/10.3390/catal7080241
Chicago/Turabian StyleLiang, Xuelian, Xinping Shi, Fanfan Zhang, Yuyang Li, Hongbin Zhang, and Youzhu Yuan. 2017. "Improved H2 Production by Ethanol Steam Reforming over Sc2O3-Doped Co-ZnO Catalysts" Catalysts 7, no. 8: 241. https://doi.org/10.3390/catal7080241
APA StyleLiang, X., Shi, X., Zhang, F., Li, Y., Zhang, H., & Yuan, Y. (2017). Improved H2 Production by Ethanol Steam Reforming over Sc2O3-Doped Co-ZnO Catalysts. Catalysts, 7(8), 241. https://doi.org/10.3390/catal7080241