Surface Probing by Spectroscopy on Titania-Supported Gold Nanoparticles for a Photoreductive Application
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphologic and Electronic Characterization
2.2. DR UV-Vis Spectra
2.3. CO2-DRIFTS
2.4. DRIFTS of Adsorbed Methanol and Ethanol
- (a)
- CH3OH → CH3OH*
- (b)
- CH3OH + O2−*→ CH3O−* + OH−*
- (c)
- CH3OH* + OH−* → CH3O−* + H2O + Vo2−
2.5. DRIFTS—OH Region
- TiIV-OH− + h+ → TiIV-OH·
- TiIV-H2O + h+ → TiIV-OH· + H+
2.6. XPS-Fresh Catalyst (O Region, Ti Region)
2.7. Spent Photocatalyst Characterization
3. Materials and Methods
3.1. Preparation of Au/TiO2
3.2. Characterization
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Olivo, A.; Trevisan, V.; Ghedini, E.; Pinna, F.; Bianchi, C.L.; Naldoni, A.; Cruciani, G.; Signoretto, M. CO2 photoreduction with water: Catalyst and process investigation. J. CO2 Util. 2015, 12, 86–94. [Google Scholar] [CrossRef]
- Liu, L.; Jiang, Y.; Zhao, H.; Chen, J.; Cheng, J.; Yang, K.; Li, Y. Engineering coexposed [001] and [101] facets in oxygen-deficent TiO2 nanocrystals for enhanced CO2 photoreduction under visble light. ACS Catal. 2016, 6, 1097–1108. [Google Scholar] [CrossRef]
- Tahir, M.; Tahir, B.; Amin, N.A.S. Gold-nanoparticle-modified TiO2 nanowires for plasmon enhanced photocatalytic CO2 reduction with H2 under visible light irradiation. Appl. Surf. Sci. 2015, 356, 1289–1299. [Google Scholar] [CrossRef]
- Li, G.; Ciston, S.; Saponjic, Z.V.; Chen, L.; Dimitrijevic, N.M.; Rajh, T.; Gray, K.A. Synthesizing mixed-phase TiO2 nanocomposites using a hydrothermal method for photo-oxidation and photoreduction applications. J. Catal. 2008, 253, 105–110. [Google Scholar] [CrossRef]
- Galli, F.; Compagnoni, M.; Vitali, D.; Pirola, C.; Bianchi, C.L.; Villa, A.; Prati, L.; Rossetti, I. CO2 photoreduction at high pressure to both gas and liquid products over titanium dioxide. Appl. Catal. B Environ. 2017, 200, 386–391. [Google Scholar] [CrossRef]
- Corma, A.; Garcia, H. Photocatalytic reduction of CO2 for fuel production: Possibilities and challenges. J. Catalysis 2013, 308, 168–175. [Google Scholar] [CrossRef]
- Ohtani, B. Photocatalysis A to Z—What we know and what we do not know in a scientific sense. J. Photochem. Photobiol. C Photochem. Rev. 2010, 11, 157–178. [Google Scholar] [CrossRef] [Green Version]
- Habisreutinger, S.N.; Schmidt-Mende, L.; Stolarczyk, J.K. Photocatalytic Reduction of CO2 on TiO2 and Other Semiconductors. Angew. Chem. Int. Ed. 2013, 52, 7372–7408. [Google Scholar] [CrossRef] [PubMed]
- Low, J.; Qiu, S.; Xu, D.; Jiang, C.; Cheng, B. Direct evidence and enhancement of surface plasmon resonance effect on Ag-loaded TiO2 nanotube arrays for photocatalytic CO2 reduction. Appl. Surf. Sci. 2018, 434, 423–432. [Google Scholar] [CrossRef]
- Mele, G.; Annese, C.; de Riccardis, A.; Fusco, C.; Palmisano, L.; Vasapollo, G.; D’Accolti, L. Turning lipophilic phthalocyanines/TiO2 composites into efficient photocatalysts for the conversion of CO2 into formic acid under UV–vis light irradiation. Appl. Catal. A General 2014, 481, 169–172. [Google Scholar] [CrossRef]
- Prati, L.; Villa, A. The Art of Manufacturing Gold Catalysts. Catalysts 2012, 2, 24–37. [Google Scholar] [CrossRef]
- Dimitratos, N.; Villa, A.; Bianchi, C.L.; Prati, L.; Makkee, M. Gold on titania: Effect of preparation method in the liquid phase oxidation. Appl. Catal. A Gen. 2006, 311, 185–192. [Google Scholar] [CrossRef] [Green Version]
- Villa, A.; Ferri, D.; Campisi, S.; Chan-Thaw, C.E.; Lu, Y.; Kröcher, O.; Prati, L. Operando Attenuated Total Reflectance FTIR Spectroscopy: Studies on the Different Selectivity Observed in Benzyl Alcohol Oxidation. ChemCatChem 2015, 7, 2534–2541. [Google Scholar] [CrossRef]
- Compagnoni, M.; Kondrat, S.A.; Chan-Thaw, C.E.E.; Morgan, D.J.; Wang, D.; Prati, L.; Dimitratos, N.; Rossetti, I. Spectroscopic Investigation of Titania-Supported Gold Nanoparticles Prepared by a Modified Deposition/Precipitation Method for the Oxidation of CO. ChemCatChem 2016, 8, 12. [Google Scholar] [CrossRef]
- Rossetti, I.; Villa, A.; Compagnoni, M.; Prati, L.; Ramis, G.; Pirola, C.; Bianchi, C.L.; Wang, W.; Wang, D. CO2 photoconversion to fuels under high pressure: effect of TiO2 phase and of unconventional reaction conditions. Catal. Sci. Technol. 2015, 5, 4481–4487. [Google Scholar] [CrossRef]
- Rossetti, I.; Villa, A.; Pirola, C.; Prati, L.; Ramis, G. A novel high-pressure photoreactor for CO2 photoconversion to fuels. RSC Adv. 2014, 4, 28883–28885. [Google Scholar] [CrossRef]
- Delavari, S.; Amin, N.A.S. An optimization approach for long term investments planning in energy. Appl. Energy 2014, 162, 1171–1185. [Google Scholar] [CrossRef]
- Compagnoni, M.; Bahdori, E.; Tripodi, A.; Villa, A.; Pirola, C.; Prati, L.; Ramis, G.; Dimitratos, N.; Wang, D.; Rossetti, I. High Pressure CO2 Photoreduction using Au/TiO2: unravelling the effect of the co-catalyst and of the titania polymorph. J. Mater. Chem. A. submitted.
- Yuzawa, H.; Yoshida, T.; Yoshida, H. Gold nanoparticles on titanium oxide effective for photocatalytic hydrogen formation under visible light. Appl. Catal. B Environ. 2012, 115–116, 294–302. [Google Scholar] [CrossRef]
- Lari, G.M.; Nowicka, E.; Morgan, D.J.; Kondrat, S.a.; Hutchings, G. The use of carbon monoxide as a probe molecule in spectroscopic studies for determination of exposed gold sites on TiO2. J. Phys. Chem. Chem. Phys. 2015, 17, 23236–23244. [Google Scholar] [CrossRef]
- Liu, G.; Hoivik, N.; Wang, K.; Jakobsen, H. Engineering TiO2 nanomaterials for CO2 conversion/solar fuels. Sol. Energy Mater. Sol. Cells 2012, 105, 53–68. [Google Scholar] [CrossRef]
- Raskó, J. FTIR study of the photoinduced dissociation of CO2 on titania supported noble metals. Catal. Letters 1998, 56, 11–15. [Google Scholar] [CrossRef]
- Rasko, J.; Solymosi, F. Infrared Spectroscopic Study of the Photoinduced Activation of CO2 on TiO2 and Rh/TiO2 Catalysts. J. Phys. Chem. 1994, 98, 7147–7152. [Google Scholar] [CrossRef]
- Indrakanti, V.P.; Kubicki, J.D.; Schobert, H.H. Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: Current state, chemical physics-based insights and outlook. Energy Environ. Sci. 2009, 2, 745. [Google Scholar] [CrossRef]
- Ramis, G.; Busca, G.; Lorenzelli, V. Structural effects on the adsorption of alcohols on titanium dioxide. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 1987, 83, 1591–1599. [Google Scholar] [CrossRef]
- Busca, G.; Montanari, T.; Resini, C.; Ramis, G.; Costantino, U. Hydrogen from alcohols: IR and flow reactor studies. Catal. Today 2009, 143, 2–8. [Google Scholar] [CrossRef]
- Ramis, G.; Busca, G.; Lorenzelli, V. Low temperature CO2 adsorpion on metal oxides: spectroscopic characterization of some weakly adsoebed species. Mater. Chem. Phys. 1991, 29, 425–435. [Google Scholar] [CrossRef]
- Busca, G.; Lorenzelli, V. Infrared spectroscopic identification of species arising from reactive adsorption of carbon oxides on metal oxide surfaces. Mater. Chem. 1982, 7, 89–126. [Google Scholar]
- Neatu, S.; Macià-Agullò, J.A.; Concepciòn, P.; Garcia, H. Gold–Copper Nanoalloys Supported on TiO2 as Photocatalysts for CO2 Reduction by Water. J. Am. Chem. Soc. 2014, 136, 15969–15976. [Google Scholar] [CrossRef]
- Liao, L.; Lien, C.; Shieh, D.; Chen, M.; Lin, J. FTIR Study of Adsorption and Photoassisted Oxygen Isotopic Exchange of Carbon Monoxide, Carbon Dioxide, Carbonate, and Formate on TiO2. J. Phys. Chem. B 2002, 106, 11240–11245. [Google Scholar] [CrossRef]
- Liu, L.; Zhao, H.; Andino, J.M.; Li, Y. Photocatalytic CO2 Reduction with H2O on TiO2 Nanocrystals: Comparison of Anatase, Rutile, and Brookite Polymorphs and Exploration of Surface Chemistry. ACS Catal. 2012, 2, 1817–1828. [Google Scholar] [CrossRef]
- Su, W.; Zhang, J.; Feng, Z.; Chen, T.; Ying, P.; Li, C. Surface Phases of TiO2 Nanoparticles Studied by UV Raman Spectroscopy and FT-IR Spectroscopy. J. Phys. Chem. C 2008, 112, 7710–7716. [Google Scholar] [CrossRef]
- Collins, S.E.; Baltanás, M.a.; Bonivardi, A.L. Infrared Spectroscopic Study of the Carbon Dioxide Adsorption on the Surface of Ga2O3 Polymorphs. J. Phys. Chem. B 2006, 110, 5498–5507. [Google Scholar] [CrossRef] [PubMed]
- László, B.; Baán, K.; Varga, E.; Oszkó, A.; Erdőhelyi, A.; Kónya, Z.; Kiss, J. Photo-induced reactions in the CO2-methane system on titanate nanotubes modified with Au and Rh nanoparticles. Appl. Catal. B Environ. 2016, 199, 473–484. [Google Scholar] [CrossRef]
- Chen, L.; Graham, M.E.; Li, G.; Gentner, D.R.; Dimitrijevic, N.M.; Gray, K.A. Photoreduction of CO2 by TiO2 nanocomposites synthesized through reactive direct current magnetron sputter deposition. Thin Solid Films 2009, 517, 5641–5645. [Google Scholar] [CrossRef]
- Liu, L.; Gao, F.; Zhao, H.; Li, Y. Tailoring Cu valence and oxygen vacancy in Cu/TiO2 catalysts for enhanced CO2 photoreduction efficiency. Appl. Catal. B Environ. 2013, 134–135, 349–358. [Google Scholar] [CrossRef]
- Compagnoni, M.; Ramis, G.; Freyria, F.S.; Armandi, M.; Bonelli, B.; Rossetti, I. Innovative photoreactors for unconventional photocatalytic processes: the photoreduction of CO2 and the photo-oxidation of ammonia. Rend. Lincei 2017, 28, S151. [Google Scholar] [CrossRef]
- Burcham, L.J.; Badlani, M.; Wachs, I.E. The Origin of the Ligand Effect in Metal Oxide Catalysts: Novel Fixed-Bed in Situ Infrared and Kinetic Studies during Methanol Oxidation . J. Catal. 2001, 203, 104–121. [Google Scholar] [CrossRef]
- Whiting, G.T.; Kondrat, S.A.; Hammond, C.; Dimitratos, N.; He, Q.; Morgan, D.J.; Dummer, N.F.; Bartley, J.K.; Kiely, C.J.; Taylor, S.H.; et al. Methyl Formate Formation from Methanol Oxidation Using Supported Gold–Palladium Nanoparticles. ACS Catal. 2015, 5, 637–644. [Google Scholar] [CrossRef]
- Montanari, T.; Sisani, M.; Nocchetti, M.; Vivani, R.; Delgado, M.C.H.; Ramis, G.; Busca, G.; Costantino, U. Zinc–aluminum hydrotalcites as precursors of basic catalysts: Preparation, characterization and study of the activation of methanol. Catal. Today 2010, 152, 104–109. [Google Scholar] [CrossRef]
- Greaves, J.; Al-Mazroai, L.; Nuhu, A.; Davies, P.; Bowker, M. Photocatalytic methanol reforming on Au/TiO2 for hydrogen production. Gold Bull. 2006, 39, 216–219. [Google Scholar] [CrossRef]
- Martinez-Ramirez, Z.; Flores-Escamilla, G.A.; Berumen-España, G.S.; Jimenez-Lam, S.A.; Handy, B.E.; Cardenas-Galindo, M.G.; Sarmiento-Lopez, A.G.; Fierro-Gonzalez, J.C. Methanol carbonylation catalyzed by TiO2–supported gold: An in-situ infrared spectroscopic investigation. Appl. Catal. A Gen. 2015, 502, 254–261. [Google Scholar] [CrossRef]
- Calzada, L.A.; Collins, S.E.; Han, C.W.; Ortalan, V.; Zanella, R. Synergetic effect of bimetallic Au-Ru/TiO2 catalysts for complete oxidation of methanol. Appl. Catal. B Environ. 2017, 207, 79–92. [Google Scholar] [CrossRef]
- Kähler, K.; Holz, M.C.; Rohe, M.; Strunk, J.; Muhler, M. Probing the Reactivity of ZnO and Au/ZnO Nanoparticles by Methanol Adsorption: A TPD and DRIFTS Study. ChemPhysChem 2010, 11, 2521–2529. [Google Scholar] [CrossRef] [PubMed]
- Manzoli, M.; Chiorino, A.; Boccuzzi, F. Decomposition and combined reforming of methanol to hydrogen: a FTIR and QMS study on Cu and Au catalysts supported on ZnO and TiO2. Appl. Catal. B Environ. 2005, 57, 201–209. [Google Scholar] [CrossRef]
- Li, M.; Li, S.; Zhang, C.; Wang, S.; Ma, X.; Gong, J. Ethanol steam reforming over Ni/NixMg1−xO: Inhibition of surface nickel species diffusion into the bulk. Int. J. Hydrog. Energy 2011, 36, 326–332. [Google Scholar] [CrossRef]
- Maira, A.; Coronado, J.; Augugliaro, V.; Yeung, K.; Conesa, J.; Soria, J. Fourier transform infrared study of the performance of nanostructured TiO2 particles for the photocatalytic oxidation of gaseous toluene. J. Catalysis 2001, 202, 413–420. [Google Scholar] [CrossRef]
- Linsebigler, A.L.; Linsebigler, A.L.; Jr, J.T.Y.; Lu, G.; Lu, G.; Yates, J.T. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chem. Rev. 1995, 95, 735–758. [Google Scholar] [CrossRef]
- Karakas, G.; Yetisemiyen, P. Room Temperature Photocatalytic Oxidation of Carbon Monoxide Over Pd/TiO2–SiO2 Catalysts. Top. Catal. 2013, 56, 1883–1891. [Google Scholar] [CrossRef]
- Orlov, A.; Jefferson, D.A.; Macleod, N.; Lambert, R.M. Photocatalytic properties of TiO2 modified with gold nanoparticles in the degradation of 4-chlorophenol in aqueous solution. Catal. Let. 2004, 92, 41–47. [Google Scholar] [CrossRef]
- Min, B.K.; Friend, C.M. Heterogeneous gold-based catalysis for green chemistry: low-temperature CO oxidation and propene oxidation. Chem. Rev. 2007, 107, 2709–2724. [Google Scholar] [CrossRef] [PubMed]
- Fujishima, A.; Zhang, X.; Tryk, D. TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 2008, 63, 515–582. [Google Scholar] [CrossRef]
- Blount, M.; Falconer, J. Steady-state surface species during toluene photocatalysis. Appl. Catal. B Environ. 2002, 39, 39–50. [Google Scholar] [CrossRef]
- Uner, D.; Oymak, M.M. On the mechanism of photocatalytic CO2 reduction with water in the gas phase. Catal. Today 2012, 181, 82–88. [Google Scholar] [CrossRef]
- Liu, L.; Zhao, C.; Pitts, D.; Zhao, H.; Li, Y. CO2 photoreduction with H2O vapor by porous MgO–TiO2 microspheres: effects of surface MgO dispersion and CO2 adsorption–desorption dynamics. Catal. Sci. Technol. 2014, 4, 1539. [Google Scholar] [CrossRef]
- Wang, C.; Thompson, R.L.; Ohodnicki, P.; Baltrus, J.; Matranga, C. Size-dependent photocatalytic reduction of CO2 with PbS quantum dot sensitized TiO2 heterostructured photocatalysts. J. Mater. Chem. 2011, 21, 13452–13457. [Google Scholar] [CrossRef]
- Li, K.; An, X.; Park, K.H.; Khraisheh, M.; Tang, J. A critical review of CO2 photoconversion: catalysts and reactors. Catal. Today 2014, 224, 3–12. [Google Scholar] [CrossRef]
- Dozzi, M.V.; Prati, L.; Canton, P.; Selli, E. Effects of gold nanoparticles deposition on the photocatalytic activity of titanium dioxide under visible light. Phys. Chem. Chem. Phys. 2009, 11, 7171–7180. [Google Scholar] [CrossRef]
Species | ν (cm−1) | Ref. |
---|---|---|
CO2 bent species | 1312, 1675 | [25] |
Bicarbonate species HCO3− | 1416, 1500–1600 | [26,27] |
Bidentate carbonate (b-CO32−) | 1577–1549 | [28,29,30,31] |
Surface Species | Frequency (cm−1) | Ref. |
---|---|---|
νsymCH3 modes of Methoxy on top on Tin+ | 2930–2800 | This work, [36,37,38,43] |
Carbonates due to Au | 1448, 1271 | This work, [42] |
Sample | Au 4f | O 1s (Lattice) | O 1s (OH) | Ti 2p | OH/Lattice O | Ti/O (Lattice) Ratio |
---|---|---|---|---|---|---|
0.1% Au/TiO2 | 0.04 | 36.49 | 5.11 | 18.61 | 0.14 | 0.51 |
0.2% Au/TiO2 | 0.05 | 35.22 | 4.69 | 17.71 | 0.13 | 0.50 |
0.5% Au/TiO2 | 0.09 | 36.87 | 4.38 | 18.51 | 0.12 | 0.50 |
Sample | Au 4f7/2 BE Fresh (eV) | Au 4f7/2 BE Spent (eV) | C 1s, %at Conc Fresh | C 1s, %at Conc Spent |
---|---|---|---|---|
0.1 wt. % Au/TiO2 | 83.6 | 83.0 | 39.59 | 36.14 |
0.2 wt. % Au/TiO2 | 83.6 | 83.0 | 42.09 | 36.38 |
0.5 wt. % Au/TiO2 | 83.6 | 83.0 | 39.99 | 41.93 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Compagnoni, M.; Villa, A.; Bahdori, E.; Morgan, D.J.; Prati, L.; Dimitratos, N.; Rossetti, I.; Ramis, G. Surface Probing by Spectroscopy on Titania-Supported Gold Nanoparticles for a Photoreductive Application. Catalysts 2018, 8, 623. https://doi.org/10.3390/catal8120623
Compagnoni M, Villa A, Bahdori E, Morgan DJ, Prati L, Dimitratos N, Rossetti I, Ramis G. Surface Probing by Spectroscopy on Titania-Supported Gold Nanoparticles for a Photoreductive Application. Catalysts. 2018; 8(12):623. https://doi.org/10.3390/catal8120623
Chicago/Turabian StyleCompagnoni, Matteo, Alberto Villa, Elnaz Bahdori, David J. Morgan, Laura Prati, Nikolaos Dimitratos, Ilenia Rossetti, and Gianguido Ramis. 2018. "Surface Probing by Spectroscopy on Titania-Supported Gold Nanoparticles for a Photoreductive Application" Catalysts 8, no. 12: 623. https://doi.org/10.3390/catal8120623
APA StyleCompagnoni, M., Villa, A., Bahdori, E., Morgan, D. J., Prati, L., Dimitratos, N., Rossetti, I., & Ramis, G. (2018). Surface Probing by Spectroscopy on Titania-Supported Gold Nanoparticles for a Photoreductive Application. Catalysts, 8(12), 623. https://doi.org/10.3390/catal8120623