Composites of Laminar Nanostructured ZnO and VOx-Nanotubes Hybrid as Visible Light Active Photocatalysts
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials
3.2. Synthesis of ZnO (Stearic Acid)
3.3. Synthesis of Vanadium Oxide Nanotubes
3.4. Photocatalytic Experiments
3.5. Characterization
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hoffmann, M.; Martin, S.; Choi, W.; Bahnemannt, D. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95, 69–96. [Google Scholar] [CrossRef]
- Rajeshwar, K.; Thomas, A.; Janaky, C. Photocatalytic activity of inorganic semiconductor surfaces: Myths, hype, and reality. J. Phys. Chem. Lett. 2015, 6, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Jassby, D.; Farner Budarz, J.; Wiesner, M. Impact of Aggregate Size and Structure on the Photocatalytic Properties of TiO2 and ZnO Nanoparticles. Environ. Sci. Technol. 2012, 46, 6934–6941. [Google Scholar] [CrossRef] [PubMed]
- Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z. Zinc oxide nanostructures: Growth, properties and applications. Phys. Condens. Matter 2004, 16, R829–R858. [Google Scholar] [CrossRef]
- Tian, C.; Zhang, Q.; Wu, A.; Jiang, M.; Liang, Z.; Jiang, B.; Fu, H. Cost-effective large-scale synthesis of ZnO photocatalyst with excellent performance for dye photodegradation. Chem. Commun. 2012, 48, 2858–2860. [Google Scholar] [CrossRef] [PubMed]
- Udayabhanu; Nagaraju, G.; Nagabhushana, H.; Basavaraj, R.; Raghu, G.; Suresh, D.; Rajanaika, H.; Sharma, S. Green, nonchemical route for the synthesis of ZnO superstructures, evaluation of its applications toward photocatalysis, photoluminescence, and biosensing. Cryst. Growth Des. 2016, 16, 6828–6840. [Google Scholar] [CrossRef]
- Uddin, T.; Nicolas, Y.; Olivier, C.; Toupance, T.; Servant, L.; Müller, M.; Kleebe, H.J.; Ziegler, J.; Jaegermann, W. Nanostructured SnO2−ZnO heterojunction photocatalysts showing enhanced photocatalytic activity for the degradation of organic dyes. Inorg. Chem. 2012, 51, 7764–7773. [Google Scholar] [CrossRef] [PubMed]
- Kayaci, F.; Vempati, S.; Ozgit-Akgun, C.; Donmez, I.; Biyikli, N.; Uyar, T. Selective isolation of the electron or hole in photocatalysis: ZnO–TiO2 and TiO2–ZnO core–shell structured heterojunction nanofibers via electrospinning and atomic layer deposition. Nanoscale 2014, 6, 5735–5745. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, S.; Sarkar, D.; Madras, G. Highly efficient WO3–ZnO mixed oxides for photocatalysis. RSC Adv. 2015, 5, 11895–11904. [Google Scholar] [CrossRef]
- Jiang, J.; Zhang, X.; Sun, P.; Zhang, L. ZnO/BiOI heterostructures: Photoinduced charge-transfer property and enhanced visible-light photocatalytic activity. J. Phys. Chem. C 2011, 115, 20555–20564. [Google Scholar] [CrossRef]
- Baek, M.; Kim, E.J.; Hong, S.W.; Kim, W.; Yong, K. Environmentally benign synthesis of CuInS2/ZnO heteronanorods: Visible light activated photocatalysis of organic pollutant/bacteria and study of its mechanism. Photochem. Photobiol. Sci. 2017, 12, 1792–1800. [Google Scholar] [CrossRef] [PubMed]
- Chabri, S.; Dhara, A.; Show, B.; Adak, D.; Sinha, A.; Mukherje, N. Mesoporous CuO-ZnO p-n heterojunction with high specific surface area for enhanced photocatalysis and electrochemical sensing. Catal. Sci. Technol. 2016, 6, 3238–3252. [Google Scholar] [CrossRef]
- Zou, C.; Rao, Y.; Alyamani, A.; Chu, W.; Chen, M.; Patterson, D.; Emanuelsson, E.; Gao, W. Heterogeneous lollipop-like V2O5/ZnO array: A promising composite nanostructure for visible light photocatalysis. Langmuir 2010, 26, 11615–11620. [Google Scholar] [CrossRef] [PubMed]
- Haber, J. Fifty years of my romance with vanadium oxide catalysts. Catal. Today 2009, 142, 100–113. [Google Scholar] [CrossRef]
- Zhou, X.; Wu, G.; Gao, G.; Wang, J.; Yang, H.; Wu, J.; Shen, J.; Zhou, B.; Zhang, Z. Electrochemical performance improvement of vanadium oxide nanotubes as cathode materials for lithium ion batteries through ferric ion exchange technique. J. Phys. Chem. C 2012, 116, 21685–21692. [Google Scholar] [CrossRef]
- Livage, J. Hydrothermal synthesis of nanostructured vanadium oxides. Materials 2010, 3, 4175–4195. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Pan, X.; Zhuang, G.; Lu, X. Computational catalysis in nanotubes. Catalysis 2014, 26, 109–160. [Google Scholar]
- Baker, D.; Kamat, P. Photosensitization of TiO2 nanostructures with CdS quantum dots: Particulate versus tubular support architectures. Adv. Funct. Mater. 2009, 19, 805–811. [Google Scholar] [CrossRef]
- Tauc, J.; Menth, A. States in the gap. J. Non-Cryst. Solids 1972, 8–10, 569–585. [Google Scholar] [CrossRef]
- Awasthi, G.; Adhikari, S.; Ko, S.; Kim, H.; Park, C.; Kim, C. Facile synthesis of ZnO flowers modified graphene like MoS2 sheets for enhanced visible-light-driven photocatalytic activity and antibacterial properties. J. Alloys Compd. 2016, 682, 208–215. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Li, J.; Yin, Y. Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study. Water Res 2006, 40, 1119–1126. [Google Scholar] [CrossRef] [PubMed]
- Benavente, E.; Maldonado, C.; Devis, S.; Díaz, L.; Lozano, H.; Sotomayor-Torres, C.; González, G. A hybrid organic-inorganic layered TiO2 based nanocomposite for sunlight photocatalysis. RSC Adv. 2016, 6, 18538–18541. [Google Scholar] [CrossRef]
- Xu, Y.; Schoonen, M.A. The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Mineral. 2000, 85, 543–556. [Google Scholar] [CrossRef]
- Dong, F.; Sun, Y.; Fu, M. Enhanced visible light photocatalytic activity of V2O5 cluster modified n-doped TiO2 for degradation of toluene in air. Int. J. Photoenergy 2012, 10, 1–10. [Google Scholar] [CrossRef]
- Yang, X.; Fu, H.; An, X.; Jiang, X.; Yu, A. Synthesis of V2O5@TiO2 core-shell hybrid composites for sunlight degradation of methylene blue. RSC Adv. 2016, 6, 34103–34109. [Google Scholar] [CrossRef]
- Zhang, N.; Chen, D.; Niu, F.; Wang, S.; Qin, L.; Huang, Y. Enhanced visible light photocatalytic activity of Gd doped BiFeO3 nanoparticles and mechanism insight. Sci. Rep. 2016, 6, 26467. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhao, Y.; Su, Y.; Li, T.; Yao, M.; Qin, C. Fenton-like degradation of 2,4-dichlorophenol using calcium peroxide particles: Performance and mechanisms. RSC Adv. 2017, 7, 4563–4571. [Google Scholar] [CrossRef]
- Segovia, M.; Lemus, K.; Moreno, M.; Santa Ana, M.; González, G.; Ballesteros, B.; Sotomayor, C.; Benavente, E. Zinc oxide/carboxylic acid lamellar structures. Mater. Res. Bull. 2011, 46, 2191–2195. [Google Scholar] [CrossRef]
- O’Dwyer, C.; Lavayen, V.; Newcomb, S.; Santa Ana, M.; Benavente, E.; González, G.; Sotomayor-Torres, C. Vanadate conformation variations in vanadium pentoxide nanostructures. J. Electrochem. Soc. 2007, 154, K29–K35. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benavente, E.; Navas, D.; Devis, S.; Segovia, M.; Sotomayor-Torres, C.; González, G. Composites of Laminar Nanostructured ZnO and VOx-Nanotubes Hybrid as Visible Light Active Photocatalysts. Catalysts 2018, 8, 93. https://doi.org/10.3390/catal8020093
Benavente E, Navas D, Devis S, Segovia M, Sotomayor-Torres C, González G. Composites of Laminar Nanostructured ZnO and VOx-Nanotubes Hybrid as Visible Light Active Photocatalysts. Catalysts. 2018; 8(2):93. https://doi.org/10.3390/catal8020093
Chicago/Turabian StyleBenavente, Eglantina, Daniel Navas, Sindy Devis, Marjorie Segovia, Clivia Sotomayor-Torres, and Guillermo González. 2018. "Composites of Laminar Nanostructured ZnO and VOx-Nanotubes Hybrid as Visible Light Active Photocatalysts" Catalysts 8, no. 2: 93. https://doi.org/10.3390/catal8020093