Development of New High-Performance Biphenyl and Terphenyl Derivatives as Versatile Photoredox Photoinitiating Systems and Their Applications in 3D Printing Photopolymerization Processes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Spectroscopic Characteristics of Investigated Compounds
2.2. Performance of the 2-Amino-4-Methyl-6-Phenyl-Benzene-1,3-Dicarbonitrile Derivatives as Photosensitizers for Iodonium Salt in a Bimolecular Photoinitiating System for Cationic Photopolymerization
2.3. Performance of 2-Amino-4-Methyl-6-Phenyl-Benzene-1,3-Dicarbonitrile as Photosensitizer for Iodonium Salt in a Bimolecular Photoinitiating System for Free-Radical Photopolymerization
2.4. Performance of 2-Amino-4-Methyl-6-Phenyl-Benzene-1,3-Dicarbonitrile as Bimolecular Free-Radical Photoinitiator Type II
2.5. Photoinduced Electron Transfer Process with Photo-Oxidation Mechanism Between Biphenyl Derivatives and Iodonium Salt
2.6. Photoinduced Electron Transfer Process with Photo-Reduction Mechanism Between Biphenyl Derivatives and Amine
2.7. Performance of the Bimolecular Photoinitiating System Based on 2-Amino-4-Methyl-6-Phenyl-Benzene-1,3-Dicarbonitrile Derivatives and Iodonium Salt for Obtaining Different Types of Interpenetrating Polymer Networks
2.8. Resolution Test of IPN Systems with the Standard 1951 USAF
2.9. 3D printing Experiments
3. Experimantal
3.1. Materials
3.2. Irradiation Sources
3.3. Absorption and Fluorescence Characteristics
3.4. Electrochemical Characteristic Determination of Oxidation and Reduction Potential
3.5. Steady-State Photolysis
3.6. Fluorescence Quenching
3.7. Determination of Fluorescent Lifetime
3.8. Molecular Orbital Calculations
3.9. Monitoring the Photopolymerization Processes by Real-Time FT-IR
3.9.1. Cationic Photopolymerization (CP) of Cycloaliphatic Epoxide Monomers Experiments
3.9.2. Cationic Photopolymerization (CP) of Glycidyles Monomers Experiments
3.9.3. Free-Radical Photopolymerization (FRP) Experiments
3.9.4. Free-Radical Photopolymerization with Biphenyl Derivatives/EDB as Type II Bimolecular Photoinitiating System
3.10. Two-dimensional (2D) Resolution Test
3.11. 3D Printing Experiment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Yagaci, Y.; Jockusch, S.; Turro, N.J. Photoinitiated Polymerization: Advances, and Challenges Opportunities. Macromolecules 2010, 43, 6245–6260. [Google Scholar] [CrossRef]
- Chatani, S.; Kloxin, C.J.; Bowman, C.N. The power of light in polymer science: Photochemical processes to manipulate polymer formation, structure, and properties. Polym. Chem. 2014, 7, 2187–2201. [Google Scholar] [CrossRef]
- Schwalm, R. UV Coatings: Basics, Recent Developments and New Applications, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2006; pp. 19–61. [Google Scholar]
- Schnabel, W. Polymers and Light: Fundamentals and Technical Applications, 1st ed.; Wiley-VCH: Weinheim, Germany, 2008; pp. 273–304. [Google Scholar]
- Bean, A.J. Radiation Curing of Printing Inks. In Radiation Curing, Science and Technology, 1st ed.; Pappas, S.P., Ed.; Springer: New York, NY, USA, 1992; pp. 301–332. [Google Scholar]
- Czech, Z.; Kowalczyk, A.; Ortyl, J.; Świderska, J. Acrylic Pressure-Sensitive Adhesives Containing SiO2 Nanoparticles. Pol. J. Chem. Technol. 2013, 15, 12–14. [Google Scholar] [CrossRef]
- Do, H.S.; Park, Y.J.; Kim, H.J. Preparation and adhesion performance of UV-crosslinkable acrylic pressure sensitive adhesives. J. Adhes. Sci. Technol. 2006, 20, 1529–1545. [Google Scholar] [CrossRef]
- Crivello, J.V.; Reichmanis, E. Photopolymer Materials and Processes for Advanced Technologies. Chem. Mater. 2014, 26, 533–548. [Google Scholar] [CrossRef]
- Sanders, D.P. Advances in Patterning Materials for 193 nm Immersion Lithography. Chem. Rev. 2010, 110, 321–360. [Google Scholar] [CrossRef]
- Baroli, B. Photopolymerization of biomaterials: Issues and potentialities in drug delivery, tissue engineering, and cell encapsulation applications. J. Chem. Technol. Biotechnol. 2006, 81, 491–499. [Google Scholar] [CrossRef]
- Nguyen, K.T.; West, J.L. Photopolymerizable hydrogels for tissue engineering applications. Biometerials 2002, 23, 4307–4314. [Google Scholar] [CrossRef]
- Fisher, J.P.; Dean, D.; Engel, P.S.; Mikos, A.G. Photoinitiated Polymerization of Biomaterials. Annu. Rev. Mater. Res. 2001, 31, 171–181. [Google Scholar] [CrossRef]
- Jandt, K.D.; Singusch, B.W. Future perspectives of resin-based dental materials. Dent. Mater. 2009, 25, 1001–1006. [Google Scholar] [CrossRef]
- Vitale, A.; Sangermano, M.; Bongiovanni, R.; Burtscher, P.; Moszner, N. Visible Light Curable Restorative Composites for Dental Applications Based on Epoxy Monomer. Materials 2014, 7, 554–562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamura, K. Photopolymers: Photoresist Materials, Processes, and Applications, 1st ed.; CRC Press: Boca Raton, FL, USA, 2015; pp. 97–118. [Google Scholar]
- Bunning, T.J.; Natarajan, V.P.; Tondiglia, V.P.; Sutherland, R.L. Holographic Polymer-Dispersed Liquid Crystals (H-PDLCs). Annu. Rev. Mater. Sci. 2000, 30, 83–115. [Google Scholar] [CrossRef]
- Stropp, J.P.; Wolff, U.; Löffler, H.; Osterhold, M.; Thomas, H. UV curing systems for automotive refinish applications. Prog. Org. Coat. 2006, 55, 201–205. [Google Scholar] [CrossRef]
- Dietliker, K.; Braig, A.; Ricci, A. Industrial applications of photochemistry: Automotive coatings and beyond. In Photochemistry, 1st ed.; Albini, A., Ed.; Royal Society of Chemistry: London, UK, 2010; Volume 48, pp. 344–368. [Google Scholar]
- Guo, J.; Gleeson, M.R.; Sheridan, J.T. A Review of the Optimisation of Photopolymer Materials for Holographic Data Storage. Phys. Res. Int. 2012, 2012, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Vitale, A.; Quaglio, M.; Cocuzza, M.; Pirri, C.F.; Bongiovanni, R. Photopolymerization of a perfluoropolyether oligomer and photolithographic processes for the fabrication of microfluidic devices. Eur. Polym. J. 2012, 48, 1118–1126. [Google Scholar] [CrossRef]
- Haraldsson, K.T.; Hutchison, J.B.; Sebra, R.P.; Good, B.T.; Anseth, K.S.; Bowman, C.N. 3D polymeric microfluidic device fabrication via contact liquid photolithographic polymerization (CLiPP). Sens. Actuators B 2006, 113, 454–460. [Google Scholar] [CrossRef]
- Ligon, S.C.; Liska, R.; Stampfl, J.; Gurr, M.; Mülhaupt, R. Polymers for 3D Printing and Customized Additive Manufacturing. Chem. Rev. 2017, 117, 10212–10290. [Google Scholar] [CrossRef] [Green Version]
- Layani, M.; Wang, X.; Magdassi, S. Novel Materials for 3D Printing by Photopolymerization. Adv. Mater. 2018, 30, 1706344. [Google Scholar] [CrossRef]
- Bagheri, A.; Jin, J. Photopolymerization in 3D Printing. Appl. Polym. Mater. 2019, 1, 593–611. [Google Scholar] [CrossRef] [Green Version]
- Tumbleston, J.R.; Shirvanyants, D.; Ermoshkin, N.; Janusziewicz, R.; Johnson, A.R.; Kelly, D.; Chen, K.; Pinschmidt, R.; Rolland, J.P.; Ermoshkin, A.; et al. Continuous liquid interface production of 3D objects. Science 2015, 347, 1349–1352. [Google Scholar] [CrossRef]
- Kostrzewska, K.; Ortyl, J.; Dobosz, R.; Kabatc, J. Squarylium dye and onium salts as highly sensitive photoradical generators for blue light. Polym. Chem. 2017, 6, 3464–3474. [Google Scholar] [CrossRef]
- Andrzejewska, E. Photopolymerization Kinetics of Multifunctional Monomers. Prog. Polym. Sci. 2001, 26, 605–665. [Google Scholar] [CrossRef]
- Ligon, S.C.; Husár, B.; Wutzel, H.; Holman, R.; Liska, R. Strategies to Reduce Oxygen Inhibition in Photoinduced Polymerization. Chem. Rev. 2013, 114, 557–589. [Google Scholar] [CrossRef]
- Ortyl, J. Cationic Photoinitiators. In Photopolymerisation Initiating Systems, 1st ed.; Lalevée, J., Fouassier, J.P., Eds.; Royal Society of Chemistry: Croydon, UK, 2018; pp. 74–130. [Google Scholar]
- Sangermano, M.; Rappolo, I.; Chiappone, A. New Horizons in Cationic Photopolymerization. Polymers 2018, 10, 136. [Google Scholar] [CrossRef] [PubMed]
- Ortyl, J.; Popielarz, R. New photoinitiators for cationic polymerization. Polimery 2012, 57, 7–8. [Google Scholar] [CrossRef]
- Kabatc, J.; Ortyl, J.; Kostrzewska, K. New kinetic and mechanistic aspects of photosensitization of iodonium salts in photopolymerization of acrylates. RCV Adv. 2017, 66, 41619–41629. [Google Scholar] [CrossRef]
- Crivello, J. Cationic Polymerization-Iodonium and Sulfonium Salt Photoinitiators. Adv. Polym. Sci. 2006, 63, 1–48. [Google Scholar]
- Mousawi, A.A.; Dietlin, C.; Graff, B.; Morlet-Savary, F.; Toufaily, J.; Hamieh, T.; Fouassier, J.P.; Chachaj-Brekiesz, A.; Ortyl, J.; Lalevée, J. Meta-Terphenyl Derivative/Iodonium Salt/9H-Carbazole-9-ethanol Photoinitiating Systems for Free Radical Promoted Cationic Polymerization upon Visible Lights. Macromol. Chem. Phys 2016, 217, 1955–1965. [Google Scholar] [CrossRef]
- Matyjaszewski, K.; Sawamto, M. Controlled/Living Carbocationic Polymerization. In Cationic Polymerizations: Mechanisms, Synthesis & Applications, 1st ed.; Matyjaszewski, K., Ed.; Marcel Dekker: New York, NY, USA, 1996; pp. 265–380. [Google Scholar]
- Ortyl, J.; Wilamowski, J.; Milart, P.; Galek, M.; Popielarz, R. Relative Sensitization Efficiency of Fluorescent Probes/Sensitizers for Monitoring and Acceleration of Cationic Photopolymerization of Monomers. Polym. Test. 2015, 48, 151–159. [Google Scholar] [CrossRef]
- Fouassier, J.P.; Lalevée, J. Photochemical Production of Interpenetrating Polymer Networks; Simultaneous Initiation of Radical and Cationic Polymerization Reactions. Polymers 2014, 6, 2588–2610. [Google Scholar] [CrossRef]
- Kaczmarek, H.; Decker, C. Interpenetrating polymer networks. I. Photopolymerization of multiacrylate systems. J. Appl. Polym. Sci. 1994, 54, 2147–2156. [Google Scholar] [CrossRef]
- Decker, C.; Bendaikha, T. Interpenetrating polymer networks. II. Sunlight-induced polymerization of multifunctional acrylates. J. Appl. Polym. Sci. 1998, 70, 2269–2282. [Google Scholar] [CrossRef]
- Rajaraman, S.K.; Mowers, W.A.; Crivello, J.V. Interaction of epoxy and vinyl ethers during photoinitiated cationic polymerization. J. Polym. Sci. A 2000, 37, 40007–44018. [Google Scholar] [CrossRef]
- Nowak, D.; Ortyl, J.; Kamińska-Borek, I.; Kukuła, K.; Topa, M.; Popielarz, R. Photopolymerization of hybrid monomers: Part I: Comparison of the performance of selected photoinitiators in cationic and free-radical polymerization of hybrid monomers. Polym. Test. 2017, 64, 310–320. [Google Scholar] [CrossRef]
- Nowak, D.; Ortyl, J.; Kamińska-Borek, I.; Kukuła, K.; Topa, M.; Popielarz, R. Photopolymerization of hybrid monomers, Part II: Determination of relative quantum efficiency of selected photoinitiators in cationic and free-radical polymerization of hybrid monomers. Polym. Test. 2018, 67, 144–150. [Google Scholar] [CrossRef]
- McCoy, J.D.; Ancipink, W.B.; Clarkson, C.M.; Kropka, J.M.; Celina, M.C.; Giron, N.H.; Hailesilassie, L.; Fredj, N. Cure mechanisms of diglycidyl ether of bisphenol A (DGEBA) epoxy with diethanolamine. Polymer 2016, 105, 243–254. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Cong, P.; Su, C.; Li, T. Curing Behavior and Mechanism of Diglycidyl Ether of Bisphenol-A in the Presence of Poly (Amide–Amidic Acid) and 4,4′-Diaminodiphenylsulfone. J. Macromol. Sci. B 2014, 53, 735–748. [Google Scholar] [CrossRef]
- Ghaemy, M.; Riahy, M.H. Kinetics of anhydride and polyamide curing of bisphenol A-based diglycidyl ether using DSC. Eur. Polym. J. 1996, 32, 1207–1212. [Google Scholar] [CrossRef]
- Crivello, J.V.; Walton, T.C.; Malik, R. Fabrication of Epoxy Matrix Composites by Electron Beam Induced Cationic Polymerization. Chem. Mater. 1997, 9, 1273–1284. [Google Scholar] [CrossRef]
- Bulut, U.; Crivello, J.V. Investigation of the Reactivity of Epoxide Monomers in Photoinitiated Cationic Polymerization. Macromolecules 2005, 38, 3584–3595. [Google Scholar] [CrossRef]
- Bi, Y.; Neckers, D.C. A Visible Light Initiating System for Free Radical Promoted Cationic Polymerization. Macromolecules 1994, 27, 3683–3693. [Google Scholar] [CrossRef]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: New York, NY, USA, 2006; pp. 278–330. [Google Scholar]
- Fouassier, J.P.; Lalevee, J. Photoinitiators for Polymer Synthesis-Scope, Reactivity and Efficiency, 1st ed.; Wiley-VCH: Weinheim, Germany, 2012; pp. 103–123. [Google Scholar]
- Romańczyk, P.P.; Kurek, S.S. The Reduction Potential of Diphenyliodonium Polymerisation Photoinitiator Is Not −0.2 V vs. SCE. A Computational Study. Electrochim. Acta. 2017, 225, 482–485. [Google Scholar] [CrossRef]
- Strehmel, B.; Ernst, S.; Reiner, K.; Keil, D.; Lindauer, H.; Baumann, H. Application of NIR-photopolymers in the graphic industry: From physical chemistry to lithographic applications. Z. Phys. Chem. 2014, 228, 129–153. [Google Scholar] [CrossRef]
- Andrzejewska, E.; Zych-Tomkowiak, D.; Andrzejewski, M.; Hug, G.L.; Marciniak, B. Heteroaromatic Thiols as Co-initiators for Type II Photoinitiating Systems Based on Camphorquinone and Isopropylthioxanthone. Macromolecules 2006, 369, 3777–3785. [Google Scholar] [CrossRef]
Acronym | λmax-ab [nm] | ε@λmax-ab [dm3·mol−1·cm−1] | ε@λmax-ab [dm3·mol−1·cm−1] | ε@λmax-ab [dm3·mol−1·cm−1] | λmax-fluo in ACN [nm] | Imax-fluo in ACN [a.u.] | Stokes Shift [cm−1] | |
---|---|---|---|---|---|---|---|---|
Series 1 | B1 | 351 | 10,790 | 7000 | 0 | 417 | 9550 | 4475 |
B2 | 351 | 10,860 | 7320 | 210 | 415 | 18,040 | 4372 | |
B3 | 351 | 11,350 | 7970 | 145 | 428 | 23,480 | 5095 | |
B4 | 352 | 9490 | 6810 | 160 | 426 | 7610 | 4986 | |
B5 | 352 | 5440 | 3890 | 110 | 424 | 5320 | 4840 | |
B6 | 341 | 14,840 | 10,410 | 235 | 489 | 28,930 | 8845 | |
B7 | 352 | 5380 | 3740 | 200 | 423 | 4930 | 4787 | |
Series 2 | B1A | 344 | 3200 | 3130 | 75 | 407 | 10,030 | 4492 |
B2A | 350 | 6700 | 4040 | 210 | 405 | 14,150 | 3866 | |
B3A | 350 | 7120 | 4090 | 183 | 402 | 23,380 | 3645 | |
B4A | 353 | 6720 | 5730 | 870 | 435 | 6920 | 5335 | |
B5A | 353 | 4900 | 3920 | 210 | 429 | 5050 | 5024 | |
B6A | 351 | 9990 | 8010 | 650 | 413 | 11,370 | 4305 | |
B7A | 353 | 6360 | 4450 | 85 | 423 | 8630 | 4723 |
Conversion [%] | ||||||||
---|---|---|---|---|---|---|---|---|
Cationic Photopolymerization | Free-Radical Photopolymerization | |||||||
Acronim | CADE with Iod at ~790 cm−1 | Glycidyl with Iod at ~915 cm−1 | TMPTA with Iod at ~1635 cm−1 | TMPTA with EDB at ~1635 cm−1 | ||||
@365 nm a | @405 nm b | @365nm c | @365nm a | @405nm b | @365nm a | @405nm b | ||
Series 1 | B1 | 64.9 | NP d | 83.4 | 52.0 | NP d | 58.6 | NP d |
B2 | 83.4 | 38.4 | 84.2 | 51.2 | 35.2 | 54.2 | NP d | |
B3 | 81.6 | 67.3 | 80.7 | 53.4 | 47.7 | 53.3 | 55.8 | |
B4 | 54.4 | NP d | 83.5 | 49.8 | NP d | 52.7 | NP d | |
B5 | 32.2 | NP d | 83.5 | 38.5 | 33.3 | NP d | NP d | |
B6 | 86.5 | 71.2 | 81.0 | 53.4 | 47.4 | 58.6 | 50.2 | |
B7 | 48.2 | NP d | 82.5 | 53.2 | 43.7 | 55.6 | 53.8 | |
Series 2 | B1A | 39.2 | NP d | 81.7 | 31.5 | 21.3 | 30.7 | NP d |
B2A | 39.1 | 49.2 | 82.1 | 37.4 | 23.8 | 47.3 | NP d | |
B3A | 44.2 | 30.4 | 87.0 | 41.9 | 25.2 | 48 | 13.9 | |
B4A | 27.1 | 30.6 | 84.1 | 38,7 | 37.7 | 48 | 35.2 | |
B5A | 46.5 | 44.3 | 89.4 | 39.7 | 38.6 | 45.3 | 30.5 | |
B6A | 61.3 | 29.3 | 88.0 | 51.0 | 44.0 | 55.6 | 40.7 | |
B7A | 36.7 | 29.9 | 84.8 | 23.1 | 24.0 | 56.1 | 37.4 |
Photo-Sensitizers | Eox vs. Ag/AgCl [mV] | ES1 [eV] | ΔGet(S1) a [eV] | ET1 [eV] | ΔGet(T1) a [eV] | τ(S1) [ns] | Ksv [M−1] | kq [M−1s−1] | Φet (S1) | |
---|---|---|---|---|---|---|---|---|---|---|
Series 1 | B1 | 1815 | 3.22 | −0.77 | 2.65 | −0.19 | 2.775 | 32.158 | 1.16∙× 1010 | 0.40 |
B2 | 1760 | 3.23 | −0.83 | 2.63 | −0.23 | 3.056 | 42.216 | 1.38∙× 1010 | 0.47 | |
B3 | 1595 | 3.21 | −0.98 | 2.60 | −0.36 | 2.605 | 30.413 | 1.17∙× 1010 | 0.39 | |
B4 | 1755 | 3.2 | −0.80 | 2.63 | −0.23 | 3.359 | 48.857 | 1.45∙× 1010 | 0.51 | |
B5 | 1818 | 3.2 | −0.74 | 2.66 | −0.20 | 3.086 | 32.872 | 1.07∙× 1010 | 0.41 | |
B6 | 1453 | 3.13 | −1.04 | 2.59 | −0.50 | 2.735 | 59.631 | 2.18∙× 1010 | 0.56 | |
B7 | 1751 | 3.21 | −0.82 | 2.66 | −0.27 | 3.244 | 46.945 | 1.45∙× 1010 | 0.50 | |
Series 2 | B1A | 1728 | 3.27 | −0.91 | 2.77 | −0.40 | 2.739 | 51.206 | 1.87∙× 1010 | 0.52 |
B2A | 1763 | 3.27 | −0.87 | 2.75 | −0.35 | 2.944 | 36.995 | 1.26∙× 1010 | 0.44 | |
B3A | 1743 | 3.28 | −0.89 | 2.71 | −0.33 | 2.712 | 41.413 | 1.53∙× 1010 | 0.47 | |
B4A | 1355 | 3.13 | −1.14 | 2.66 | −0.66 | 3.436 | 28.668 | 8.84∙× 109 | 0.38 | |
B5A | 1780 | 3.15 | −0.73 | 2.71 | −0.29 | 3.701 | 34.327 | 9.28∙× 109 | 0.42 | |
B6A | 901 | 3.23 | −1.69 | 2.65 | −1.11 | 2.130 | 32.152 | 1.51∙× 1010 | 0.40 | |
B7A | 1828 | 3.2 | −0.57 | 2.72 | −0.25 | 3.505 | 32.855 | 9.37∙× 109 | 0.41 |
Compound | Ered vs. Ag/AgCl [mV] | ES1 [eV] | ΔGet(S1)a) [eV] | ET1 [eV] | ΔGet(T1)a) [eV] | τ(S1) [ns] | Ksv [M−1] | kq [M−1s−1] | Φet (S1) | |
---|---|---|---|---|---|---|---|---|---|---|
Series 1 | B1 | −1723 | 3.22 | −0.44 | 2.65 | 0.13 | 2.775 | 39.482 | 1.42∙× 1010 | 0.77 |
B2 | −1740 | 3.23 | −0.44 | 2.63 | 0.17 | 3.056 | 58.212 | 2.09∙× 1010 | 0.82 | |
B3 | −1750 | 3.21 | −0.40 | 2.60 | 0.21 | 2.605 | 54.346 | 2.07∙× 1010 | 0.82 | |
B4 | −1633 | 3.2 | −0.50 | 2.63 | 0.06 | 3.359 | 49.172 | 1.46∙× 1010 | 0.81 | |
B5 | −1645 | 3.2 | −0.50 | 2.66 | 0.04 | 3.086 | 56.801 | 1.84∙× 1010 | 0.83 | |
B6 | −1686 | 3.13 | −0.39 | 2.59 | 0.15 | 2.735 | 54.907 | 2.01∙× 1010 | 0.83 | |
B7 | −1627 | 3.21 | −0.53 | 2.66 | 0.03 | 3.244 | 57.467 | 1.77∙× 1010 | 0.83 | |
Series 2 | B1A | −1780 | 3.27 | −0.44 | 2.77 | 0.07 | 2.739 | 60.319 | 2.20∙× 1010 | 0.84 |
B2A | −1815 | 3.27 | −0.40 | 2.75 | 0.12 | 2.944 | 46.645 | 1.58∙× 1010 | 0.80 | |
B3A | −1848 | 3.28 | −0.37 | 2.71 | 0.20 | 2.712 | 34.908 | 1.29∙× 1010 | 0.75 | |
B4A | −1503 | 3.13 | −0.57 | 2.66 | −0.10 | 3.436 | 63.171 | 1.84∙× 1010 | 0.84 | |
B5A | −1535 | 3.15 | −0.56 | 2.71 | −0.12 | 3.701 | 78.934 | 2.13∙× 1010 | 0.87 | |
B6A | −1409 | 3.23 | −0.77 | 2.65 | −0.18 | 2.130 | 35.189 | 1.65∙× 1010 | 0.75 | |
B7A | −1630 | 3.2 | −0.35 | 2.72 | −0.03 | 3.505 | 66.164 | 1.89∙× 1010 | 0.85 |
CONDITION: IN LAMINATE | |||||
Composition | Conversion [%] | B6/Iod (0.1/1% w/w) | B6A/Iod (0.1/1% w/w) | ||
@365 nm | @405 nm | @365 nm | @405 nm | ||
CADE/TMPTA (50/50% w/w) | EPOX at 790 cm−1 | 37.9 | 45.4 | 46.5 | 19.9 |
ACRYLATE at 1635 cm−1 | 75.2 | 76.4 | 77.0 | 74.5 | |
CADE/TMPTA/THIOL (40/40/20% w/w/w) | EPOX at 790 cm−1 | 44.7 | 42.5 | 40.6 | 47.7 |
ACRYLATE at 1635 cm−1 | 97.9 | 90.8 | 97.2 | 97.5 | |
THIOL at 2575 cm−1 | 90.8 | 96.6 | 43.2 | 38.4 | |
TMPTA/THIOL (50/50% w/w) | THIOL at 2575 cm−1 | 41.2 | 50.2 | 37.0 | 36.1 |
ACRYLATE at 1635 cm−1 | 99.6 | 98.7 | 99.7 | 99.6 | |
CADE/M100 (50/50% w/w) | EPOX at 790 cm−1 | 33.3 | 22.3 | 28.9 | 32.8 |
METHACRYLATE at 1635 cm−1 | 95.3 | 91.7 | 91.2 | 94.0 | |
TMPTA/M100 (50/50% w/w) | EPOX at 790 cm−1 | 33.7 | 29.2 | 38.4 | 35.0 |
(METH)ACRYLATE at 1635 cm−1 | 58.2 | NP | 62.1 | 59.0 | |
CADE/TEGDVE (50/50% w/w) | EPOX at 790 cm−1 | 33.7 | 29.2 | 17.5 | 20.0 |
VINYL at 1620 cm−1 | 66.9 | 62.3 | 58.2 | 61.4 | |
CONDITION: IN THE AIR | |||||
Composition | Conversion [%] | B6/Iod (0.1/1% w/w) | B6A/Iod (0.1/1% w/w) | ||
@365 nm | @405 nm | @365 nm | @405 nm | ||
CADE/TMPTA (50/50% w/w) | EPOX at 790 cm−1 | 58.1 | 56.8 | 53.0 | 51.6 |
ACRYLATE at 1635 cm−1 | 29.9 | 23.9 | 34.6 | 23.4 | |
CADE/TMPTA/THIOL (40/40/20% w/w/w) | EPOX at 790 cm−1 | 45.5 | 52.6 | 46.2 | 41.7 |
ACRYLATE at 1635 cm−1 | 86.6 | 84.2 | 81.7 | 79.2 | |
THIOL at 2575 cm−1 | 84.5 | 88.0 | 81.2 | 78.4 | |
TMPTA/THIOL (50/50% w/w) | THIOL at 2575 cm−1 | 61.3 | 59.5 | 60.6 | 61.4 |
ACRYLATE at 1635 cm−1 | 93.5 | 96.7 | 97.4 | 97.1 | |
CADE/M100 (50/50% w/w) | EPOX at 790 cm−1 | 53.8 | 49.8 | 24.1 | 27.1 |
METHACRYLATE at 1635 cm−1 | 15.7 | 8.8 | 7.2 | NP | |
TMPTA/M100 (50/50% w/w) | EPOX at 790 cm−1 | 67.1 | 62.0 | 73.3 | 69.2 |
(METH)ACRYLATE at 1635 cm−1 | 56.2 | NP | 12.1 | 29.1 | |
CADE/TEGDVE (50/50% w/w) | EPOX at 790 cm−1 | 993 | 95.6 | 72.2 | 33.0 |
VINYL at 1620 cm−1 | 86.3 | 86.8 | 71.7 | 31.9 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomal, W.; Pilch, M.; Chachaj-Brekiesz, A.; Ortyl, J. Development of New High-Performance Biphenyl and Terphenyl Derivatives as Versatile Photoredox Photoinitiating Systems and Their Applications in 3D Printing Photopolymerization Processes. Catalysts 2019, 9, 827. https://doi.org/10.3390/catal9100827
Tomal W, Pilch M, Chachaj-Brekiesz A, Ortyl J. Development of New High-Performance Biphenyl and Terphenyl Derivatives as Versatile Photoredox Photoinitiating Systems and Their Applications in 3D Printing Photopolymerization Processes. Catalysts. 2019; 9(10):827. https://doi.org/10.3390/catal9100827
Chicago/Turabian StyleTomal, Wiktoria, Maciej Pilch, Anna Chachaj-Brekiesz, and Joanna Ortyl. 2019. "Development of New High-Performance Biphenyl and Terphenyl Derivatives as Versatile Photoredox Photoinitiating Systems and Their Applications in 3D Printing Photopolymerization Processes" Catalysts 9, no. 10: 827. https://doi.org/10.3390/catal9100827
APA StyleTomal, W., Pilch, M., Chachaj-Brekiesz, A., & Ortyl, J. (2019). Development of New High-Performance Biphenyl and Terphenyl Derivatives as Versatile Photoredox Photoinitiating Systems and Their Applications in 3D Printing Photopolymerization Processes. Catalysts, 9(10), 827. https://doi.org/10.3390/catal9100827