Deactivation of a Pd/Pt Bimetallic Oxidation Catalyst Used in a Biogas-Powered Euro VI Heavy-Duty Engine Installation
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Catalyst Material
3.2. Activity Testing
3.3. Characterization
3.3.1. SEM-EDX
3.3.2. Elemental Analysis Using XRF
3.3.3. TEM
3.3.4. XRD
3.3.5. XPS
3.3.6. CO Chemisorption
3.4. Biogas
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix A.1. XRD
Appendix A.2. XPS
References
- Regulation (EU) 2019/631. Off. J. Eur. Union 2019. Available online: https://eur-lex.europa.eu/eli/reg/2019/631/oj (accessed on 9 October 2019).
- Regualtions No 595/2009. Off. J. Eur. Union 2009. Available online: https://eur-lex.europa.eu/eli/reg/2009/595/oj (accessed on 9 October 2019).
- Binder, A.J.; Toops, T.J.; Unocic, R.R.; Parks, J.E., II; Dai, S. Low-Temperature CO Oxidation over a Ternary Oxide Catalyst with High Resistance to Hydrocarbon Inhibition. Angew. Chem. Int. Ed. 2015, 54, 13263–13267. [Google Scholar] [CrossRef] [PubMed]
- Chiodo, V.; Maisano, S.; Zafarana, G.; Urbani, F. Effect of pollutants on biogas steam reforming. Int. J. Hydrog. Energy 2017, 42, 1622–1628. [Google Scholar] [CrossRef]
- Martin, N.M.; Nilsson, J.; Skoglundh, M.; Adams, E.C.; Wang, X.; Smedler, G.; Raj, A.; Thompsett, D.; Agostini, G.; Carlson, S.; et al. Study of methane oxidation over alumina supported Pd–Pt catalysts using operando DRIFTS/MS and in situ XAS techniques. Catal. Struct. React. 2017, 3, 24–32. [Google Scholar] [CrossRef]
- Martin, N.M.; Skoglundh, M.; Smedler, G.; Raj, A.; Thompsett, D.; Velin, P.; Martinez-Casado, F.J.; Matej, Z.; Balmes, O.; Carlsson, P.A. CO Oxidation and Site Speciation for Alloyed Palladium–Platinum Model Catalysts Studied by in Situ FTIR Spectroscopy. J. Phys. Chem. C 2017, 121, 26321–26329. [Google Scholar] [CrossRef]
- Lapisardi, G.; Urfels, L.; Gélin, P.; Primet, M.; Kaddouri, A.; Garbowski, E.; Toppi, S.; Tena, E. Superior catalytic behaviour of Pt-doped Pd catalysts in the complete oxidation of methane at low temperature. Catal. Today 2006, 117, 564–568. [Google Scholar] [CrossRef]
- Ersson, A.; Kušar, H.; Carroni, R.; Griffin, T.; Järås, S. Catalytic combustion of methane over bimetallic catalysts a comparison between a novel annular reactor and a high-pressure reactor. Catal. Today 2003, 83, 265–277. [Google Scholar] [CrossRef]
- Kinnunen, N.M.; Hirvi, J.T.; Suvanto, M.; Pakkanen, T.A. Methane combustion activity of Pd–PdOx–Pt/Al2O3 catalyst: The role of platinum promoter. J. Mol. Catal. A Chem. 2012, 356, 20–28. [Google Scholar] [CrossRef]
- Morlang, A.; Neuhausen, U.; Klementiev, K.; Schütze, F.W.; Miehe, G.; Fuess, H.; Lox, E. Bimetallic Pt/Pd diesel oxidation catalysts: Structural characterisation and catalytic behaviour. Appl. Catal. B Environ. 2005, 60, 191–199. [Google Scholar] [CrossRef]
- Honkanen, M.; Kärkkäinen, M.; Viitanen, V.; Jiang, H.; Kallinen, K.; Huuhtanen, M.; Vippola, M.; Lahtinen, J.; Keiski, R.; Lepistö, T. Structural Characteristics of Natural-Gas-Vehicle-Aged Oxidation Catalyst. Top. Catal. 2013, 56, 576–585. [Google Scholar] [CrossRef]
- González-Velasco, J.R.; Botas, J.A.; Ferret, R.; González-Marcos, M.P.; Marc, J.L.; Gutiérrez-Ortiz, M.A. Thermal aging of Pd/Pt/Rh automotive catalysts under a cycled oxidizing–reducing environment. Catal. Today 2000, 59, 395–402. [Google Scholar] [CrossRef]
- Neyestanaki, A.K.; Klingstedt, F.; Salmi, T.; Murzin, D.Y. Deactivation of postcombustion catalysts, a review. Fuel 2004, 83, 395–408. [Google Scholar] [CrossRef]
- Forzatti, P.; Lietti, L. Catalyst deactivation. Catal. Today 1999, 52, 165–181. [Google Scholar] [CrossRef]
- Kim, J.; Kim, Y.; Wiebenga, M.H.; Oh, S.H.; Kim, D.H. Oxidation of C3H8, iso-C5H12 and C3H6 under near-stoichiometric and fuel-lean conditions over aged Pt–Pd/Al2O3 catalysts with different Pt:Pd ratios. Appl. Catal. B Environ. 2019, 251, 283–294. [Google Scholar] [CrossRef]
- Corro, G.; Cano, C.; Fierro, J. A study of Pt-Pd/γ-Al2O3 catalysts for methane oxidation resistant to deactivation by sulfur poisoning. J. Mol. Catal. A Chem. 2010, 315, 35–42. [Google Scholar] [CrossRef]
- Mowery, D.L.; McCormick, R.L. Deactivation of alumina supported and unsupported PdO methane oxidation catalyst: The effect of water on sulfate poisoning. Appl. Catal. B Environ. 2001, 34, 287–297. [Google Scholar] [CrossRef]
- Ordóñez, S.; Hurtado, P.; Sastre, H.; Díez, F. Methane catalytic combustion over Pd/Al2O3 in presence of sulphur dioxide: Development of a deactivation model. Appl. Catal. A Gen. 2004, 259, 41–48. [Google Scholar] [CrossRef]
- Colussi, S.; Arosio, F.; Montanari, T.; Busca, G.; Groppi, G.; Trovarelli, A. Study of sulfur poisoning on Pd/Al2O3 and Pd/CeO2/Al2O3 methane combustion catalysts. Catal. Today 2010, 155, 59–65. [Google Scholar] [CrossRef]
- Martin, N.M.; Nilsson, J.; Skoglundh, M.; Adams, E.C.; Wang, X.; Velin, P.; Smedler, G.; Raj, A.; Thompsett, D.; Brongersma, H.H.; et al. Characterization of Surface Structure and Oxidation/Reduction Behavior of Pd–Pt/Al2O3 Model Catalysts. J. Phys. Chem. C 2016, 120, 28009–28020. [Google Scholar] [CrossRef]
- Gremminger, A.T.; de Carvalho, H.W.P.; Popescu, R.; Grunwaldt, J.D.; Deutschmann, O. Influence of gas composition on activity and durability of bimetallic Pd-Pt/Al2O3 catalysts for total oxidation of methane. Catal. Today 2015, 258, 470–480. [Google Scholar] [CrossRef]
- Dahlin, S.; Lantto, C.; Englund, J.; Westerberg, B.; Regali, F.; Skoglundh, M.; Pettersson, L.J. Chemical aging of Cu-SSZ-13 SCR catalysts for heavy-duty vehicles—Influence of sulfur dioxide. Catal. Today 2019, 320, 72–83. [Google Scholar] [CrossRef]
- Andersson, J.; Antonsson, M.; Eurenius, L.; Olsson, E.; Skoglundh, M. Deactivation of diesel oxidation catalysts: Vehicle- and synthetic aging correlations. Appl. Catal. B Environ. 2007, 72, 71–81. [Google Scholar] [CrossRef]
- Wiebenga, M.H.; Kim, C.H.; Schmieg, S.J.; Oh, S.H.; Brown, D.B.; Kim, D.H.; Lee, J.H.; Peden, C.H. Deactivation mechanisms of Pt/Pd-based diesel oxidation catalysts. Catal. Today 2012, 184, 197–204. [Google Scholar] [CrossRef]
- Sadokhina, N.; Smedler, G.; Nylén, U.; Olofsson, M.; Olsson, L. The influence of gas composition on Pd-based catalyst activity in methane oxidation—Inhibition and promotion by NO. Appl. Catal. B Environ. 2017, 200, 351–360. [Google Scholar] [CrossRef]
- Devadas, M.; Kröcher, O.; Elsener, M.; Wokaun, A.; Söger, N.; Pfeifer, M.; Demel, Y.; Mussmann, L. Influence of NO2 on the selective catalytic reduction of NO with ammonia over Fe-ZSM5. Appl. Catal. B Environ. 2006, 67, 187–196. [Google Scholar] [CrossRef]
- Mulla, S.; Chen, N.; Cumaranatunge, L.; Blau, G.; Zemlyanov, D.; Delgass, W.; Epling, W.; Ribeiro, F. Reaction of NO and O2 to NO2 on Pt: Kinetics and catalyst deactivation. J. Catal. 2006, 241, 389–399. [Google Scholar] [CrossRef]
- Dubbe, H.; Bühner, F.; Eigenberger, G.; Nieken, U. Hysteresis Phenomena on Platinum and Palladium-based Diesel Oxidation Catalysts (DOCs). Emiss. Control. Sci. Technol. 2016, 2, 137–144. [Google Scholar] [CrossRef]
- Jääskeläinen, H. Impact of Engine Oil on Emissions and Fuel Economy; Dieselnet: 2015. Available online: https://www.dieselnet.com/tech/lube_emissions.php (accessed on 9 October 2019).
- Fridell, E.; Amberntsson, A.; Olsson, L.; Grant, A.W.; Skoglundh, M. Platinum oxidation and sulphur deactivation in NOxstorage catalysts. Top. Catal. 2004, 30, 143–146. [Google Scholar] [CrossRef]
- Winkler, A.; Ferri, D.; Aguirre, M. The influence of chemical and thermal aging on the catalytic activity of a monolithic diesel oxidation catalyst. Appl. Catal. B Environ. 2009, 93, 177–184. [Google Scholar] [CrossRef]
- Martin-Martinez, M.; Gómez-Sainero, L.; Bedia, J.; Arevalo-Bastante, A.; Rodriguez, J. Enhanced activity of carbon-supported Pd–Pt catalysts in the hydrodechlorination of dichloromethane. Appl. Catal. B Environ. 2016, 184, 55–63. [Google Scholar] [CrossRef]
- Persson, K.; Ersson, A.; Colussi, S.; Trovarelli, A.; Järås, S. Catalytic combustion of methane over bimetallic Pd–Pt catalysts: The influence of support materials. Appl. Catal. B Environ. 2006, 66, 175–185. [Google Scholar] [CrossRef]
- Rodríguez-Proenza, C.; Palomares-Báez, J.; Chávez-Rojo, M.; García-Ruiz, A.; Azanza Ricardo, C.; Santoveña-Uribe, A.; Luna-Barcenas, G.; Rodríguez-López, J.; Esparza, R. materials Atomic Surface Segregation and Structural Characterization of PdPt Bimetallic Nanoparticles. Materials 2018, 11, 1882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esparza, R.; Santoveña, A.; Ruíz-Baltazar, A.; Angeles-Pascual, A.; Bahena, D.; Maya-Cornejo, J.; Ledesma-García, J.; Perez-Campos, R. Study of PtPd Bimetallic Nanoparticles for Fuel Cell Applications. Mater. Res. 2017. [Google Scholar] [CrossRef] [Green Version]
- Corro, G. Sulfur impact on diesel emission control—A review. React. Kinet. Catal. Lett. 2002, 75, 89–106. [Google Scholar] [CrossRef]
- Haaß, F.; Fuess, H. Structural Characterization of Automotive Catalysts. Adv. Eng. Mater. 2005, 7, 899–913. [Google Scholar] [CrossRef]
- Cabello Galisteo, F.; Larese, C.; Mariscal, R.; Granados, M.; Fierro, J.; Fernández Ruiz, R.; Furió, M. Deactivation on Vehicle-Aged Diesel Oxidation Catalysts. Top. Catal. 2004, 30-31, 451–456. [Google Scholar] [CrossRef]
- Sherwood, P.M.A. Introduction to Studies of Phosphorus-Oxygen Compounds by XPS. Surf. Sci. Spectra 2002, 9, 62–66. [Google Scholar] [CrossRef]
- Kärkkäinen, M.; Kolli, T.; Honkanen, M.; Heikkinen, O.; Väliheikki, A.; Huuhtanen, M.; Kallinen, K.; Lahtinen, J.; Vippola, M.; Keiski, R.L. The Influence of Phosphorus Exposure on a Natural-Gas-Oxidation Catalyst. Top. Catal. 2016, 59, 1044–1048. [Google Scholar] [CrossRef]
- Eaton, S.J.; Nguyen, K.; Bunting, B.G. Deactivation of Diesel Oxidation Catalysts by Oil-Derived Phosphorus. Powertrain & Fluid Systems Conference and Exhibition. SAE Int. 2006. [Google Scholar] [CrossRef]
- Sharma, H.N.; Sharma, V.; Mhadeshwar, A.B.; Ramprasad, R. Why Pt Survives but Pd Suffers From SOx Poisoning? J. Phys. Chem. Lett. 2015, 6, 1140–1148. [Google Scholar] [CrossRef]
- Wilburn, M.S.; Epling, W.S. SO2 adsorption and desorption characteristics of bimetallic Pd-Pt catalysts: Pd:Pt ratio dependency. Catal. Today 2019, 320, 11–19. [Google Scholar] [CrossRef]
- Kannisto, H.; Ingelsten, H.H.; Skoglundh, M. Ag–Al2O3 catalysts for lean NOx reduction—Influence of preparation method and reductant. J. Mol. Catal. A Chem. 2009, 302, 86–96. [Google Scholar] [CrossRef]
- Moulder, J.F.; Stickle, W.F.; E.’Sobol, P.; Bomben, K.D. Handbook of X-ray Photoelectron Spectroscopy; Perkin-Elmer Corporation: Eden Prairie, MN, USA, 1992. [Google Scholar]
- Granestrand, J.; Dahlin, S.; Immele, O.; Schmalhorst, L.; Lantto, C.; Nilsson, M.; París, R.S.; Regali, F.; Pettersson, L.J. Catalytic aftertreatment systems for trucks fueled by biofuels—Aspects on the impact of fuel quality on catalyst deactivation. RSC Catal. 2018, 30, 64–145. [Google Scholar] [CrossRef]
- CEN-CENELEC. EN 16726:2015. 2015. Available online: https://infostore.saiglobal.com/preview/98703699482.pdf?sku=879417_saig_nsai_nsai_2089598 (accessed on 9 October 2019).
Sample Name | Description |
---|---|
DOCref | Fresh sample of the oxidation catalyst |
DOC in | Inlet sample of the engine bench aged oxidation catalyst |
DOC out | Outlet sample of the engine bench aged oxidation catalyst |
Sample | Conversion of CH4 in the Presence of NO and CO (%) | Conversion of CH4 in Absence of NO and CO (%) | T50 for CO in the Presence of NO and CO (°C) | T50 for CO in the Absence of NO and CO (°C) |
---|---|---|---|---|
DOC ref | 87 | 72 | 166 | 108 |
DOC in | 15 | 8 | 192 | 159 |
DOC out | 26 | 15 | 199 | 161 |
Sample | Pd (wt.%) | Pt (wt.%) | S (wt.%) | P (wt.%) | Ca (ppm) |
---|---|---|---|---|---|
DOC ref | 0.49 ± 0.05 | 0.20 ± 0.05 | 0.00 ± 0.04 | 0.00 ± 0.04 | 280 ± 70 |
DOC in | 0.64 ± 0.05 | 0.24 ± 0.05 | 0.27 ± 0.04 | 0.18 ± 0.04 | 470 ± 70 |
DOC out | 0.69 ± 0.05 | 0.27 ± 0.05 | 0.25 ± 0.04 | 0.04 ± 0.04 | 320 ± 70 |
Sample | Average Noble Metal Particle Size (nm) | Particle Size Distribution (nm) | CO Uptake (mol/mol Pd/Pt) |
---|---|---|---|
DOC ref | 4.0 | 2–9 | 0.063 |
DOC in | 9.5 | 5–17 | 0.001 |
DOC out | 8.0 | 2–19 | 0.003 |
Temp (°C) | CO (vol. ppm) | CH4 (vol. ppm) | NO (vol. ppm) | Description |
---|---|---|---|---|
100–450↑↓ | 1000 | - | - | CO oxidation |
100–450↑↓ | - | 1000 | - | CH4 oxidation |
100–450↑↓ | - | - | 1000 | NO oxidation |
100–450↑↓ | 1000 | 1000 | 1000 | Complex mixture of gases |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Englund, J.; Xie, K.; Dahlin, S.; Schaefer, A.; Jing, D.; Shwan, S.; Andersson, L.; Carlsson, P.-A.; Pettersson, L.J.; Skoglundh, M. Deactivation of a Pd/Pt Bimetallic Oxidation Catalyst Used in a Biogas-Powered Euro VI Heavy-Duty Engine Installation. Catalysts 2019, 9, 1014. https://doi.org/10.3390/catal9121014
Englund J, Xie K, Dahlin S, Schaefer A, Jing D, Shwan S, Andersson L, Carlsson P-A, Pettersson LJ, Skoglundh M. Deactivation of a Pd/Pt Bimetallic Oxidation Catalyst Used in a Biogas-Powered Euro VI Heavy-Duty Engine Installation. Catalysts. 2019; 9(12):1014. https://doi.org/10.3390/catal9121014
Chicago/Turabian StyleEnglund, Johanna, Kunpeng Xie, Sandra Dahlin, Andreas Schaefer, Dazheng Jing, Soran Shwan, Lennart Andersson, Per-Anders Carlsson, Lars J. Pettersson, and Magnus Skoglundh. 2019. "Deactivation of a Pd/Pt Bimetallic Oxidation Catalyst Used in a Biogas-Powered Euro VI Heavy-Duty Engine Installation" Catalysts 9, no. 12: 1014. https://doi.org/10.3390/catal9121014
APA StyleEnglund, J., Xie, K., Dahlin, S., Schaefer, A., Jing, D., Shwan, S., Andersson, L., Carlsson, P.-A., Pettersson, L. J., & Skoglundh, M. (2019). Deactivation of a Pd/Pt Bimetallic Oxidation Catalyst Used in a Biogas-Powered Euro VI Heavy-Duty Engine Installation. Catalysts, 9(12), 1014. https://doi.org/10.3390/catal9121014